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Abstract: Instead of usual approach, applying displacement-dis-
placement Green’s functions, the momentum-momentum Green’s
functions will be used to calculate the diffusion tensor. These
functions enter into Kubo's formula defining diffusion properties
of the system. Calculation of the diffusion tensor requires solving
of the system of difference equations. It is shown that the elements
of the diffusion tensor express discrete behaviour of the disper-
sion law of elementary excitations and, more important - that
they are temperature independent.
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Introduction

The most important task of statistical physics is finding the average values
of dynamic quantities [1-3]. For the quantity A(x,?) the average value is de-
fined as:

(A(x,0)), =8 (Ax,0p,), (1)
where: A A
ﬁt — efiHOt/h S(t, to)elHOt/h (2)

is the nonequilibrium static operator, while p, - is equilibrium static operator.*
If (1) is written as (2) and when two cyclic permutations of the operator are
performed [7-9], one obtains:

5 (ACe0p) =5 5 (r)e™ M e 41 S(1) p, )
that is:

(A1), =(S7(t,1,) A(x,0) S(t,14)), (3

H A H
A(x,t) = exp _It A(x,t) exp of ,
in h

i

where:

is the Schrodinger operator A(x,t), written in interaction representation.
With (---), the nonequilibrium average values are denoted while with (---),
0 the equilibrium average values are denoted. S(#,7,) is the unitary operator,
the so called scattering matrix:

S(t,t,) =T exp %jd W)l "
0}

If § -matrix is linearly expanded and if we limit ourselves only to the first
two members of that expansion, the following is obtained for the W () :

4 For calculating the non-equilibrium average values it is the most convenient to use the
equilibrium operator of the great canonic ensemble [4-6]: p = @1 because the
great canonic distribution is the most general one (it includes the laws of maintaining the
average energy and average number of particles).
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S (1t )—1+—jd W (e
thus followmg fo

(A(x, 1)y, =(A(x,1)), +—Id (AQx, ) TW (" —=TW (") A(x, 1)),-(5)

Since the chronological operator T affects only W(t ) it does not have to
be written in the above equation. The written equation is valid only for ¢ >1',
thus in front of the resulting operators 4 and W Heaviside’s step-function is
introduced ®(z —¢'), defined in the following way:

] t>1
0 1<t

O -1t ={

therefore the equation (5) takes the following form:

(A(x,1)), = (A(x,1))y + L(t,2,) (6)
where:

L(t,t,) = % [d" 0@—1) A W)= () Ax,0),  (7)

and it is called linear response or the response to an external perturbation
wi(t).
1. Linear response of the system and Green’s functions

For the analysis of the linear response it is necessary to perform concreti-
zation W(t). One of the more general forms for Hamiltonian of the external
perturbation is [4-7]:

H,,(t) = [ Bt e(x' sty (8)

where B(x',t") are the operators of some dynamic variable B, and &(x’,t') --
are the functions which do not have the operator structure and are sometimes
called C-numbers. As:
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~ Ht)\ A Ht
W(t)=exp| ——= |H, (t)ex o1,
() p( 7 j e (1) p( Y j 9)
on the basis of (8), operator W (¢") will be:
W' = jdx' B(x',t") e(x',t") (10)

where

Ht) A Ht
B(x',t")=exp| ——> |B(x',t") exp| —> |, (11)
ih ih
is the Schroedinger’s operator written in the interaction representation.
Combining (10) and (7) one obtains:
!

L(t,t,) = lih fax'[a" et Gorxsery  (12)

)

where the quantity:
G(x,x";1,t") = Ot —t") (A(x,t) B(x",t") — B(x',t)A(x,1)),  (13)

is called two times temperature commutator retarded Green’s function. It is the
measure of the linear response on some perturbation. It depends on 6N +2
variables (two times three spatial and two temporal). If the space ishomogenous
(no defects, impurities, etc.) then Green’s function, as the physical property of
that observed system, does not depend on configuration coordinates x and
x" separately, but rather on their differences x —x', so the number of variables
is reduced to, 3N + 2. If the original operators do not explicitly depend on
time, thatis A(x,?) = A(x)and B(x,¢) = B(x), then Green’s function does not
depend on time coordinates ¢ and ¢’ separately, but rather on their differences
t—1t" as well, thus the total number of variables is reduced to 3N +1. In such
case Green’s function (13) turns into:

G(x,x";t,t"y > G(x—x",t—1t") =
— ' ' ' ' ' (14)
=0(t—-1)J, (x—x,t—-t)-J, (x=x,t—1)]

This is Tyablikov’s representation of the Greens functions [5,7] and it is
different from Zubarev’s approach [4,6].

Here are introduced the correlation functions:
Jy (x=x"t—1t")=(A(x,0)B(x",t")), ;

(15)
Jy (x—=x",t—t")=(B(x",t")A(x,1)),,
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and they contain all the necessary information on the properties of the
observed system. For that particular reason the method of Green’s functions
has the great importance in theoretical physics of condensed matter [8-10].

If symbolical change of variables is performed: x -7 and x' — m, and
if we set ' =0, the equation for the Green’s function can be written in the
following form:

G () =( 4;(0|B;(0)) =OK[4;()) B,(0) . (16)

It is considered that the most frequently used method for the calculation
of correlation functions, and thus for the calculation of all relevant properties
of the observed system, is certainly the Green’s function equation of motion
method [10-12]:

diG,m (t)= di@)(tx[Aﬁ (t),B, ()], + @(zx[

d ;@)
d

B, (0)}0-(17)

By using the Heisenberg’s equations of movement for the operators of
physical values and fundamental definitions:

i a = [4,0.00},
[4,B]=B -B ; z@(f)zc?(r)

this expression is reduced to:
145G (0= 150C, + (4, OHO)B,O) . (9

where correlation function is C.. =([4,(¢) B,(0)]).

By applying the time-frequency Fourier’s transformation:
Go ()= [dwe ™G (@) (19)
the equation (18) Eoﬁanges to:
ih
herGy (©0) = ——Ci +( [4,(0,H®]B,(0) ,.  (20)

It can be seen that Greens function G,.(@w)=( 4,(t)|B,(0)) , is
expressed through new -- higher Green’s function { [Aﬁ (t),H (t)]| B.(0)) ,
Higher Green’s functions are calculated in the same way as the regular one
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(using the equations of movement), so the endless series is formed, the so
called hierarchy of linked equations for the determination of Green’s function
[10-12]. To calculate the wanted one-particle, and rarely two-particle Green’s
function, this infinite series must be broken somewhere by using certain,
sufficiently justified, approximation [7-9]. The basic calculation problem with
Green’s functions is to express the new Green’s function, with the mentioned
approximation, through the initial Green’s function and in that way to close
the system of equations.

It is interesting to emphasize that Green’s functions have a deeper physical
meaning. Namely, the real parts of their poles represent the energies of
elementary excitations, while the reciprocal values of the imaginary parts of
their poles determine the existence times of those excitations [7-10].

Besides that, it is necessary to provide a connection between these Green’s
functions which, as mentioned before, define all the other physical properties
of the observed system. This connection is expressed through the spectral
theorem [4-6,13]:

lim (G, (0+16) - G (@=i8)]= (" =1)J)" (@) (21)
O—>+0

where J3" (@) is Fourier’s transform of the correlation function J}" (¢). For
t =0 the correlation functions given by (2.8) represent the average values of
the appropriate operators product.

In theoretical physics Green’s functions of various types are used. If ave-
raging is performed with relation to the ground state, they are called Field
Green’s functions and are used in quantum field theory. If averaging is perfor-
med with relation to the statistical ensemble, then they are thermodynamical
Green’s functions. If they are explicitly time-dependant, then we are dealing
with temperature or Matsubara Green’s functions [9].

Green’s functions are defined in the quantum field theory, where continual
variables are mostly used. Their application in solid state physics is enabled by
translational invariability of a given crystalline sample [10-12].

Knowing the Green’s functions enables one to find the energy of the ground
state of the system, spectrum and the type of elementary excitations, following
with thermodynamical properties in equilibrium and non-equilibrium states
of the observed system [4-6]. Herein we show the application of Green’s fun-
ctions for defining the way of phonon propagation through crystalline stru-
ctures.
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2. Calculation of the diffusion tensor of phonon system

According to Kubo formula [13,14] the diffusion tensor is defined as:

D/ (k)= lim !d e " (0,00,(0) (5

where v, and V¥, are velocity operators (in Heisenberg representation)

of oscillating of molecules in crystal along the crystallographic direction

i,je(x,y,z), and O is perturbation parameter. To find the correlation

function that is figuring in the equation for diffusion coeflicient, we start from

Greens function of momentum--momentum type { p,(¢)|p;(0)) since
=p,;/m.

Hamﬂtoman of the phonon system is given in the form:

H——an +—Z(u + ; —2unu’7 4) (23)
fie(n,n,n) |IE]

where M are molecule masses, C,, HooK’s stretching constants, u are
molecule displacements [15-17]. It should be emphasized that the mentioned
Hamiltonian of the ideal phonon structure is given in the harmonic and closest
neighbours approximation, while the boundary conditions will be considered
in the system of equations for crystalline films Green’s function [17-20].

Using the presented procedure for calculation of Green’s function, which
is in detail explained in our paper [21], one can write the following equation:

S, 01 p,O) =Cut w12, +

(24)
(0] p,0) =2 u, ()] p, (O ]

In this equation Green’s functions of movement--momentum type appear.
When they are calculated, the following equalities are obtained:

NBP « Journal of Criminalistics and Law [7]



Jovan Setraj¢i¢, Stevo Ja¢imovski, Dusan Ili¢

ai( u, ()| p,(0) = iha‘f,ga‘(mf 2,0 p,(0) :

%( upa (O p0)) = ih5f+1g5(f)+$< Pra@®]p,0)); (25)

%( up ()| p(0)) ih5f1g5(t)+ﬁ< P p0))

where &, , and &, , are Kronecker’s operators, and &(¢) is Dirac’s delta--
function.

If Fourier’s transformations of frequency-time type are introduced:
(a,(t)|b,(0)) = [doe ™ (a,|b,)

and when Fourier image {u,|p,) , is substituted into equation for
(p,Ip,) , with crystalline structures for the case when f = g, one finally

obtains:
ihC C
(o lpg) o=ttt (2Cp, 1P,y -

(26)

— Pra |pf> 0 —( Pra |pf> a))
The system of difference equations for Green’s functions follows from here:

ihM
_2J< pf|pf> a):lﬂ_ . (27)

By solving this system of difference equations we find the Green’s functions
which figure in it.

2

Mo
(pf+1 |pf> 0+ Pra |pf> w"‘( C

H

The appropriate correlation functions [21] are:
(oo oy =G
pp = ~ - 28
f S o, ehk/e_1 ehk/a_l
and, if we go back to the formula which defines the diffusion coefficients
D]:f (k) of the phonon system, one obtains:

hc © e—ia)kt ) eiwkt
f — ; H -5t~ -t v
Dij (k) }1_)%1 M2a)k .!; (e ehwk/e _1 ¢ e—hwk/é’ _ let’ (29)

which finally gives:
hC
f .
D] (k)= ‘z 7 L

. (30)
260/3
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Results and conclusions

The results of the calculation conducted here are the following: 5C

RO
20)]3

1) The eigenvalues have higher values for the lower frequencies and are

temperature independent.

The diffusion tensor of phonon system is diagonal, that is D/ (k) =

The last conclusion is very significant because it justifies the macroscopic
theories of heat conduction in which it is taken that diffusion coefficient is
temperature independent. This fact and the effects that it could cause is very
important in the theory of phonon engineering [22-26], especially regarding
contemporary nanostructures.
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PROCES DIFUZIJE FONONA
KROZ KRISTALNE STRUKTURE

Jovan P. Setrajci¢
Prirodno-matematicki fakultet Univerziteta u Novom Sadu

Stevo K. Ja¢imovski
Kriminalisti¢ko-policijska akademija, Beograd

Dusan I. Ili¢
Fakultet tehni¢kih nauka Univerziteta u Novom Sadu

Sazetak: Umesto uobicajenog pristupa, primenom Grinovih funk-
cija tipa pomeraj-pomeraj, tenzor difuzije izracunat je primenom
Grinovih funkcija tipa impuls-impuls. Ove funkcije figurisu u
Kubo formuli koja definise difuzione osobine sistema. Izracunava-
nje tenzora difuzije zahteva reSavanje sistema diferencnih jedna-
¢ina. U radu je pokazano da elementi tenzora difuzije ukazuju na
diskretnost zakona disperzije elementarnih pobudenja, i - §to je jos
znacajnije - ne zavise od temperature. Rezultati sprovedenih izra-
¢unavanja pokazali su da je tenzor difuzije fononskog podsistema u
kristalnim strukturama dijagonalan i da svojstvene vrednosti imaju
vie vrednosti pri nizim frekvencijama. Navedeni zakljucci su od
velikog znacaja, jer potvrduju makroskopske teorije toplotnog pro-
vodenja koje tvrde da je koeficijent difuzije temperaturski invarija-
tan. Ova Cinjenica, kao i posledice koji iz nje mogu proizaci, imaju
ogroman potencijalni znacaj za primenu fononskog inZenjeringa,
prvenstveno kod savremenih nanostruktura.

Kljucne reci: kristalne strukture, fononi, Grinove funkcije, tenzor
difuzije
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