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Life of the cell: is it important how cells die?
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Summary

Cell death emerges during embryonic development, and is preserved
after the birth as an important process for maintaining homeostasis
by removing damaged or aged cells. Two forms of cell deaths exist:
accidental and regulated cell death. Necrosis is an accidental, unreg-
ulated, passive form of cell death that occurs due to the collapse of
cellular homeostatic mechanisms under extreme non-physiologi-
cal conditions. Regulated cell death is an active, energy-dependent
process that functions as a physiological mechanism for maintaining
homeostasis and in numerous pathological conditions when it pro-
vides selective elimination of potentially dangerous or infected cells.
There are many types of regulated cell death: intrinsic and extrinsic
types of apoptosis, autophagy dependent cell death, necroptosis, py-
roptosis, ferroptosis, parthanatos, mitochondrial permeability transi-
tion-driven necrosis, lysosome-dependent cell death, immunogenic
cell death, entosis and NET-osis. Different types of cell death are inter-
connected. Abnormal activation of the different forms of cell death
can cause diseases. Dysregulation of the apoptotic program can lead
to hyperplasia, autoimmune diseases and tumorigenesis, pyroptosis
is associated with bacterial infection and necroptosis with human
inflammatory skin diseases and carcinogenesis. Understanding the
regulatory mechanisms of apoptosis led to the discovery of BH3 mi-
metics, drugs used for treatment of some types of B cell malignan-
cies. Drugs that target necroptosis, pyroptosis and autophagy are
under investigation and could be potentially used in future as thera-
pies for various diseases, including cancer. The aim of this review is to
summarize new knowledge about the processes of cell death, and to
emphasize the importance of newly discovered molecular pathways
requlating various types of cell death, enhancing our comprehension
of health and disease.
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INTRODUCTION

The life of a cell, like the life of an organism, ultimately
ends in death (1). Cell death emerges during embryon-
ic development, playing a crucial role in morphogenesis
and is preserved postnatally as an important process for
maintaining homeostasis by removing damaged or aged
cells (1). Cell death can occur as a component of physio-
logical processes at the end of the cell’slifecycle, or due to
the action of pathological factors that irreversibly damage
cells (2). Therefore, there are two forms of cell deaths:
regulated cell death and accidental cell death (1).
Accidental cell death was initially observed by Karl
Vogt in 1842, but the concept of cell death and the
terms necrosis and necrobiosis were introduced for the
first time by Rudolf Virchow, in 1858 (3). Regulated
cell death, or apoptosis, was morphologically described
in 1885 by Walter Fleming and originally named chro-
matolysis, while the concept of programmed cell death
was introduced later in 1950s, and named apoptosis by
Kerr, Willy and Curie, in 1972 (3,5,6). Research on cell
death started at the Institute of Histology and Embry-
ology, Faculty of Medicine in Belgrade when its founder
Aleksandar Dj. Kosti¢ described cells with morphologi-
cal characteristics of apoptosis in his doctoral disserta-
tion, in 1921, and continued in 1980s (4). In 1990s, it was
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hypothesized that autophagy, the process of degradation
of cellular components inside lysosomes, first observed in
1960s by electron microscopy, can also lead to cell death
and Klionsky and Yoshinori began detailed research into
the mechanisms of this process which later led to Nobel
Prize-winning discoveries (7, 8,9).

In the beginning of the 21-century, cell death was
classified according to its morphological characteristics
into apoptosis, autophagy, necrosis and mitotic catastro-
phe (10), while in 2018, the current classification of cell
death into accidental and regulated cell death (RCD)
was postulated. Necrosis is an accidental, unregulated,
passive form of cell death that occurs due to the col-
lapse of cellular homeostatic mechanisms under extreme
non-physiological conditions (2). RCD, or programmed
cell death is an active, energy-dependent process (11).
It occurs as a physiological process, during the develop-
ment and maintenance of homeostasis and in numerous
pathological conditions when it provides for selective
elimination of potentially dangerous or infected cells (2).
There are many types of regulated cell death, like apop-
tosis, necroptosis, pyroptosis, cell death dependent on au-
tophagy, etc. (Figure 1) (2). Morphologically, all forms
of cell death still may exhibit different combinations of
microscopic features of apoptosis, autophagic cell death
and necrosis (2). Even though various types of cell death
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Figure 1. Classification of cell death. Types of cell death: apoptosis, ADCD (autophagy-dependent cell death), entosis, ICD (immunogenic

cell death), LCDC (lysosome dependent cell death), MPT (mitochondrial permeability transition)-driven necrosis, parthanatos, NETosis,

ferroptosis, pyroptosis, necroptosis, necrosis
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Figure 2. Transmission electron microscopy images of different types of cell death: lymphocyte apoptosis (A), necrosis of the B16 cell (B),
autophagy in lymphocytes (C). Magnification 8900x (A, C) and 3500x (B)

have been discovered, including recently described cup-
proptosis and paraptosis, in this review we discussed only
the types of cells death included in the latest classifica-
tion of cell death (2).

The aim of this review is to summarize new knowl-
edge about the processes of cell death, and to emphasize
the importance of newly discovered molecular pathways
regulating various types of cell death, enhancing our
comprehension of health and disease.

NECROSIS

Necrosis is an unregulated form of cell death induced by
external injury, independent of any signaling pathways or
cellular energy expenditure, and is morphologically char-
acterized by edema (swelling) of membrane organelles
as well as swelling of the entire cell (oncosis) (11). The
morphological hallmark of necrosis is the disruption of
cell membrane integrity accompanied by the leakage of
cellular contents into the extracellular space that always
triggers an inflammatory response and local damage to
neighboring cells (Figure 2b) (11).

Necrosis that occurs after apoptosis or autophagic cell
death, when ATP is depleted, is called secondary necrosis
(11). In addition to energy-independent passive necrosis,
there are also regulated forms of necrosis that do require

energy (11).

APOPTOSIS

Apoptosis or “cellular suicide” is a genetically regulated
process, in which cellundergoes a characteristic sequence
of morphological changes, including condensation of
chromatin, typically resembling a crescent moon, organ-
elle compaction, cytoplasmic condensation, cell shrink-
age, and finally, fragmentation of the cell into apoptotic
bodies by cell blebbing (6). The morphological character-
istics of apoptosis, including chromatin and cytoplasmic
condensation while the organelles remain intact, can be
observed with transmission electron microscopy that is
still considered to be golden standard for apoptosis iden-
tification (Figure 2a) (7). During apoptosis, membranes

remain intact, preventing the release of cellular contents
into the extracellular environment; therefore, there is an
absence of inflammatory response or tissue damage (1,
11). Phosphatidylserine is displayed on the cell surface of
apoptotic cells and apoptotic bodies as an “eat me” signal
for surrounding cells and macrophages that rapidly re-
move dying apoptotic cells and apoptotic bodies from ex-
tracellular space by the process of efferocytosis (1,2, 11).

The key players in the process of apoptosis are the
family of cysteine proteases, called caspases, which are
found in healthy cells in the form of inactive zymogens
with low-to-absent protease activity (1). Their cascade
activation leads to the execution of the apoptotic pro-
gram (1). Initiator caspases (caspase-2, -8, -9, -10) are
normally monomeric with a long prodomain that serves
as a docking site for assembly into a self-activating com-
plex, built around homomeric interactions between death
(DD), death effector (DED), and caspase activation and
recruitment (CARD) domains. Downstream or execu-
tioner caspases (caspase-3, -6, -7) exist as preformed di-
mers that become activated when the cleavage of a con-
nector between subunits forms an open active site. In the
extrinsic pathway of apoptosis, signals for caspase activa-
tion come from surrounding cells or molecules that bind
to membrane receptors, so-called death receptors (tumor
necrosis factor receptor 1 (TNFR1), Fas/CD9S, TN-
FRSF10A, and TNFRSF10B), leading to the activation of
initiator caspases (Figure 3) (1). In the intrinsic pathway
of apoptosis, signals for caspase activation originate from
within the cell due to various damages of organelles such
as nucleus, endoplasmic reticulum or Golgi apparatus (1).
Although activation of apoptosis by intrinsic pathway in
the damaged cell can be mediated both by cytosolic and
mitochondrial pathways, mitochondria have a central
place in this type of cell death (1). Mitochondrial outer
membrane permeabilization (MOMP) leads to increased
permeability to small molecules, including cytochrome c,
and the formation of the apoptosome which is specialized
for activating effector caspases (1). Active caspases target
many proteins essential for cellular viability, hence trig-
gering apoptotic cell death (1). Among more than 1500
identified caspase substrates there is endonuclease, an
enzyme that breaks down DNA, leading to the character-
istic condensation of chromatin in the nucleus (1).
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Figure 3. Extrinsic and intrinsic pathways of apoptosis. In extrinsic
pathway ligand binding to death receptor Fas/CD9S makes confor-
mational changes that help binding of its DD (death domain) with
DD of FADD (Fas-associated death domain protein). A second do-
main in FADD, a DED, binds to DED domain in initiator caspases
(caspase-8, and -10), leading to caspase dimerization. Caspase-ac-
tivating assembly made of the death receptor, FADD, and caspase
complex is called DISC (death-inducing signaling complex). In the
intrinsic pathway, cytochrome c released from mitochondria binds to
APAF-1 (apoptotic protease activating factor 1) and enables its oligo-
merization in heptameric wheel and exposure of its CARD domain.
Interaction of CARD domain of APAF-1 with CARD in initiator
caspase (caspase-9) helps docking of caspase-9 and is necessary for
its proteolytic activity. This caspase-activating assembly platform,
the apoptosome, is specialized for activating caspase-9 and -7, which
have CARD-type prodomains. Interaction of Bcl-2 proteins (BAX,
BAD, Bcl-2, BclXL, Mcl/1, BAD, Noxa, BIK, BMF, HRK, BOK,
Bim, Bid, PUMA) regulate MOMP and cytochrome c release from
the mitochondria. Cytochrome c release may be induced after Bid
truncation by active caspase-8, linking the “extrinsic” and “intrinsic”
pathways. Both pathways unite at the site of activation of executioner
caspase-3 by upstream caspase-8, -9, or -10.

A number of regulatory proteins modulate the process
of apoptosis. An important modulatory effect is exerted
by proteins from the Bcl-2 (B-cell lymphoma-2) family of
proteins (Figure 3) (1.

Various anti- and pro-apoptotic members of Bcl-2
family perform their actions at intracellular membranes
(mitochondrial outer membrane, endoplasmic retic-
ulum and nuclear membranes) and form a network of
interactions that control MOMP (11). Their ability to
selectively bind to each other is essential to their func-
tion in regulating MOMP and apoptosis (11). Bcl-2
family proteins selectively bind to each other via Bcl-2
homology domains (BH). The majority of proapoptotic
and antiapoptotic Bcl-2 proteins are “multidomain” pro-
teins that share sequence homology within 3-4 BH do-
mains (12). A subset of proapoptotic Bcl-2 proteins show
sequence homology with others only within the BH3
domain, death domain required for binding to “multi-
domain” Bcl-2 family members (12). These “BH3-only”
molecules are: BID (BH3 interacting domain death ag-
onist), BIM (Bcl-2 interacting mediator of cell death),
BAD (Bcl-2 antagonist of cell death), Noxa, BIK (Bcl-2
interacting killer), BMF (Bcl-2 modifying factor), HRK
(harakiri) and PUMA (pS3 upregulated modulator of
apoptosis) (12). Bel-2 family interactions regulate mi-
tochondrial intramembranous oligomerization of BAX
(Bcl-2-associated X protein)/BAK (cl-2 antagonist killer
1), which is the key mechanism of MOMP (12). Anti-
apoptotic proteins, Bcl-2, BlXL (B-cell lymphoma ex-
tra-large) and Mcl-1 (myeloid cell leukemia sequence
1), inhibit apoptosis either by inhibiting BAX/BAK
oligomerization or by engaging activator BH3-only
proteins (12). “BH3-only” proteins activate apoptosis
by both activating BAX/BAK oligomerization and by
suppressing antiapoptotic proteins on the mitochondria
and endoplasmic reticulum (12). BIM, BID and PUMA
are “BH3-only” proteins known as “activators” that di-
rectly bind and trigger BAX/BAK oligomerization and
bind and inhibit antiapoptotic Bcl-2 proteins (12). BAD,
Noxa, BIK, BMF, HRK are BH3-only proteins known
as “sensitizers” that bind and inhibit antiapoptotic Bcl-
2 proteins (12). Disorders in the regulation of apoptosis
are involved in the pathophysiology of a whole range of
diseases (13, 14, 15). Overexpression of antiapoptotic
molecules or downregulation of proapoptotic molecules
was found in malignant cells resistant to apoptosis. High
levels of Bcl-2 were first found in human follicular lym-
phomas and later in chronic lymphocytic leukemia cells
(13). Abnormal expression of bcl2 family members, like
Mcl-1 and BcIXL is frequently found in many malignant
tumors, like breast, gastric, prostate and hepatocellular
carcinoma (14). Research data demonstrates that togeth-
er with irregularities of pro-apoptotic BCL2 proteins
and anti-apoptotic BCL2 proteins, aberrations of the
components of the apoptosome and effector caspases
also contribute to the pathogenesis of many cardiovas-
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cular, hepatic, neurological, renal, autoimmune, inflam-
matory, infectious, and oncological diseases (14).

If a cell starts apoptosis and displays the nuclear mor-
phology characteristic for apoptosis, but does not have
enough energy to complete the initiated process of apopto-
sis, it may progress to secondary necrosis (16). Secondary
necrosis is controlled by caspase-3 that cuts DFNAS (deaf-
ness-associated tumor suppressor), into a necrosis-pro-
moting DFNAS-N fragment that inserts into the plasma
membrane, creating large pores that facilitate the release of
inflammatory molecules into the extracellular space (16).

AUTOPHAGY-DEPENDENT CELL DEATH (ADCD)

Autophagy is an intracellular catabolic process responsi-
ble for the breakdown of damaged and/or non-functional
cytoplasmic components and organelles, with the par-
ticipation of lysosomal enzymes (17). Depending on the
way material for degradation reaches a lysosomal lumen,
three different types of autophagy are being described:
chaperone mediated autophagy (CMA), microautophagy
and macroautophagy (17).

In CMA, certain cytosolic proteins are first unfolded
with a help of cytosolic chaperone proteins, after which
they pass through a lysosomal membrane protein com-
plex containing Lysosome-associated membrane protein
2A (LAMP2A) forming a distinct channel, thus reaching
alysosomal lumen where they are degraded (18).

In microautophagy, peculiar membrane invagina-
tions of the lysosomal membrane are formed, projecting
towards lysosomal lumen (19). After these invaginations
are pinched off the lysosomal membrane, vacuoles that
are formed, together with their cytosol-derived content,
are degraded by lysosomal enzymes (19). In mammals,
the process also takes place in endosomes (19), and in
lysosomes it may include flap-like lysosomal membrane
extensions, as sequestration mechanism (20).

Macroautophagy (hereafter referred to only as au-
tophagy) relies on the formation of double membrane
structures termed autophagosomes, which subsequently
fuse with lysosomes (7). Autophagosomes are formed af-
ter a closure of cytoplasmic cisternal structures termed
isolation membranes or phagophores, which sequester
parts of the cytoplasm, including organelles, destined for
degradation (Figure 2¢) (7).

In mammalian cells, autophagy is regulated by two
kinases: mTOR (Mammalian target of rapamycin) and
AMPK (AMP-activated protein kinase) (Figure 4) (17, 21).
In the presence of growth factors, autophagy is inhibited by
mTOR which phosphorylates and inactivates another ki-
nase ULK1 (Unc-S1-like kinase 1) (17). On the other hand,
AMPK acts as a cellular energy sensor (Figure 4) (22).
When intracellular ATP/ADP ratio decreases, AMPK ac-
tivates autophagy by phosphorylating and activating ULK1
and other proteins that regulate autophagy (23).
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Figure 4. Activation of autophagy. Ligand binding to GF (growth
factor) receptor leads to the activation of PI3K (phosphatidylinositol
3-kinase), AKT (protein kinase B) and mTOR that stimulates pro-
tein synthesis and inhibits autophagy through inactivation of ULK1.
During nutrient starvation, AMPK, activates autophagy by inhibit-
ingmTOR leading to ULK1 activation. Breakdown of organelles and
proteins in autophagosomes produces metabolites that can be used
for production of ATP in mitochondria.

Because it participates in the degradation of non-es-
sential cytoplasmic components, recycling of their con-
stituent molecules (e.g. during starvation) and remov-
ing of damaged and/or nonfunctional organelles and
macromolecules, autophagy is generally considered to
be cytoprotective (2). Blocking autophagy by artificial
means generally leads to the acceleration of cellular de-
struction (rather than preventing cell death) (2, 24, 25).
However, there are certain biological conditions where it
is clear that excessive activation of autophagy may lead to
cell death (2). Since the inhibition of autophagy in these
circumstances rescues the cells, this type of cell death is
being called autophagy-dependent cell death (2, 26).

This is different from previous cell death classifica-
tions (10), from the time when the cytoprotective role of
autophagy was not properly acknowledged by the scien-
tific community. Latest advances in the understanding
of biological roles of autophagy enabled us to understand
thatasheer presence of alarge number of autophagy-relat-
ed structures in dying cells is not enough to declare that
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cells are dying by autophagy (2). Previously called auto-
phagic cell death, it is now recognized that for the process
of autophagy-dependent cell death to be demonstrated,
it is not enough to notice that cells are dying “with” auto-
phagy (27). Instead, it is necessary to prove that excessive
autophagy is effectively killing the cells, by demonstrat-
ing that autophagy inhibition rescues them (2, 27).

In autophagy dependent cell death, cells actively par-
ticipate, and the process is genetically regulated (2). This
is a way some neurons die in rodent models of neonatal
hypoxia-ischemia, and it also may occur in certain other
pathological conditions (2, 28). In non-pathological condi-
tions, autophagy-dependent cell death is also necessaryasa
mechanism of cell death in Drosophila metamorphosis (2).

OTHER FORMS OF CELL DEATHS
Necroptosis

Necroptosis is a type of RCD initiated by signals from
the extracellular or intracellular microenvironment de-
tected by death receptors (FAS, TNFR etc.) or pattern
recognition receptors (PRRs) (2, 29). As the name sug-
gests, necroptosis shares features with necrosis (early
membrane disruption and cell and organelle swelling)
and apoptosis (which is tightly regulated via genetics,
signaling molecules, or toxins). In contrast to apoptosis,
necroptosis is not only caspase-independent, but also
induced by inhibition of caspase-8 (29, 30). The molec-
ular markers of necroptosis are phosphorylated RIPK3
(receptor-interacting serine/threonine protein kinase 3)
and phosphorylated MLKL (mixed lineage kinase do-
main like pseudokinase) (Figure 5) (1).

Necroptosis has been mostly investigated as the re-
sponse to microbial infection. In cancer, necroptosis is
beneficial for the antitumor immune response, not only
because of MLKL-dependent cell lysis and uncontrolled
release of cellular contents, but also because of tightly reg-
ulated activation of RIPK1/RIPK3/NF«B proinflamma-
tory signaling, which leads to the synthesis of proinflam-
matory cytokines prior to cell disintegration (29).

As our understanding of the molecular mechanisms of
necroptosis continues to evolve, it holds the potential to
lead to innovative therapies and interventions in diverse
fields of research, as it has been shown to play an import-
ant role not only in infections and systemic inflammato-
ry response syndrome but in chronic pulmonary disease,
acute kidney failure and fibrosis, liver disease, cardiovas-
cular, neurodegenerative diseases and cancer (31).

Pyroptosis
Pyroptosis represents a unique form of RCD, primarily

associated with the innate immune response to infec-
tions and inflammatory disorders. The term “pyroptosis”

MLKL
phosporllatlon

MLKL
oligomerisation

Figure 5. Molecular pathways of necroptosis. After ligation of
TNFR-1, RIPK1 associates with RIPK3. RIPK3 phosphorylates
the MLKL that oligomerizes after phosphorylation and promotes
plasma membrane permeabilization. There are at least two pathways
leading to the loss of cell integrity in necroptosis: MLKL could form
a platform at the plasma membrane for the opening of calcium and
sodium ion channels, enabling the influx of ions in the cell, cell swell-
ing and rupture and/or MLKL itself could form pores in the plasma
membranes.

was coined by D’Souza et al. in 2001, from Greek words
pyro (fire or fever) and ptosis (falling), to emphasize the
inflammatory nature of this type of cell death (32). For
decades it was misconceived as a special form of apop-
tosis in monocytes, since it shared some features with
apoptosis, like involvement of caspase-1 (33). Caspase-1,
recognized as inflammatory caspase, is required for the
cleavage of precursor pro-IL-1P into active IL-1p, also
known as leukocytic pyrogen (34). Later, in 2002, the in-
flammasome was proposed to be a molecular platform for
the activation of caspase-1 (Figure 6) (35).

Furthermore, it was demonstrated that pyroptosis
could be induced in caspase-1 independent manner, by
the activation of other caspases, specifically caspase-4, S
and 11 (33). In 2015 it was discovered that both caspase-1
and caspase-4/5/11 share gasdermin D (GSDMD) as a
key substrate in induction of pyroptosis, and since then,
pyroptosis is commonly defined as gasdermin-mediated
programmed cell death (33). The N-terminal domain of
GSDMD can oligomerize to form pores in the cell mem-
brane, causing cell swelling and lysis (33).

Although pyroptosis shares some features with apop-
tosis, like DNA fragmentation and intact nucleus, there
are many differences between them, including the loss of
membrane integrity, cellular swelling, the rupture of cell
membrane and consequent inflammation (36).

The main role of pyroptosis, as an important player in
the innate immunity, is defense against intracellular patho-
gens. However, numerous studies have pointed to a much
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Figure 6. The mechanisms of pyroptosis. In canonical inflammato-
ry pathways, PAMPs and DAMPs are detected by inflammasome,
cytosolic multiprotein complex involving NLR (nucleotide-binding
oligomerization domain (Nod)-like receptors) proteins which acti-
vate caspase-1. Caspase 1 performs cleavage of inflammatory cyto-
kines IL-1B and IL-18 into mature forms, and cleavage of GSDMD
that leads to formation of GSDMD pore and pyroptosis. In nonca-
nonical inflammatory pathways, binding of LPS (lipopolysaccha-
rides) leads to the cleavage of GSDMD, formation of GSDMD pore
and pyroptosis.

broader aspect of pyroptosis as a type of RCD involved in
inflammatory diseases and sepsis, cardiovascular, meta-
bolic diseases, neurodegeneration and cancer (36).

Ferroptosis

Ferroptosis is a distinctive form of RCD, induced by
iron-dependent, lipid peroxidation-mediated membrane
damage. Although the term “ferroptosis” was coined not
that long ago, in 2012, and ferroptosis-like cell death was
described in 2001 as a cell death induced by oxidative
stress (“oxytosis”) (37), pioneering research was made
back in the 1950s and 1960s, when the researchers ob-
served cell death induced by cysteine-deprivation (38).
The primary system regulating ferroptosis is the cellu-
lar antioxidant system cysteine-glutathione (GSH)-gluta-
thione peroxidase 4 (GPX4) (39). GPX4 is an antioxidant
enzyme which catalyzes the reduction of lipid-hydrogen
peroxides, cholesterol- and phospholipid hydrogen perox-
ides (PLOOHs), from cellular membranes and protects

cells from the oxidative stress (40). Two compounds wide-
ly used for induction of ferroptosis, erastin and RSL3, act
by interfering with GPX4-pathway that leads to the accu-
mulation of PLOOHEs in the cell and ferroptosis (39).

Potent inducers of ferroptosis include enzymes that
directly oxygenate polyunsaturated fatty acids present
in cellular membranes, such as lipoxygenases (LOXs),
cytochrome P450 oxidoreductase (POR), and two mem-
brane-remodeling enzymes, acyl-CoA synthetase long
chain family member 4 (ACSL4) and lysophosphatidyl-
choline acyltransferase 3 (LPCAT3). The importance of
mitochondrial tricarboxylic acid cycle in lipogenesis, to-
gether with mitochondrial roles in beta-oxidation of fatty
acids and oxidative metabolism, strongly links mitochon-
dria with ferroptosis (39).

As the name suggests, iron has a central role in induc-
tion and regulation of ferroptosis. Iron is required as cata-
lyst in numerous metabolic enzymes involved in reactive
oxygen species (ROS) generation and lipid peroxidation,
including LOXs and POR. Furthermore, intracellular
iron ions can catalyze Fenton reaction, generating high-
ly reactive hydroxyl radicals that initiate a chain reac-
tion that culminates in lipid peroxidation and massive
PLOOH production. Cellular processes that regulate
iron homeostasis within cells (iron uptake, storage, utili-
zation and efflux) therefore affect ferroptosis (41).

Cells undergoing ferroptosis exhibit swelling, with
increased cell membrane density and membrane rupture.
The distinctive feature of ferroptosis is the atrophy or
condensation of mitochondria, disappearance of cristae
and rupture of outer mitochondrial membrane (41).

A growing body of research indicates a potentially
important role of ferroptosis in tumor suppression, isch-
emia-reperfusion injuries (also, associated with organ
transplantation), immune surveillance, neurodegenera-
tion and lung and liver fibrosis (39, 41).

Parthanatos

Parthanatos is a caspase-independent form of cell death
which leads to DNA fragmentation (42). The term ,part-
hanatos” is coined from ,par®, referring to poly(ADP)ri-
bose (PAR), one of the key participants in this type of cell
death, and ,Thanatos®, personification of death in Greek
mythology. Parthanatos is a precisely regulated, multi-
step process resulting in large-scale DNA fragmentation
and chromatin condensation (42).

One of the mechanisms for ensuring genome stability
includes a nucleic enzyme called poly (ADP-ribose) poly-
merase 1 (PARP1). This DNA base-excision repair system
facilitates DNA damage repair through the synthesis of
PAR polymer (43). However, in instances of excessive DNA
damage, such as ROS, inflammation, ischemia, hypoxia,
etc., PARP1 becomes hyperactivated. Hyperactivation of
PARPI is the initial step in parthanatos, resulting in the
production of long-chained, branched PAR polymers (42).
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PARPI overactivation causes cellular energy deple-
tion. Namely, PARP1 hyperactivation requires nicotin-
amide adenine dinucleotide (NAD") as a cofactor, which
is animportant cofactor in cellular metabolism, including
ATP synthesis. On the other hand, resynthesis of NAD*
requires many ATP molecules. Additionally, accumu-
lation of PAR polymers causes translocation of apopto-
sis-inducing factor (AIF) from mitochondria to nucleus
(44). AIF may be considered as a parthanatos “executor”,
leading to massive DNA fragmentation, chromatin con-
densation, membrane rupture and cell death.

Parthanatos as a form of cell death is found in many
diseases, while PARP inhibitors are extensively explored
for the pharmacological treatment of breast, ovarian, and
colorectal cancer (45).

Mitochondrial permeability transition-driven
necrosis

Mitochondrial permeability transition (MPT)-driven ne-
crosis is a form of cell death caused by a sudden increase
in the inner mitochondrial membrane (IMM) permeabil-
ity to small molecules. This type of cell death is initiat-
ed by the increase in Ca®" and ROS in the mitochondrial
matrix (46). The crucial event in MPT-driven necrosis is
the formation of mitochondrial permeability transition
pore (mPTP) in the IMM. The formation of mPTP en-
ables permeability of IMM for molecules up to 1.5kDain
size. The sustained opening of the mPTP causes abrupt
change in mitochondrial permeability leading to the loss
of mitochondrial membrane potential, mitochondrial
swelling, rupture of the outer mitochondrial membrane
(OMM), disruption of cellular energy metabolism and
finally, necrotic death. Opposite to sustained mPTP
opening, transient mPTP opening is not associated with
cell death. Such reversible mPTPs are permeable to small
molecules up to 300 Da and play a role in the mitochon-
drial homeostasis of Ca?* (47).

It was long considered that the main structural com-
ponents of mPTP are voltage-dependent anion channel
(VDAC) in the OMM, adenine nucleotide translocase
(ANT) in the IMM, and cyclophilin D (Cyp-D) in the
mitochondrial matrix. Numerous experiments con-
firmed that neither VDAC nor ANT are required for the
induction of mPTP (48). However, Cyp-D was recog-
nized as an important regulator of the mPTP opening.
Cyp-D is not a structural pore component of mPTP; it
is a Ca’"-sensitive isomerase present in the mitochondri-
al matrix which translocate to the IMM and mediates
mPTP opening.

MPT-driven necrosis has been implicated in the
pathogenesis of ischemic heart and brain disease, and
many degenerative diseases which is why targeting its
molecular steps might translate into novel therapeutic
approaches (49).

Lysosome-dependent cell death

Lysosome-dependent cell death (LDCD) represents a form
of RCD which is characterized by primary lysosomal mem-
brane permeabilization (LMP), a phenomenon that leads
to cell death (2). LMP is characterized by the release of
lysosomal contents, including proteolytic enzymes of the
cathepsin family, into the cytosol where they act in vari-
ous ways as executors of cell death (50). LMP may occur
downstream of MOMP and represent an epiphenomenon
of intrinsic apoptosis (51). Alternatively, lysosomes can be
permeabilized prior to mitochondria, which may involve
the recruitment of BAX to the lysosomal membrane and
formation of pores (52). Additional triggers of LPM may
include lysosomotropic agents (e.g., sphingosine), calpains,
reactive oxygen species (ROS), STAT3 etc. (53).

Cathepsins can catalyze proteolytic activation or
inactivation of BID, BAX, anti-apoptotic BCL2 family
members and XIAP, and therefore lead to LCDC with
the involvement of MOMP and caspases (54). Howev-
er, MOMP and caspases are not necessarily involved in
LDCD so this type of RCD does not always exhibit apop-
totic morphology (55).

LDCD is involved in different pathological and
physiological conditions, such as intracellular pathogen
response, inflammation, neurodegeneration, cardiovas-
cular disorders, aging and tissue remodeling during invo-
lution of mammary gland after lactation (2, S0).

Immunogenic cell death

Immunogenic cell death (ICD) represents a form of RCD
that is capable of initiating adaptive immune response in
an immunocompetent host (2). This adaptive immune
response is specific for endogenous (cellular) or exoge-
nous (viral) antigens that are expressed by dying cells (2).
Various stimuli can initiate ICD, including viral infec-
tion, specific forms of radiation therapy, some FDA-ap-
proved chemotherapeutics and hypericin-based pho-
todynamic therapy (2). These agents initiate release of
damage-associated molecular patterns (DAMPs), such as
calreticulin, ATP, type I IFN, cancer cell-derived nucleic
acids, high-mobility group box 1 (HMGBI) and annexin
Al (ANXAL) by dying cells. DAMPs are being recog-
nized by PRRs on immune system cells leading to the ac-
tivation of an immune response with the formation of im-
munological memory (2, 56). Calreticulin relocates from
the endoplasmic reticulum to the outer leaflet of plasma
membrane where it functions as an “eat me” signal for
DCs, macrophages and neutrophils and acts as a trigger
for Th17 cell priming (57). ATP has a role as a “find-me”
signal for dendritic cell precursors and macrophages and
activates inflammasome (58). Cancer cells which are go-
ing to die by ICD release nucleic acids which can be taken
up by DCs, macrophages and neutrophils and this results
with the activation of type I IFN immune response (59).
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Entosis

Entotic cell death, also known as entosis or cellular can-
nibalism, is a type of cell death in which a cell invades a
living neighboring cell and eventually dies after being en-
gulfed. This is a characteristic type of non-apoptotic cell
death, which is recognizable by its cell-in-cell phenome-
non, and which occurs in human tumors and non-tumor
tissues, such as epithelial cell cultures (60). Entosis has
several interesting features that distinguish it from oth-
er types of cell death, mainly that the entrapped cell can
survive and even divide in the host cell, or it can leave
the invaded cell without any sign of degradation (61).
Although present in both physiological and pathological
conditions, the exact role of entosis remains unclear with
literature data suggesting both pro- and anti-tumorigen-
ic effects. It is believed that entosis allows cancers to be
removed by their healthy neighbors, as the tumorigenic
cells have lost their cell-cell connections, and on the other
hand, allows surrounding cells to survive by promoting
cell competition (62). Entosis has also been associated
with the process of embryo implantation (63), the elimi-
nation of spermatozoa by the Sertoli cells (64), but also in
the pathophysiology of non-cancerous conditions such as
diabetic cardiomyopathy (65). Several studies have shown
that different drugs can induce entosis in various cancer
cell lines. Methylselenoesters, novel synthesized seleni-
um compounds, have caused entosis by cell detachment
in pancreatic cancer cells (66). Recently published papers
have shown that known and well-studied cytotoxic drugs,
such as nintedanib and doxorubicin in combination with
calcifediol, can induce entosis in prostate and breast can-
cer cells (67). These data highlight the possible therapeu-
tic implications of entosis in cancer management.

NETosis

One of the mechanisms through which neutrophils de-
stroy microbes is the formation of Neutrophil Extra-
cellular Traps (NETs), which represent web-like struc-
tures made from modified chromatin and antimicrobial
proteins, both originating from granules and nucleus of
neutrophilic granulocytes (68). These formations bind,
entrap, and finally destroy microorganisms in the extra-
cellular space, without the need for intracellular phago-
cytosis. However, releasing these neutrophilic molecules/
enzymes and pathogen destruction elicits neighboring
tissue destruction and inflammation (69). During this
process, neutrophils die, which is why this atypical type
of cell death is termed NETosis. Unlike apoptosis, NE-
Tosis is characterized by the disintegration of nuclear
and cytoplasmic membranes, followed by the leaking
of genetic material in the extracellular space which im-
mobilizes microorganisms (70). Though NETosis is a
defensive reaction of the body, the release of intracellu-
lar granule components in the extracellular space causes

proinflammatory reactions that can exacerbate existing
inflammation in patients with different forms of autoim-
mune diseases (71). The role of NETosis in cancer pro-
gressions and metastasis is now also known, as NETosis
can cause a wide range of changes needed for further
development and dissemination of cancerous cells (72).
NETosis can induce epithelial-mesenchymal transition
in different cancers, create an optimal microenvironment
for tumor development (73), and play a role in different
cancer-related complications, such as venous thrombo-
embolism (74).

CONCLUSION

Why is it important how a cell dies? In some types of cell
death damaged cells do not have a preserved cell mem-
brane and release DAMDPs, therefore they are pro-in-
flammatory and lead to the activation of macrophages
and dendritic cells (11). In contrast, apoptosis is an im-
munologically silent cell death, during which there is no
spillage of cell contents into the environment due to the
preserved cell membrane and the formation of apoptotic
bodies, as well as due to the activation of caspases that in-
activate DAMPs (11). Necrosis and pyroptosis are proin-
flammatory cell deaths during which proinflammatory
cytokines are secreted, cell membrane bursts and cellular
contents spill into the extracellular space leading to the
damage of surrounding cells (11).

It may seem that apoptosis is a favorable form of cell
death and that any pro-inflammatory form of cell death is
always unfavorable and probably a result of an error in the
activation of apoptosis. Nevertheless, pro-inflammatory
forms of cell death may have evolved in order to remove
multiple cells at the same time. Cells dying from pyro-
ptosis, prevent the spread of infection by killing groups
of cells that release DAMPs and recruit immune cells
to the site of infection (75). Damaged or malignant cells
dying from necroptosis attract immune cells that result
in the death of malignant cell population and prevention
of metastases (11). Therefore, the presence of regulated,
proinflammatory cell death is in some circumstances im-
portant for the protection of surrounding cells and the
organism.

Differenttypesof cell death are interconnected. Apop-
tosis may inhibit the process of autophagy by caspase
cleavage of Beclin and ATG (1). Furthermore, autophagy
can inhibit apoptosis by increasing BCL-XL expression
(1). The inactivation of autophagy during starvation
leads to apoptosis, unless apoptosis is inactivated (e.g.,
BAX/BAK deficiency), in which case cell death occurs
through necrosis (1). Inhibition of autophagy can either
lead to mitochondrial dysfunction and apoptosis or to
stabilization of RIPK1 and necroptosis (24, 25).

Abnormal activation of the different forms of cell
death can cause diseases. Dysregulation of apoptotic pro-
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gram can lead to hyperplasia, autoimmune diseases and
tumorigenesis (76). Pyroptosis has a crucial place in the
initiation of inflammatory response and achieving elim-
ination of intracellular microorganism during bacterial
infection, but uncontrolled pyroptosis can lead to organ
failure and sepsis (77). Necroptosis has been associated
with carcinogenesis related to non-alcoholic fatty liver
disease and with human inflammatory skin diseases (78).
Understanding how cells dye and the knowledge
about regulation mechanisms of different types of cell
death, especially apoptosis, resulted in discovery of drugs
thatactas BH3 mimetics, ABT-737 and its oral derivative,
Navitoclax, for the treatment of B cell malignancies that
overexpress anti-apoptotic BCL-2 proteins (79). Drugs
that target necroptosis, pyroptosis and autophagy are
currently being researched and may serve as future thera-
peutic options for various diseases, including cancer.
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ZIVOT CELIJE: DA LI JE VAZNO KAKO CELIJE UMIRU?

Tamara Kravi¢-Stevovi¢t, Tamara Martinovict, Darko Ciric?, Jelena Rakocevict, lvana Paunkovic?, lvan Zaletel,
Sanja Despotovic?, Mila Cetkovi¢-Milisavljevict, Vladimir Bumbasirevic¢!2

Sazetak

Celijska smrt je prisutna tokom embrionalnog razvoja, i
posle rodenja kao vazan proces, neophodan za odrza-
vanje homeostaze, kojim se uklanjaju ostarele i ostece-
ne Celije. Postoje dva tipa celijske smrti: akcidentalna i
regulisana celijska smrt. Nekroza je akcidentalna, nere-
gulisana, pasivna forma celijske smrti koja nastaje usled
kolapsa homeostatskih mehanizama u ekstremnim ne-
fizioloskim uslovima. Regulisana ¢elijska smrt je aktivan,
energetski zavistan proces, koji nastaje u fizioloskim
uslovima, tokom odrzavanja homeostaze organizma i u
brojnim patoloskim stanjima kada obezbeduje selektiv-
nu eliminaciju potencijalno opasnih ili inficiranih celija.
Brojni su tipovi regulisane celijske smrti: unutrasnji i spo-
ljasnji tip apoptoze, celijska smrt zavisna od autofagije,
nekroptoza, piroptoza, feroptoza, partanatos i MPT ne-
kroza, celijska smrt zavisna od lizozoma, imunogena ce-

Kljucne reci: celijska smrt, nekroza, apoptoza, autofagija

lijska smrt, entoza i NET-oza. Razliciti tipovi celijske smrti
su medusobno povezani. Abnormalna aktivnost razlici-
tih formi celijske smrti mozZe dovesti do razvoja brojnih
bolesti. Poremecaj regulacije apoptoze moze dovesti do
hiperplazije, razvoja autoimunskih oboljenja i tumora.
Poznavanje regulacionih mehanizama apoptoze dove-
lo je do otkri¢ca BH3 mimetika, lekova koji se koriste u
terapiji nekih tipova malignih tumora B limfocita. U sa-
vremenim naucnim istrazivanjima ispituju se lekovi koji
uticu na nekroptozu, piroptozu i autofagiju koji mogu u
buducénosti biti terapija za razlicite bolesti, ukljucujudi i
maligne tumore. Cilj ovog revijskog rada je da rezimira
nova saznanja u vezi sa procesima celijske smrti i ukaze
na znacaj novootkrivenih molekularnih puteva regulaci-
je razlicitih tipova celijske smrti u cilju boljeg razumeva-
nja zdravlja i bolesti.
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