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Multifractal characterization of grayscale histopathological 
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Summary 
Introduction: Breast cancer, a pervasive global malignancy, de-
mands precise prognostication of the risk of metastases for person-
alized therapeutic strategies and enhanced survival rates. In pursuit 
of refined diagnostic methodologies, this study employs multifractal 
analysis on grayscale histopathological images, revealing distinctive 
patterns associated with the occurrence of metastases.
Aim: Analyzing the multifractal spectra of grayscale images for 
groups with and without metastases to assess the utility of this ana-
lytical approach in enhancing the diagnostic process.
Materials and methods: The study included 102 female patients 
treated at the Institute for Oncology and Radiology of Serbia in the 
same year (1993). Histopathological samples were immunostained 
with a pan-cytokeratin antibody and digitized with a high-resolu-
tion scanner, from which a specialist chose representative parts, thus 
leading to a total number of 519 images (418 in no-metastases group 
and 101 in metastases group). Images were subjected to multifractal 
analysis, assessing the generalized dimension, Hölder exponent, and 
singularity spectra.
Results: Statistical comparisons between groups with and without 
metastases unveil significant differences in the negative domains 
of both generalized dimension and Hölder exponent spectra, high-
lighting the influence of fine structures in tissue morphology that are 
linked to metastatic risk.
Conclusion: Multifractal analysis applied to images of histopatholog-
ical samples from breast tumors demonstrates the ability to differen-
tiate between groups of patients with and without metastases. While 
caution is warranted regarding image resolution limitations and im-
munostaining sensitivity, this method is a non-training-dependent 
approach with potential diagnostic significance and possible syner-
gies with advanced neural network approaches.
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INTRODUCTION

Breast cancer is the most commonly diagnosed form of 
malignancy in the world and is the primary cause of can-
cer-related death in women (1,2). Metastases pose a sig-
nificant challenge in breast cancer treatment, with the 
occurrence of distant metastases displaying exceptional 
variability. Accurately prognosticating the risk of metas-
tases becomes pivotal for tailoring individual therapeutic 
regimens and improving survival rates. Precision medi-
cine holds the potential to optimize treatment strategies, 
with less intense interventions for low-risk individuals 
and intensified therapies for those reliably identified as 
high-risk for metastases. Currently, the reliance on cyto-
toxic therapy to eliminate distant micro metastases, while 
effective for some, subjects many breast cancer patients to 
unnecessary toxic side effects (3,4). By refining prognos-
tication, the field of oncology can move towards individu-
alized treatment plans that enhance patient survival rates 
while mitigating the adverse effects of chemotherapy.

Non-invasive techniques, such as mammography and 
breast ultrasound, serve as valuable tools for tumor de-
tection; however, histopathological images remain the 
gold standard in breast cancer diagnosis (5,6). The mor-
phological information conveyed by histopathological 
images offers essential prognostic insights into the mo-
lecular biology of breast cancer (7). Nevertheless, visual 
assessment of tumor morphology by specialists presents 
challenges manifested in frequent non-reproducibility 
of results, thereby compromising the reliability of prog-
nostic information (8). To address this, computer image 
analysis emerges as a potential solution, potentially of-
fering enhanced reliability and reduced susceptibility to 
error in the diagnostic process. In recent years, various 
approaches within the realm of computer image analysis 
have been proposed to address these challenges in breast 
cancer diagnosis (9–12), among them multifractal analy-
sis, which exhibits promise in distinction between abnor-
mal and healthy tissue (13,14).

Multifractal analysis sprung from fractal geometry 
formulated by Benoit Mandelbrot with the aim of describ-
ing the complexity of living forms in nature (15). While 
histopathological images qualify as natural forms, they 
diverge from mathematically abstract fractal patterns 
by manifesting fractal properties solely at limited scales 
(16,17). Nonetheless, the morphology of natural patterns 
can be effectively quantified through the application of 
fractal and multifractal formalism. In contrast to monof-
ractal analysis, multifractal approaches prove more adept 
at describing the irregularities inherent in natural objects. 
Given that natural entities typically lack universal or sta-
tistical self-similarity and exhibit an uneven distribution 
of complexity, multifractal analysis accommodates varia-
tions in fractal dimensions across different points within 
the object (18,19). The aim of this study is to analyze the 
multifractal spectra of grayscale images for groups with 

and without metastases to assess the utility of this analyti-
cal approach in enhancing the diagnostic process.

MATERIALS AND METHODS

In this study, we used the same sample from two previ-
ous studies (3,20), where a different approach to image 
analysis was applied. Patient group and image acquisition 
information were presented there in more detail.

The study was approved by the Ethics Committee of 
the Institute for Oncology and Radiology (#2794-01; 14. 
July 2016) and conformed with The Code of Ethics of 
the World Medical Association (Declaration of Helsinki) 
printed in the British Medical Journal (July 18, 1964) and 
its 7th revision in 2013.

Patient group

The patient group consisted of 102 female patients treat-
ed at the Institute for Oncology and Radiology of Serbia 
in the same year (1993). The data were obtained without 
identifiers that would allow the identification of an indi-
vidual patient. The median age at diagnosis was 57 years 
(with a range of 37–80 years). The follow-up time of pa-
tients without metastases ranged from 77 to 165 months 
with a median of 147 months. Time to metastases ranged 
between 16 and 155 months with a median of 61 months. 
Out of 102 patients, metastases were observed in 20 cases.

Image acquisition

The tissue was obtained during surgical removal of the tu-
mor. From the histopathological samples of 102 patients, 
the pathologist selected one sample per patient that best 
represented the tumor. The samples were immunostained 
with a pan-cytokeratin antibody for the purpose of labeling 
groups of epithelial cells, and subsequently were digitized 
with a Hamamatsu NanoZoomer-XRC12000 high-resolution 
digital slide scanner. The procedure was described in more 
detail in previous studies (3,20). In this way, high-resolu-
tion color images were obtained from which the patholo-
gist selected representative parts of the same size (about 
five per patient) to represent the original images used in the 
analysis. Figure 1a shows an example of such an image. In 
this way, a total of 519 digital images were extracted, 418 in 
no-metastases group (group 0) and 101 in metastases group 
(group 1). All the images had the same resolution of 1278 х 
753 pixels, to avoid the systematic error caused by the frac-
tal calculations’ dependence on image resolution (21).

Color images were then converted to 8-bit grayscale 
images using the image processing and analysis software 
ImageJ version 1.48v, using the command “Image - Type 
- 8bit” (22) (Figure 1b). Multifractal analysis described 
in the following text was then applied to the images to 
obtain the multifractal spectra of each individual image.



| 77

Multifractal analysis of breast cancer histopathology

Multifractal analysis

Multifractal analysis aims to quantify the morphological 
characteristics of an object that exhibits multiple scaling 
rules (23). A multifractal structure can be seen as a su-
perposition of several homogeneous monofractal struc-
tures in a single object (24). Given the morphological 
nature of histopathological images, multifractal analy-
sis can describe the statistical properties of such images 
that possess irregular spatial arrangements. In order to 
describe this “multifractality” of the objects, as well as to 
check whether the object is actually multifractal, we re-
sort to the formation of a multifractal spectrum. For this 
purpose, an ImageJ plug-in called FracLac was used (25) 
whose calculations relied on the previous work of Chhab-
ra and Jensen (26,27). We used two most commonly used 
spectrums – the spectrum of generalized dimensions DQ 
vs Q , and singularity spectrum f(α) vs α, described in the 
following text. In addition, α vs Q and f(α) vs Q spectra 
are also represented in the study.

Analysis was implemented using the non-overlapping 
box count method. Spectrum of generalized dimensions 
DQ vs Q is formed by using the so-called moments of or-
der Q , which serve as a kind of distortion that mathemat-
ically emphasize different aspects of the morphology of 
the object (25,28). These moments are calculated for the 
measure P(i, ε) as

 (1)

where N is the total number of filled squares used in 
the box counting method, ε is the size of the box at the 
given scale, while P(i, ε) is the probability of a certain mass 
of pixels occurring in i-th box compared to the total mass 
at that box size ε. Hence, the generalized dimension of 
DQ(Q) is equal to

 (2)

This study is conducted on grayscale images, so the 
calculation of the mentioned moments is reduced to dif-
ferences in pixel intensities described by the differential 

box counting method (25). This method calculates the 
difference in pixel intensities δIi,j,ε in each square of a cer-
tain size, so it is

 (3)

This actual intensity range is increased by 1, to avoid 
a zero value in later calculations of the logarithm from 
which we have

 (4)

Singularity spectrum f(α) vs α is another common 
type of multifractal spectrum. Parameter α is called 
Hölder exponent, also known as singularity strength (29), 
and it represents the degree of concentration of mass 
measure probability (30). Greater values of α indicate a 
smaller degree of concentration, and vice versa (29,30). 
In practice, following the calculations given by Chhabra 
and Jensen, we found the measure of mass probability for 
each box of the size ε (26,27,30)

 (5)

which enabled us to calculate the coarse Hölder expo-
nent (26,27,29,30)

 (6)

and finally

 (7)

Parameter f(α) can be interpreted as a fractal dimen-
sion of a set of points with a singularity strength of α (30).

Values for parameter Q ranged from -10 to 10, with a 
step of 0.25, resulting in 81 points in the spectra of each 
image. Each of the 81 points in 3 different spectra (DQ vs 
Q , α vs Q and f(α) vs Q) was treated as a separate variable 
for differentiation between the groups. The additional 
f(α) vs α spectrum was also presented for easier visual 
multifractal data comprehension, as it is the most com-
monly used multifractal spectrum.

Figure 1. Representative image used in the study: a) Original color image, b) Grayscale image
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Box counting algorithm was implemented with 12 
different grid positions for each box size. Among the 12 
positions, the one with the minimal number of boxes was 
chosen, reducing the possibility of error in calculations 
of the parameters (25). Theoretically, to avoid errors of 
this type altogether, the number of grid positions should 
be the maximum possible, depending on the image size. 
The number of positions in this study was chosen as a 
compromise between the computation time and further 
reducing the possibility of error, which is already quite 
low at 12 positions, rendering the increase unnecessary.

From the multifractal spectra f(α) vs α, additional pa-
rameters were extracted in order to further characterize 
the spectrum. Parameters included αmin, αmax, Δα, f(α)min, 
f(α)max, Δf(α), where Δα and Δf(α) were calculated as αmax 

– αmin and f(α)max – f(α)min, respectively.

Statistical analysis

Data analysis was performed using IBM SPSS Statistics 
v25 software. The quantitative measure of the differ-
ence between the prognostic groups was evaluated by the 
non-parametric Mann-Whitney U test since normal dis-
tribution could not be guaranteed for all used variables. 
Results with p values ≤ 0.05 were considered statistically 
significant.

RESULTS

Considering the large number of variables in multifractal 
spectra, the data in this paper will be mainly presented 
graphically.

Spectrum of generalized dimensions DQ(Q)

Figure 2 shows the median values of generalized dimen-
sion DQ depending on the parameter Q , for both groups 
of patients. It is observed that with an increase in param-
eter Q , the values of the generalized dimension decrease, 
which is expected due to the sigmoid shape of this type 
of multifractal spectrum (25,30). The greatest drop in 
DQ values is between Q = -1.5 and Q = -1.25 for group 0, 
and between Q = -0.75 and Q = -0.5 for group 1. Differ-
ences in median values between groups tend to decrease 
with increasing Q values and are greatest in the Q value 
range from -4.75 to -3. Statistically significant differenc-
es between groups were observed on practically entire 
spectrum with negative values of Q , (except for point Q 
= 0.25), with higher median DQ values for group 1. The 
median values of the DQ parameter are higher for group 
1 on most of the spectrum except for the Q values in the 
range from 0.25 to 6.75, but it is worth noting that differ-
ences on the Q-positive part of the spectrum were negli-
gible (differences were observed only in the third decimal 
place).

Figure 2. Spectra of median values of generalized dimensions 
DQ(Q). Significant differences were observed for Q values in the 
range of -10 to -1.25 (p < 0.001) and -1 to -0.5 (p < 0.05), indicated 
with green shades.

Spectrum of Hölder exponents α(Q)

The median value Hölder exponent spectrum α(Q) is 
presented in Figure 3 for both groups. This graph also 
exhibits a sigmoidal shape, where the median values of 
the Hölder exponent α decrease with increasing Q value. 
Statistically significant differences between the groups 
are found on the whole Q-negative part of the spectrum, 
including the Q = 0 point. On this part of the spectrum 
the median α values were higher for group 1, with the 
maximum difference in the Q range of -4 to -1. On the 
Q-positive part of the spectrum, similarly to DQ(Q) spec-
trum, the differences between the median values of α 
were negligible.

Figure 3. Spectra of median values of Hölder exponents α(Q). Signif-
icant differences (p < 0.05) were observed for Q values in the range of 
-10 to 0, including the segment with p < 0.001 in the range of -2.75 to 
-0.5, indicated with green shades.
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Singularity spectrum f(α)

The graph f(α) vs Q is shown in Figure 4 for both groups. 
Median values of f(α) were similar for both groups, except 
for three narrow parts of the spectrum: the extreme nega-
tive part (Q < 9.5), the middle part (-2.25 < Q < -1.25) and 
the extreme positive part (Q = 10), where statistically sig-
nificant differences were observed. At the extreme nega-
tive part, the values of the parameter f(α) were higher for 
group 1, while on the other two segments the values were 
lower for the same group. This shows that both groups 
exhibited similar probability distribution of singularity 
strengths on most Q values.

Figure 4. Spectra of median values f(α) vs Q. Significant 
differences (p < 0.05) were observed in narrow segments 
of Q values in the ranges of -10 to -9.75, -2 to -1.5 and on a 
single point Q = 10, indicated with green color.

Singularity spectra f(α) vs α, for both groups, are pre-
sented in Figure 5. Differences between the groups are 
observed in the right part of the spectrum, for median α 
values in the range of 1.844 (0.316) to 2.724 (0.792) where 
group 1 exhibited higher values of parameter f(α). This dif-
ference is mostly due to the differences in the singularity 
strengths α (as shown in Figure 3) as opposed to the dif-
ferences in f(α) which were shown to be small (Figure 4).

Table 1 contains median values and range for extreme 
value parameters in the f(α) vs α spectrum of each patient, 
for both groups. Parameters αmax and Δα showed statisti-
cally significant differences between the groups. This is 
consistent with the data in Figure 3, where we observed 
significant differences in the entire Q-negative part of 
the spectrum where the parameter α showed higher me-
dian values, including its maximum. On the other hand, 
minimal values of α parameter showed no significant 
difference between the groups. This value is contained 
in the Q-positive part of the spectrum where differences 
between the medians were very slight. None of the f(α) 
extreme value parameters (min, max and Δ) showed sta-
tistically significant differences, which is consistent with 
the data in Figure 4, where we observed differences on 

very narrow segments of the spectra, none of which con-
tained these extreme values.

Table 1. Extreme value parameters from the singularity 
spectra f(α) vs α of each patient
parameter median value (range) Mann- 

-Whitney U
Z P

group 0 group 1

αmin 1.538 
(0.406)

1.535 
(0.443)

20066.5 -0.771 0.441

αmax 2.687 
(1.097)

2.736 
(0.777)

25561.5 3.292 0.001

Δα 1.153 (1.196) 1.213 (0.828) 25813.5 3.478 0.001

f(α)min 0.093 
(1.403)

0.144 (1.296) 23553.5 1.807 0.071

f(α)max 1.762 (0.151) 1.762 (0.143) 22329.5 0.934 0.350

Δf(α) 1.680 
(1.489)

1.629 (1.253) 18839 -1.678 0.093

DISCUSSION

Multifractal analysis has proven to be a useful tool in 
quantifying the morphology of highly irregular two-di-
mensional objects. Images of histopathological tissue 
samples, including breast cancer samples, can also be 
included in such patterns, in a certain range of scales 
(13,23,28). By generating multifractal spectra, the prop-
erties of various aspects of the given object can be ob-
served. The spectra are generated using moments of or-
der Q , i.e., of numbers that serve as exponents that more 
or less emphasize the probability of the pixel distribution 
(Equations 1 and 5). In this way, a kind of distortion of 
the object is carried out, the aim of which is to accen-
tuate different features of the object bringing them to 
the foreground. Thus, in the part of the spectrum with 
positive values of the exponent Q , the parts of the mul-
tifractal object that are more noticeable on the pattern 
and which contain a larger number of pixels, will prevail, 
while in the negative part of the spectrum, the “finer” 
features of the pattern that are not in the foreground will 
dominate (24,25). In case of the generalized dimension 
spectrum, the point in the central part of the spectrum 
(for the value Q = 0) is actually the Hausdorff-Besico-
vitch dimension, i.e., box count fractal dimension, and 

Figure 5. Singularity spectra of median values f(α) vs α for 
both groups.
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describes the spatial complexity of the original object 
without the applied mathematical distortion (15,25). The 
multifractality of the object is ref lected in the sigmoidal 
nature of its generalized dimension spectrum. The more 
pronounced the sigmoid shape the more heterogeneous 
the object in terms of the scaling rules. For example, the 
monofractal pattern would have a spectrum that is close 
to the straight line (25). We can also assess the multifrac-
tality of the object by observing the singularity spectrum 
( f(α) vs α), which exhibits a parabolic shape. The width 
of the spectrum (which is dictated by the range of values 
of the Hölder exponent α) is related to the scaling rules of 
heterogeneity, where wider spectra belong to the patterns 
with more scaling rules (i.e., multifractals) (25,30,31).

Two-dimensional histopathological images of breast 
tumors show multifractal characteristics (13,23,28). This 
multifractality can be considered a consequence of the 
fact that the given images contain sets of cells of various 
irregular shapes, so by observing an image as a whole, we 
include multiple scaling laws.

In the results presented in this paper, it can be noted 
that almost the entire part of the DQ spectrum with neg-
ative Q moments showed statistically significant differ-
ences between the groups (Figure 2). This indicates the 
possibility that parts of the image with a smaller number 
of pixels, and thus finer structures in the tissue, carry im-
portant prognostic information. The roughness of the pat-
tern on the less pronounced parts of the image proved to 
be a separating factor for the two groups. This roughness 
is ref lected in the values of the generalized fractal dimen-
sions of DQ , so it should be noted that the values of these 
parameters were slightly higher for the group with the ap-
pearance of metastases on the entire negative part of the 
spectrum. As all pixels of the pattern in the image repre-
sent immuno-staining with a pan-cytokeratin antibody, 
it can be assumed that precisely the fine morphological 
features of these structures in the epithelial cells contain 
essential information about the tumor itself. Our findings 
indicate that the rougher morphology of immunostained 
structures carries with it the higher prognostic risk.

Spectrum of Hölder exponents α(Q) (Figure 3) con-
firms the findings from the DQ(Q) spectrum, testifying 
to the dominance of fine details in the images. Regions 
with higher α value, i.e., the more homogenous regions in 
terms of local pixel intensity, showed significant differ-
ences between the groups on the entire Q-negative part 
of the spectrum. Observing the two spectra, α(Q) and 
DQ(Q) together, we conclude that small differences in 
the roughness of the finer regions of the patterns hold the 
key differences in terms of prognostic significance.

The biggest differences for the parameters DQ and α 
were found on the parts of the spectra with Q values from 
around -4 to -1, which is located on the greatest slope of 
the sigmoidal spectra. Therefore, when trying to reduce 
the number of variables in this type of analysis, the men-
tioned region of the spectra could be of importance, as 

well as the variable αmax, which also showed statistically 
significant differences.

A multifractal object can be viewed as a superposition 
of several monofractal objects determined by a Hölder 
exponent α. Observed from this perspective, the function 
f(α) is actually the Hausdorff dimension of such a set of 
points with a monofractal structure and unique scaling 
law (24,30,32). The f(α) vs Q spectra were very similar 
for both groups, with only minor statistical differences 
(Figure 4). From this we can conclude that groups had 
very similar probability distributions of Hölder’s expo-
nents α, i.e., they had similar distributions of scaling laws. 
On the other hand, the singularity spectra (presented in 
Figure 5) exhibit differences in width, with group 1 hav-
ing a slightly wider spectrum. This difference Δα is sta-
tistically significant (Table 1), and points to the slightly 
higher “multifractality” of the group 1 images. Thus, even 
though the overall distribution of complexity is rather 
similar between the groups, group 1 exhibited slightly 
more scaling rules. With all this taken into account, the 
group differences could be considered a consequence of 
the different degrees of complexity of individual regions, 
rather than fundamentally different distribution of the 
complexity of the overall images.

While the interpretation of our findings suggests that 
the fine structures within the pattern hold paramount mor-
phological significance for diagnostic purposes, caution is 
warranted. The resolution of the images employed in this 
investigation, though relatively high (1278 x 753 pixels), in-
troduces a potential limitation when confronted with larg-
er distortions, as finer details are contingent upon the pixel 
density. Additionally, the preeminence of the immunos-
taining signal underscores its pivotal role in the analysis. 
Therefore, meticulous consideration must be given to the 
quality of staining, given its heightened sensitivity within 
the procedural framework. It is imperative to acknowledge 
that practical constraints limit our ability to regulate all 
contributing factors influencing the staining process.

It is noteworthy that, in terms of prognostic accuracy, 
the efficacy of the presented analysis method falls some-
what short when juxtaposed with convolutional neural 
networks (18,28,33–35). Conversely, neural networks 
exhibit drawbacks such as a requisite for substantial train-
ing datasets, high computational demands, and a narrow 
applicability confined to images closely resembling those 
encountered during training (36–38). In contrast, fractal 
and textural analysis methods possess the advantage of 
independence from training requirements, potentially 
offering a means to quantify investigated morphology 
and support specialists in decision-making (13,18,33,39). 
Subsequent investigations may explore synergies be-
tween these methodologies, integrating fractal and tex-
tural features as inputs into neural networks (40).

Examining the tissue holistically presents an addi-
tional advantage inherent to these analyses. This ap-
proach mitigates systematic errors that may arise from 
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further image segmentation or the isolation of individual 
elements. Furthermore, it affords a comprehensive over-
view of the entire information embedded in the image, 
avoiding oversight of critical details that could occur 
through the selective extraction of specific objects (28).

CONCLUSION

Multifractal analysis applied to gray-scale images of 
histopathological samples from breast tumors demon-
strates the ability to differentiate between groups of 
patients with and without metastases. Statistically sig-
nificant distinctions emerge in the negative domains of 
both the generalized dimension and Hölder exponent 
multifractal spectra between these patient groups. With 

further research, this type of analysis could potentially be 
a useful auxiliary tool in the diagnosis and the selection of 
treatment strategies for this disease.
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MULTIFRAKTALNA ANALIZA NA HISTOPATOLOŠKIM SLIKAMA U SIVIM 
TONOVIMA: OTKRIVANJE OBRAZACA POVEZANIH SA POJAVOM METASTAZA 
KOD RAKA DOJKE
Zorana Nedeljković1, Dejana Milošević2, Marko Radulović3, Nebojša Milošević1, Nemanja Rajković1

Sažetak

Uvod: Rak dojke, sveprisutni globalni malignitet, za-
hteva preciznu prognozu rizika od metastaza za perso-
nalizovane terapijske strategije i povećane stope pre-
življavanja. U potrazi za unapređenim dijagnostičkim 
metodologijama, ova studija koristi multifraktalnu ana-
lizu na histopatološkim slikama u sivim tonovima, ot-
krivajući karakteristične obrasce povezane sa pojavom 
metastaza.

Cilj: Analizirati multifraktalne spektre slika histopatolo-
ških uzoraka za grupe sa i bez metastaza kako bi se pro-
cenila korisnost ovog analitičkog pristupa u poboljšanju 
dijagnostičkog procesa.

Materijali i metode: Istraživanjem su obuhvaćene 102 
pacijentkinje lečene iste godine (1993) na Institutu za 
onkologiju i radiologiju Srbije. Histopatološki uzorci su 
imunobojeni pancitokeratin antitelom i digitalizovani 
skenerom visoke rezolucije, od kojih je specijalista birao 
reprezentativne delove, što je dovelo do ukupnog broja 

od 519 slika (418 u grupi bez metastaza i 101 u grupi sa 
metastazama). Slike su podvrgnute multifraktalnoj ana-
lizi, procenjujući spektre generalizovanih dimenzija, Hol-
derovih eksponenata i singulariteta.

Rezultati: Statistička poređenja između grupa sa i bez 
metastaza otkrivaju značajne razlike u negativnim do-
menima spektara generalizovanih dimenzija i Holdero-
vih eksponenata, naglašavajući uticaj finih struktura u 
morfologiji tkiva koje su povezane sa rizikom od meta-
staza.

Zaključak: Multifraktalna analiza primenjena na slike 
histopatoloških uzoraka tumora dojke pokazuje sposob-
nost razlikovanja grupa pacijenata sa i bez metastaza. 
Iako je potreban oprez u pogledu ograničenja, poput 
uticaja rezolucije slike i osetljivosti na imunološko boje-
nje, ovaj metod ne zavisi od treninga na velikom uzorku i 
pokazuje potencijalni dijagnostički značaj kao i moguću 
sinergiju sa naprednim neuronskim mrežama.

Ključne reči: multifraktal, histopatologija, rak dojke, metastaze
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