Uloga B limfocita u razvoju multiple skleroze i eksperimentalnog autoimunskog encefalomijelitisa

  • Nemanja Jovičić Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za Histologiju i embriologiju
  • Ilija Jeftić Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za Patološku fiziologiju
  • Uglješa Jovičić Uprava za vojno zdravstvo, Ministarstvo odbrane Republike Srbije, Beograd

Sažetak


Multipla skleroza (Multiple sclerosis, MS) je hronično oboljenje nervnog sistema koje karakterišu oštećenje mijelinskog omotača aksona i širok spektar kliničkih znakova i simptoma. Uzrok nastanka multiple skleroze još uvek nije poznat. Smatra se da ulogu u nastanku i razvoju bolesti imaju genetska osnova, mehanizmi autoimunosti kao i različiti faktori okoline. Multipla skleroza se smatra autoimunskim oboljenjem pošto imunski sistem domaćina razvija imunski odgovor na molekule prisutne u sopstvenom nervnom sistemu. Do nedavno je preovladavalo mišljenje da najveći značaj u razvoju određenih autoimunskih bolesti, uključujući i multiplu sklerozu, imaju T limfociti. Pojačano interesovanje proteklih godina za ispitivanje fiziološke i patološke uloge B limfocita, donelo je nova saznanja o značaju ovih ćelija. Zahvaljujući novim istraživanjima, pokazano je da pored humoralne imunosti, čiji su nosioci, B limfociti imaju veliki značaj i u razvoju i regulaciji ćelijske imunosti, kao i u povezivanju urođenog i stečenog imunskog odgovora. Značaj B limfocita u razvoju multiple skleroze i u životinjskom modelu bolesti, eksperimentalnom autoimunskom encefalomijelitisu (Experimental autoimmune encephalomyelitis, EAE), je danas nedvosmisleno pokazana, ali još uvek nisu razjašnjeni svi mehanizmi kojima ove ćelije doprinose patogenezi bolesti. Njihov značaj potvrđuju i savremene terapijske opcije za lečenje multiple skleroze.

Reference

Lund. EF, Randall DT. Effector and regulatory B cells: modulators of CD4+ Т cell immunity. Nat Rev Immunol 2010; 10 (4): 236-247.

Lemoine S, Morva A, Youinou P, Jamin C. Human T cells induce their own regulation through activation of B cells. J Autoimmun 2011; 36(3-4):228-38.

Yanaba K, Bouzaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF. B-lymphocyte contribution to human autoimmune disease. Immunol Rev 2008; 223:284-99.

Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 2009; 9(6): 393-407.

Meier UC, Giovannoni G, Tzartos JS, Khan G. Translational Mini-Review Series on B cell subsets in disease. B cells in multiple sclerosis: drivers of disease pathogenesis and Trojan horse for Epstein-Barr virus entry to the central nervous system?. Clin Exp Immunol 2012; 167(1): 1-6.

Holmøy T. The discovery of oligoclonal bands: a 50-year anniversary. Eur Neurol 2009; 62(5): 311-315.

Link H, Huang YM. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 2006; 180(1-2): 17-28.

Weber MS, Hemmer B, Cepok S. The role of antibodies in multiple sclerosis. Biochim Biophys Acta 2011; 1812(2): 239-245.

Huttner HB, Schellinger PD, Struffert T, et al. MRI criteria in MS patients with negative and positive oligoclonal bands: equal fulfillment of Barkhof's criteria but different lesion patterns. J Neurol 2009; 256(7): 1121-1125.

Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry 2013; [Epub ahead of print]

Obermeier B, Mentele R, Malotka J, et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med 2008; 14(6): 688-693.

Ray A, Mann MK, Basu S, Dittel BN. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 2011; 230(1-2): 1-9.

Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F. B cells and multiple sclerosis. Lancet Neurol 2008; 7(9): 852-858.

Fraussen J, Vrolix K, Martinez-Martinez P, et al. B cell characterization and reactivity analysis in multiple sclerosis. Autoimmun Rev 2009; 8(8): 654-658.

Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683-747.

Katsavos S, Anagnostouli M. Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int 2013; 2013: 340508

Schneider R, Euler B, Rauer S. Intrathecal IgM-synthesis does not correlate with the risk of relapse in patients with a primary demyelinating event. Eur J Neurol 2007; 14(8): 907-911.

Mathey EK, Derfuss T, Storch MK,et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 2007; 204(10): 2363-2372.

Hohlfeld R, Meinl E, Dornmair K. B- and T-cell responses in multiple sclerosis: novel approaches offer new insights. J Neurol Sci 2008; 274(1-2): 5-8.

Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Ann Anat 2010; 192(4): 179-193.

Karni A, Bakimer-Kleiner R, Abramsky O, Ben-Nun A. Elevated levels of antibody to myelin oligodendrocyte glycoprotein is not specific for patients with multiple sclerosis. Arch Neurol 1999; 56(3): 311-315.

Lalive PH, Molnarfi N, Benkhoucha M, Weber MS, Santiago-Raber ML. Antibody response in MOG(35-55) induced EAE. J Neuroimmunol 2011; 240-241: 28-33.

Hundgeburth LC, Wunsch M, Rovituso D, et al. The complement system contributes to the pathology of experimental autoimmune encephalomyelitis by triggering demyelination and modifying the antigen-specific T and B cell response. Clin Immunol 2013; 146(3): 155-164.

Marta CB, Montano MB, Taylor CM, Taylor AL, Bansal R, Pfeiffer SE. Signaling cascades activated upon antibody cross-linking of myelin oligodendrocyte glycoprotein: potential implications for multiple sclerosis. J Biol Chem 2005; 280(10): 8985-8993.

Mauri C, Ehrenstein MR. The 'short' history of regulatory B cells. Trends Immunol 2008; 29(1): 34-40.

Pistoia V. Production of cytokines by human B cells in health and disease. Immunol Today 1997; 18(7): 343-350.

Lund FE. Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol 2008; 20(3): 332-338.

Gros MJ, Naquet P, Guinamard RR. Cell intrinsic TGF-beta 1 regulation of B cells. J Immunol 2008; 180(12): 8153-8158.

Harris DP, Haynes L, Sayles PC, et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000; 1(6): 475-482.

Harris DP, Goodrich S, Mohrs K, Mohrs M, Lund FE. Cutting edge: the development of IL-4-producing B cells (B effector 2 cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. J Immunol 2005; 175(11): 7103-7107.

Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008; 224: 201-214.

Anderson AC, Chandwaskar R, Lee DH, et al. A transgenic model of central nervous system autoimmunity mediated by CD4+ and CD8+ T and B cells. J Immunol 2012; 188(5): 2084-2092.

Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 2006; 6(5): 394-403.

O'Neill SK, Cao Y, Hamel KM, Doodes PD, Hutas G, Finnegan A. Expression of CD80/86 on B cells is essential for autoreactive T cell activation and the development of arthritis. J Immunol 2007; 179(8): 5109-5116.

Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol 2006; 176: 705–710.

Li X, Braun J, Wei B. Regulatory B cells in autoimmune diseases and mucosal immune homeostasis. Autoimmunity 2011; 44(1): 58-68.

Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28(5): 639-650.

Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 2003; 197: 489–501.

Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci USA 2007; 104: 14080–14085.

Spencer NF, Daynes RA. IL-12 directly stimulates expression of IL-10 by CD5+ B cells and IL-6 by both CD5+ and CD5- B cells: possible involvement in age-associated cytokine dysregulation. Int Immunol 1997; 9: 745–754.

Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat Rev Immunol 2010; 10(4): 236-247.

Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol 2010; 185(4): 2240-2252.

Vitale G, Mion F, Pucillo C. Regulatory B cells: evidence, developmental origin and population diversity. Mol Immunol 2010; 48(1-3): 1-8.

Begum-Haque S, Christy M, Ochoa-Reparaz J, et al. Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol 2011; 232(1-2): 136-144.

Villar LM, Espiño M, Roldán E, et al. Increased peripheral blood CD5+ B cells predict earlier conversion to MS in high-risk clinically isolated syndromes. Mult Scler 2011; 17(6): 690-694.

Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3: 944–950.

Matsushita T, Fujimoto M, Hasegawa M, et al. Inhibitory role of CD19 in the progression of experimental autoimmune encephalomyelitis by regulating cytokine response. Am J Pathol 2006; 168(3): 812-821.

Sato S, Steeber DA, Jansen PJ, Tedder TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol 1997; 158(10): 4662-4669.

Lemoine S, Morva A, Youinou P, Jamin C. Regulatory B cells in autoimmune diseases: how do they work?. Ann N Y Acad Sci 2009; 1173: 260-267.

Ray A, Basu S, Williams CB, Salzman NH, Dittel BN. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J Immunol 2012; 188(7): 3188-3198.

Homann D, Tishon A, Berger DP, Weigle WO, von Herrath MG, Oldstone MB. Evidence for an underlying CD4 helper and CD8 T-cell defect in B-cell-deficient mice: failure to clear persistent virus infection after adoptive immunotherapy with virus-specific memory cells from muMT/muMT mice. J Virol 1998; 72(11): 9208-9216.

Phillips JA, Romball CG, Hobbs MV, Ernst DN, Shultz L, Weigle WO. CD4+ T cell activation and tolerance induction in B cell knockout mice. J Exp Med 1996; 183(4): 1339-1344.

Ngo VN, Cornall RJ, Cyster JG. Splenic T zone development is B cell dependent. J Exp Med 2001; 194(11): 1649-1660.

Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358(7): 676-688.

Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 2009; 361(22): 2143-2152.

Levesque MC, St Clair EW. B cell-directed therapies for autoimmune disease and correlates of disease response and relapse. J Allergy Clin Immunol 2008; 121(1): 13-21.

Taylor RP, Lindorfer MA. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr Opin Immunol 2008; 20(4): 444-449.

Ahuja A, Anderson SM, Khalil A, Shlomchik MJ. Maintenance of the plasma cell pool is independent of memory B cells. Proc Natl Acad Sci U S A 2008; 105(12): 4802-4807.

Dörner T, Isenberg D, Jayne D, et al. Current status on B-cell depletion therapy in autoimmune diseases other than rheumatoid arthritis. Autoimmun Rev 2009; 9(2): 82-89.

Miletic M, Ilic S, Tanaskovic I, Rosic V, Jovicic N, Sazdanovic M. Histological characteristics and classifications of coarctation of the aorta. Rac Ter; in press

Objavljeno
2014/02/05
Rubrika
Pregledni članak