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SUMMARY

While pesticides undeniably contribute to enhancing agricultural productivity, the escalating 
trend in their usage has given rise to a myriad of environmental and public health challenges 
over time. Tetrachlorvinphos, an organophosphate pesticide deemed potentially carcinogenic 
by the International Agency for Research on Cancer, is commonly employed to combat flies, 
mites, and larvae in animals, safeguarding public health in open spaces, and managing pest 
issues in domestic animals. We aimed to investigate the genotoxic and cytostatic effects of 
tetrachlorvinphos on human lymphocytes in the G0 phase of the cell cycle using the sister 
chromatid exchange (SCE) assay. We found that tetrachlorvinphos increased SCE values at  
3 concentrations (5, 25, 50 µM). On the other hand, the increase in SCE values was found to be 
statistically significant only at the highest concentration (50 µM, p<0.05). We also found that the 
SCE value showed a linear dose-dependent increase (p=0.005). We concluded that exposure 
to tetrachlorvinphos had genotoxic potential on human lymphocytes in the G0 phase of the 
cell cycle. Additionally, exposure of cells in the G0 phase of cell cycle to tetrachlorvinphos 
was found to have no discernible impact on cell cycle kinetics.
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INTRODUCTION

Organophosphates are one of the pesticide groups 
that are widely used today for many applications, 
primarily to protect plants and agricultural products 
against various organisms in order to increase crop 
yield, and safeguard public and animal health (Jaga 
& Dharmani, 2003; Stoytcheva, 2011). Although 

these pesticides play a significant role in increasing 
agricultural productivity, gradual rise in their usage 
rate over time has resulted in various environmental 
and health problems (Ragnarsdottir, 2000). They pose 
a significant risk of an emergence of long-term effects 
because organophosphates are absorbed and accumulated 
in fatty tissues due to their lipophilic nature (Bolognesi, 
2003; Katzung et al., 2012; Kwong, 2002). Numerous 
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studies have consistently indicated an elevated risk of 
various diseases, such as Parkinson’s and cancer, associated 
with exposure to pesticides such as tetrachlorvinphos 
(TCVP), while at the molecular level, these substances 
induce a range of genotoxic effects, including DNA 
damage and chromosomal abnormalities (Hung et al., 
2015; Jamil et al., 2005; Lerro et al., 2015; Li et al., 2015; 
Narayan et al., 2013; Timoroğlu et al., 2014; Yang et al., 
2020). This situation results in general consideration 
of organophosphates as a threatening factor to human 
health in the case of chronic exposure through water, air 
and food contamination. Therefore, determining the 
potential effects of commonly used chemicals, such as 
pesticides, on genetic material is of great importance to 
protect public health and minimize global risks.

TCVP (Figure 1), an organophosphate pesticide 
classified into Group 2B (possibly carcinogenic) by the 
International Agency for Research on Cancer (IARC), 
is generally used for f ly, mite, and larva control in 
animals, protecting public health in open areas, and 
pest control in domestic animals (Guyton et al., 2015). It 
is incorporated into powders and flea and tick collars for 
domestic animals, and is additionally supplemented to 
feeds for goats, pigs and horses as a larvicide. Occupational 
exposure to TCVP typically occurs on farmlands during 
crop application. Additionally, the general population 
may be exposed to TCVP by various pathways, including 
contact with domestic pets, ingestion of residues on 
vegetables and fruits or direct inhalation during 
routine applications in residential settings (Davis et al., 
2008; Cobanoglu & Cayir, 2021). Due to its potential 
carcinogenicity, the use of TCVP has been prohibited for 
any purpose in European Union countries. In contrast, 
its usage is permitted in the United States, but solely for 
field crops (Guyton et al., 2015; IARC Working Group 
on the Evaluation of Carcinogenic Risks to Humans, 
2017). Although there are some in vivo and in vitro studies 
related to TCVP toxicity, data on its toxicity to humans is 
still limited (Parker, 1985; National Toxicology Program, 
1978; Ergun & Cayir, 2021; Cobanoglu & Cayir, 2021). 

Figure 1. The structure of tetrachlorvinphos

The sister chromatid exchange (SCE) assay is a rapid 
and sensitive method commonly used in genetic toxicology 
to assess cytotoxicity and genotoxicity by determining 
qualitative and quantitative DNA damage. This method 
allows for a measure of exchange of genetic material 
between sister chromatids caused by physical, chemical 
or biological factors. SCE is known as an early indicator 
of genetic instability (Lialiaris, 2013; Wolff, 1977). That 
is why the SCE assay has been used in many studies 
investigating the genotoxic and cytotoxic potentials of 
various chemicals (Celik et al., 2010; Khabour et al., 
2011; National Toxicology Program, 1978). The genotoxic 
potential of TCVP on circulating human peripheral 
lymphocytes (HPL) was reported in a previous study 
(Cobanoglu & Cayir, 2021). On the other hand, no data 
is available regarding the genotoxic potential of TCVP 
on human lymphocytes in the G0 phase of the cell cycle. 
However, Fenech recommends testing each chemical 
at different stages of the cell cycle when investigating 
its genotoxic potential (Fenech, 2000). Therefore, the 
current study was planned to investigate the genotoxic 
and cytostatic effects of TCVP on G0 phase cells using 
the SCE assay.

MATERIALS AND METHODS

TCVP (99.5 % purity) was obtained from Sigma 
(USA) and dissolved in dimethylsulfoxide (Merck, 
Germany, DMSO). Blood samples were taken from 2 
voluntary donors (22 and 23 years old) into sterilized 
heparin tubes. The ethical approval of the study was 
granted by the Canakkale Onsekiz Mart University 
Clinical Research Ethics Committee (Decision number: 
2021-10).

Controls and concentration ranges

Mitomycin-C (MMC, Sigma, 0.05 µg/ml) was used 
as a positive control. DMSO was used as a solvent 
control (<%1, v/v). Kirsch-Volders et al. (2003) suggest 
that the concentration leading to approximately  
50-60% cytotoxicity should be considered as the highest 
concentration in experimental setups. Therefore, 4 
different concentrations (1, 5, 25, 50 µM) were selected 
as recommended by Kirsch-Volders et al. (2003).

SCE assay

The SCE assay was conducted according to 
Moorhead’s method with minor modifications  
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(Moorhead et al., 1960). For the preparation of 
HPL cell cultures, heparinized whole blood should 
be added to culture medium containing a mitogen, 
such as phytohemagglutinin (PHA), and incubated 
at 37 °C for 72 h. SCE formation can be visualized 
when cells are cultured in the presence of a synthetic 
nucleoside, an analogue of thymidine, such as 5-bromo-2 
deoxyuridine (BrdU), for at least two or more cell cycles. 
BrdU’s incorporation in newly synthesized DNA of 
replicating cells (S phase) enables visualization and 
evaluation of SCE. In the present study, each culture 
was duplicated and was incubated at 37°C for 72 hours. 
For G0 exposure, the blood was treated with TCVP  
(1, 5, 25, 50 µM) for 24 h without phytohaemagglutinin 
(PHA, Biological Industries, Israel). At the conclusion 
of the 24-hour period, the cultures were washed three 
times with medium. Subsequently, the cultures were 
reestablished using a medium mixture containing PHA. 
The amounts of 10µg/ml of BrdU (Sigma, USA), and 
0.3 µg/ml of colcemid (Biological Industries, Israel) 

were added to each culture 24 and 70 h after culture 
initiation, respectively. A KCl amount of 0.075 M was 
heated at 37°C, and methanol/acetic acid (M/A,3:1) 
was prepared for harvest (Figure 2). The cells were 
treated once with KCl and then rinsed 3 times with 
M/A. Finally, according to Perry and Wolff, the slides 
were stained with fluorescence plus Giemsa (Perry & 
Wolff, 1974).

Microscopic evaluation  
for determining SCE/cell

In the case of each donor and replicate, 25-second 
metaphases were assessed, with chromosomes stained 
to distinguish one arm as light and the other arm as 
dark (Figure 3. b). For each concentration, a total of 
100-second metaphases were evaluated (2 donors, 2 
replicates) on a light microscope (Olympus, CX31) 
at 1000 X magnification to determine the mean  
SCE/cell value.

Figure 2. Abstract of experimental design

Figure 3. a: first (M1), b: second (M2), c: third (M3) division metaphases
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Cytotoxic and cytostatic effects  
of tetrachlorvinphos

Cytotoxic evaluation for the selected concentrations 
was performed by mitotic index (MI). While calculating 
the MI value for each concentration, 1000 cells were 
scored and the following formula was used: 

100 × cell in metaphaseMI = ––––––––––––––––––––––––––
1000

For each concentration, 100 metaphases were 
evaluated to determine the proliferation index (PI) value 
representing the cytostatic effect. While calculating the 
PI values, the following formula was used:

(M1 × 1) + (M2 × 2) + (M3 × 3)PI = –––––––––– ––––––––––––––– ––––––––––
N

In this formula, M1 (both arms uniformly dark 
chromosomes), M2 (one arm stained dark, the other 
arm stained light chromosomes), and M3 (uniformly 
light and one arm stained dark, the other arm stained 
light chromosomes) represent the first, second and third 
division metaphases, respectively (Figure 3).

Statistical analysis

In the study, the statistical analysis of the SCE and 
PI values was conducted using Kruskal–Wallis and 
Dunn’s multiple comparison tests. A linear regression 
analysis was performed to show the dose dependence. 
Data analyses were performed in the Prism software 
(GraphPad Software Inc) and Excel (Microsoft).

RESULTS

All results are presented as the means (±SE) for two 
donors and two parallel experiments. Table 1 shows 
the effect of TCVP on SCE values at four different 
concentrations. It was found that TCVP increased 
SCE values at 3 concentrations (5, 25, 50 µM). On the 
other hand, the increase in SCE value was found to be 
statistically significant only at the highest concentration 
(50 µM, p<0.05). It was also found that the SCE value 
showed a linear dose-dependent increase (p=0.005, 
R2=0.95). The data obtained for the PI are shown 
in Table 2. It was determined that TCVP did not 
change PI values statistically significantly at any tested 
concentration (p>0.05). 

Table 1. �The effect of tetrachlorinphos on SCE in G0 lymphocytes

Concentration of tetrachlorvinphos Metaphase Mean SCE/cell
± SE

Solvent control 100    4.75 ± 0.14

MMC (0.05 µg/ml) 100  22.50 ± 0.71

1 µM 100    4.75 ± 0.21

5 µM 100    5.03 ± 0.04

25 µM 100    5.27 ± 0.32

50 µM 100   *6.52 ± 0.18

Abbreviations: MMC: mitomycin-C, SCE: sister chromatid exchange, SCE/cell: total number of SCE in a cell, SE: standard error. *p< 0.05

Table 2. �The effect of tetrachlorvinphos on mitotic index and proliferation index in G0 lymphocytes

Concentration of tetrachlorvinphos Cell Mean MI Cell Mean PI

Solvent control 1000 1.67 100 1.69

MMC (0.05 µg/ml) - - -

1 µM 1000 1.68 100 1.70

5 µM 1000 1.62 100 1.69

25 µM 1000 1.61 100 1.65

50 µM 1000 1.60 100 1.65

Abbreviations: MMC: mitomycin-C, PI: proliferation index, MI: mitotic index
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DISCUSSION

The current study aimed to investigate whether TCVP 
has a genotoxic potential in G0 phase cells. For this 
purpose, HPLs with more than 95% in the G0 phase 
were selected for experiments (Banasik et al., 2005). 
In the present study, when the SCE values induced by 
TCVP were compared to the solvent control, it was 
found that TCVP increased SCE values in a dose-
dependent manner. However, a statistically significant 
increase in the SCE value was observed only at the 
highest concentration. It was also determined that there 
was no cytostatic effect of TCVP.

It is well-known that organophosphate pesticides 
(OPs) can cause DNA damage by interacting with 
nitrogenous bases or producing reactive oxygen species 
(Prathiksha et al., 2023). Until now, there have been 
numerous studies focusing on the genotoxic potential 
of OP exposure. For example, Garry et al. (1990) 
demonstrated that malathion induced chromosomal 
aberration and elevation in SCE on human lymphocytes. 
In another study, it was revealed that two different OPs, 
phorate and trichlorfon, caused an increase in SCE 
and had mutagenic potential on human lymphocytes 
(Timoroğlu et al., 2014). It was determined that the 
commercial form of TCVP, named Gardona®, induced 
a significant increase in chromosome aberrations 
(Kurinnyĭ & Pilinskaia, 1977). On the other hand, 
toxicological evaluation of TCVP, a member of OPs, 
was conducted in only a few human studies (Cobanoglu 
& Cayir, 2021; Ergun & Cayir, 2021). Ergun & Cayir 
(2021) investigated whether TCVP caused DNA 
methylation and cytotoxicity The authors reported 
that TCVP did not cause DNA methylation but had a 
cytotoxic effect in A549 lung epithelial cells. Another 
study reported that TCVP increased micronucleus 
(MN) frequency on HPL progressing through the cell 
cycle in all studied concentrations, but that none of these 
increases were statistically significant (Cobanoglu & 
Cayir, 2021). In the same study, it was also found that 
TCVP had no cytostatic effect on HPL progressing 
through the cell cycle. This finding regarding the 
cytostatic effect of TCVP is consistent with the 
findings obtained in the current study. In this context, 
it may suggest that TCVP does not affect the cell cycle  
kinetics.

DNA, which is highly sensitive to changes caused by 
various chemical agents, is the basic unit of heredity. 
Damaged DNA can play a crucial role in a variety of 
outcomes, such as genomic instability (Prathiksha et 

al., 2023). Little is known about the molecular basis 
of SCE, which represents the exchange of homologous 
loci during the S phase as a biomarker for genomic 
instability. It was reported that the target molecules of 
xenobiotics in the formation of SCE might be the DNA 
topoisomerase II complex, DNA replication enzymes, 
and DNA repair enzymes (Wilson & Thompson, 2007; 
Pommier et al., 1985). A previous study reported that 
TCVP induced significant changes in SCE values at the 
three studied concentrations (5, 25, and 50 μg/ml) in 
cells progressing through the cell cycle (Cobanoglu & 
Cayir, 2021). On the other hand, in the present study, 
the SCE value was found to be statistically significant 
only at the highest concentration. When comparing 
the results of the two studies, we can speculate two 
scenarios. Firstly, TCVP might be more genotoxic 
in HPL cells progressing through the cell cycle than 
in G0 phase HPL cells. This possibility would not be 
surprising because it is expected for cells to be much 
more sensitive against chemicals when they enter 
the S, G2, and M phases of the cell cycle (Fenech, 
2000). Secondly, for DNA damage to result in SCE, 
cells must pass through the S phase. Furthermore, 
the induced lesions can be repaired before the cells 
enter the S phase (Kopjar & Garaj-Vrhovac, 2000). 
Therefore, a lesser increase in the frequency of SCE may 
have been observed in cells damaged in the G0 phase 
by TCVP. According to both scenarios, TCVP has 
genotoxic potential. In addition, we also determined 
that the SCE value showed a linear dose-dependent 
increase. The result tells us that longer exposure times 
to TCVP may be genotoxic in G0 phase HPLs not 
only at the 50 µM concentration but also at lower  
concentrations.

In conclusion, the obtained results showed that 
exposure to TCVP in the G0 phase of the cell cycle did 
not affect cell cycle kinetics. In addition, the results of 
the current study revealed that TCVP had the potential 
to induce DNA damage in G0 lymphocytes, possibly 
resulting in the formation of SCE. The detection of 
TCVP’s genotoxic potential in the G0 phase of the 
cell cycle strengthens the hypothesis presented in a 
previous study, indicating that TCVP may indeed 
possess genotoxic properties (Cobanoglu & Cayir, 
2021). On the other hand, for a more comprehensive 
understanding of the molecular mechanisms underlying 
the potential genotoxic effects of TCVP, future studies 
could benefit from focusing on specific aspects. First and 
foremost, exploring whether TCVP triggers oxidative 
stress, similar to certain other OP pesticides, could 
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provide valuable insights. Additionally, investigating 
the capacity of TCVP to bind to DNA warrants 
attention as it constitutes another pertinent avenue  
for further exploration.
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Test razmene sestrinskih hromatida  
u humanim perifernim limfocitima izloženim 
delovanju tetrahlorvinfosa tokom faze G0

REZIME

Iako pesticidi nesporno doprinose povećanju poljoprivredne proizvodnje, rastući trend 
njihovog korišćenja je tokom vremena doveo do pojave raznovrsnih izazova vezanih za 
životnu sredinu i javno zdravlje. Tetrahlorvinfos, organofosfatni pesticid koji Međunarodna 
agencija za istraživanje raka smatra potencijalno kancerogenim, koristi se za borbu protiv 
muva, grinja i životinjskih larvi, u svrhu zaštite javnog zdravlja na otvorenim površinama 
i suzbijanja štetnih organizama kod domaćih životinja. Cilj istraživanja je bio da se ispita 
genotoksično i citostatično delovanje tetrahlorvinfosa na humane limfocite u fazi G0 životnog 
ciklusa ćelije, koristeći test razmene sestrinskih hromatida (SCE). Našli smo da tri koncentracije 
tetrahlorvinfosa (5, 25, 50 µM) povećavaju vrednosti SCE. Ipak, to povećanje SCE vrednosti bilo 
je statistički značajno samo kada je primenjena najviša koncentracija (50 µM, p<0.05). Takođe, 
SCE vrednosti su pokazale linearno povećanje zavisno od doze (p=0.005). Zaključili smo da 
izlaganje humanih limfocita u fazi G0 životnog ciklusa ćelije delovanju tetrahlorvinfosu ima 
genotoksičan potencijal. Takođe, izlaganje ćelija u fazi G0 tetrahlorvinfosu nije imalo primetan 
uticaj na kinetiku životnog ciklusa ćelije. 

Ključne reči: pesticidi, organofosfati, genotoksično delovanje, citostatičko delovanje, test 
razmene sestrinskih hromatida, faza G0

 


