POLNI DIMORFIZAM FUNKCIONALNE ASIMETRIJE MOZGA

  • SANJA DRAČA Visoka škola strukovnih studija

Sažetak


Strukturalna i funkcionalna asimetrija mozga su rezultat delovanja različitih faktora od genetske kontrole, preko brojnih negenetskih prenatalnih i postnatalih faktora, koji uključuju i delovanje polnih steroida. Koncept polnog dimorfizma cerebralne asimetrije podrazumeva razlike u strukturalnoj i funkcionalnoj asimetriji hemisfera između jedinki muškog i ženskog pola. Značajan broj studija ukazuje na manji stepen funkcionalne asimetrije između desnog i levog korteksa kod žena, i veći stepen funkcionalne cerebralne lateralizacije kod muškaraca tokom kognitivne i perceptualne obrade, kao i na razlike u angažovanju hemisfera između jedinki muškog i ženskog pola. Takođe, pokazano je da funkcionalna kortikalna lateralizacija kod žena nije stabilna tokom menstrualnog ciklusa, već da varira u zavisnosti od fluktuirajućeg nivoa ženskih polnih steroida. Smatra se da ženski polni steroidi moduliraju funkcionalnu asimetriju mozga upravo menjajući inter-hemisferičnu komunikaciju preko komisuralnog sistema, naročito delujući na transkalozalni inhibitorni prenos. Buduća istraživanja su neophodna za razumevanje mehanizama koji leže u osnovi polnog dimorfizma strukturalne i funkcionalne asimetrija mozga, kao i biološkog i evolutivnog značaja postojanja ovog fenomena.

Reference

Seitz RJ, Azari NP, Knorr U, Binkofski F, Herzog H, Freund HJ. The role of diaschisis in stroke recovery. Stroke 1999; 30: 1844-50. http://stroke.ahajournals.org/content/30/9/1844

Drača S. Postapoplektična reorganizacija motorne kore. Med Čas (Krag) 2012; 46: 95-9.

Wada JA, Clarke R, Hamm A. Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adults and 100 infant brains. Arch Neurol 1975; 32: 239–46.

Li G, Nie J, Wang Li, Shi F, Lyall AE, Lin W, et al. Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex 2014; 24: 1289-1300.

Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 2012; 22: 13–25.

Sun T, Patoine C, Abu-Khalil A, Visvader J, Sum E, Cherry TJ, et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 2005; 308: 1794–8.

Geschwind N, Galaburda, AM. Cerebral Lateralization The MIT Press, London, 1987.

Grön G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW. Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neurosci 2000; 3: 404-8. http://www.nature.com/neuro/journal/v3/n4/abs/nn0400_404.html

Previc FH. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 1991; 98: 299-334. http://psycnet.apa.org/journals/rev/98/3/299/

De Vries G, Simerley RB. Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT, editors. Hormones, brain and behavior: development of hormone-dependent neuronal systems. San Diego (CA): Academic Press, 2002.

Wisniewski AB. Sexually-dimorphic patterns of cortical asymmetry, and the role for sex steroid hormones in determining cortical patterns of lateralization. Psychoneuroendocrinology 1998; 23: 519-47. http://www.psyneuen-journal.com/article/S0306-4530%2898%2900019-5/abstract

Drača S. Gender-specific functional cerebral asymmetries and unilateral cerebral lesion sequelae. Rev Neurosci 2010; 21: 421-5. http://www.ncbi.nlm.nih.gov/pubmed/21438191

Azari NP, Rappaport SI, Grady CL, De Carli C, Haxby JV et al. Gender differences in correlations of cerebral glucose metabolic rates in young normal adults. Brain Res 1992; 574: 198-208.

Shaywitz BA, Shaywitz SE, Pugh KR et al. Sex differences in the functional organization of the brain for language. Nature 1995; 373: 607-9.

Lissek S, Hausmann M, Knossalla F et al. Sex differences in cortical and subcortical recruitment during simple and complex motor control: An fMRI study. Neuroimage 2007; 37: 912–6. http://www.sciencedirect.com/science/article/pii/S1053811907004752

Dubb A, Gur R, Avants B. Gee J. Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 2003; 20: 512–9.

Aboitiz F. Brain connections interhemispheric fiber systems and anatomical brain asymmetries in humans. Biol Res 1992; 25: 51-61.

Tomasi D, Volkow N.D. Laterality Patterns of Brain Functional Connectivity: Gender Effects. Cereb Cortex 2012; 22: 1455-62.

Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 2009; 32: 9-18.

Bressler SL. Large-scale cortical networks and cognition. Brain Res Rev 1995; 20: 288- 304.

Drača S. Differences in cerebrogenic cardiac disturbance in men and women. Lancet Neurol 2012; 11: 842.

Hausmann M. Hormonal effects on the plasticity of cognitive brain functions. Wiley Interdisciplinary Reviews: Cogn Sci 2010; 1: 607–12.

Weis S, Hausmann M. Sex hormones: Modulators of interhemispheric inhibition in the human brain. Neuroscientist 2010; 16: 132-8.

Hausmann M, Güntürkün O. Steroid fluctuations modify functional cerebral asymmetries: the hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia 2000; 38: 1362-74. http://www.sciencedirect.com/science/article/pii/S0028393200000452

Fernandez G, Weis S, Stoffel-Wagner B, Tendolkar I, Reuber M, Beyenburg S, et al. Menstrual cycle-dependent neural plasticity in the adult human brain is hormone, task and region specific. J Neurosci 2003; 23: 3790-5.

Bayer U, Hausmann M. Estrogen therapy affects right hemisphere functioning in postmenopausal women. Hormon Behav 2009; 55: 228-34.

Resnick SM. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. J Clin Endocrinol Metab 2006; 91: 1802-10.

Bianki VL, Filippova EB. Sex differences in lateralization in the animal brain. Edited by Miller R. Harwood Academic Publishers, 2000: 165-8.

Filippova EB. The influence of phases of the estral cycle upon functional interhemispheric asymmetry in rats Zh Vyssh Nerv Deiat I P Pavlova 1996; 46: 753–61.

Bibawi D, Cherry B, Heilige JB. Fluctuations of perceptual asymmetry across time in women and men: effects related to the menstrual cycle. Neuropsychologia 1995; 33: 131–8.

Weis S, Hausmann M, Stoffers B, Vohn R, Kellermann T, Sturm W. Estradiol modulates functional brain organization during the menstrual cycle: an analysis of interhemispheric inhibition. J Neurosci 2008; 28: 13401–10.

Hausmann M, Tegenthoff M, Sanger J, Janssen F, Güntürkün O, Schwenkreis P. Transcallosal inhibition across the menstrual cycle: a TMS study. Clin Neurophysiol 2006; 117: 26–32.

Hausmann M, Becker C, Gather U, Güntürkün O. Functional cerebral asymmetries during the menstrual cycle: a cross-sectional and longitudinal analysis. Neuropsychologia 2002; 40: 808-16.

Hampson E. Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 1990; 15: 97-111.

Cahill L. A half-truth is a whole lie: on the necessitz of investigating sex influences on the brain. Endocrinology 2012; 153: 2541-3. http://press.endocrine.org/doi/full/10.1210/en.2011-2167

Darwin C. The descent of man and selection in relation to sex. London. J. Murray, 1871.

Objavljeno
2015/02/21
Rubrika
Pregledni članak