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Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion 
of angiotensin I to angiotensin II, are well-known for the treatments of cardio-
vascular diseases, such as heart failure, hypertension and acute coronary syn-
drome. Several of these inhibitors including captopril, enalapril, ramipril, zofeno-
pril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse 
cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunc-
tion and decrease mortality. Extensive experimental and clinical research over 
the past 35 years has revealed that the beneficial effects of ACE inhibitors in 
heart failure are associated with full or partial prevention of adverse cardiac 
remodeling. Since cardiac function is mainly determined by coordinated activi-
ties of different subcellular organelles, including sarcolemma, sarcoplasmic re-
ticulum, mitochondria and myofibrils, for regulating the intracellular concentra-
tion of Ca2+ and myocardial metabolism, there is ample evidence to suggest that 
adverse cardiac remodelling and cardiac dysfunction in the failing heart are the 
consequence of subcellular defects. In fact, the improvement of cardiac function 
by different ACE inhibitors has been demonstrated to be related to the attenua-
tion of abnormalities in subcellular organelles for Ca2+-handling, metabolic alter-
ations, signal transduction defects and gene expression changes in failing car-
diomyocytes. Various ACE inhibitors have also been shown to delay the 
progression of heart failure by reducing the formation of angiotensin II, the de-
velopment of oxidative stress, the level of inflammatory cytokines and the oc-
currence of subcellular defects. These observations support the view that ACE 
inhibitors improve cardiac function in the failing heart by multiple mechanisms 
including the reduction of oxidative stress, myocardial inflammation and 
Ca2+-handling abnormalities in cardiomyocytes.
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Introduction

Heart failure is a multifaceted syndrome/disease 
represented by the inability of the heart to pump 
sufficient blood to meet various needs of the body 
at rest or during exercise. Ranking among sever-
al public health hazards, this pathological entity 

is accompanied by marked changes in cardiac 
function and haemodynamic alterations; approx-
imately more than 64 million people are affect-
ed globally. About 50 % of patients with heart 
failure die as a consequence of sudden cardiac 



death annually. This disease not only increases 
hospitalisation of patients but also imposes an 
enormous clinical, medical and economic burden 
worldwide.1-4 Several pathological conditions in-
cluding atherosclerosis, hypertension, diabetes, 
severe anaemia and anti-cancer drug therapy are 
considered to be the major risk factors of heart 
failure. Among various stimuli such as pressure 
overload, volume overload or myocardial infarc-
tion (MI), ischemic heart disease is the most com-
mon cause (42.3 % cases globally) for the devel-
opment of heart failure. While MI is estimated to 
affect more than 7 million people each year, this 
situation following heart attack often signals the 
onset of cardiac dysfunction and progresses to 
heart failure. In fact, most prevalent cardiovas-
cular abnormalities at chronic stages invariably 
result in the development of heart failure.5-14 Re-
gardless of the pathological stimulus, the com-
mon aetiology for different types of heart failure 
is the progressive development of morphological 
remodelling of the myocardium, which is associ-
ated with impaired contractile function and the 
inability of the heart to pump sufficient blood to 
the body.15-20 At initial stages of the pathological 
stimulus, there occurs a compensatory process 
for an increase in ventricular muscle mass to 
reflect cardiac hypertrophy, which shows either 
unaltered or augmented cardiac function and is 
characterised as physiological or adaptive cardi-
ac remodelling (changes in size, shape, and struc-
ture of the myocardium). The hypertrophied 
myocardium at late stages of the pathological 
stimulus shows depressed cardiac function and is 
referred as adverse cardiac remodelling. 

At early stages of pathological stimulus, the acti-
vation of neurohormonal systems, including the 
renin-angiotensin system (RAS), sympathetic 
nervous system and natriuretic hormonal system 
release various hormones such as angiotensin 
(Ang) II, norepinephrine, aldosterone, growth fac-
tors and antidiuretic peptides in the circulation. 
The elevated levels of these circulating hormones 
increase cardiac contractility, ventricular fill-
ing and peripheral vasoconstriction to maintain 
the perfusion of crucial organs, as well as blood 
pressure and cardiac function.21-26 However, con-
tinued activation of the neurohormonal systems 
and increased levels of circulating hormones for a 
prolonged period participate in inducing cardiac 
abnormalities and increasing the haemodynamic 
overload (both afterload and preload) on the left 
ventricle. Increases in heart rate, as well as alter-
ations in myocardial extracellular matrix and de-

velopment of fibrosis and apoptosis, are also con-
sidered to account for the progression of heart 
failure.27, 28 In this regard, various clinical signs 
including shortness of breath, lung congestion, 
fluid retention, exercise intolerance, weakness, 
fatigue and peripheral oedema have been identi-
fied and are used for the diagnoses of heart fail-
ure.  It should be emphasised that a wide variety 
of mechanisms associated with prolonged neuro-
humoral activation, including changes in different 
cellular structures in the heart, cell to cell-inter-
action, subcellular organelles and Ca2+-handling, 
substrate utilisation and energy metabolism, 
inflammatory cytokine activation, oxyradicals 
generation and oxidative stress, cellular growth 
and cell death, as well as diverse signal transduc-
tion pathways become effective at different times 
during the progression of adverse cardiac remod-
elling and cardiac dysfunction in heart failure. 
23-25, 29-41 Thus the pathogenesis of heart failure is 
considered to be of complex nature and none of 
the existing therapies is satisfactory in reducing 
its morbidity and mortality.  

In view of the pivotal role of prolonged activation 
of the RAS in the pathophysiology of heart fail-
ure, it has been well recognised that the angio-
tensin-converting enzyme (ACE) is a significant 
component of this system as it is responsible for 
converting angiotensin I (Ang I) to the main effec-
tor of this system, Ang II. Specifically, the interac-
tion of this hormone with Ang II-type1 receptors 
(AT1R), is known to induce vasoconstriction and 
water retention effects for regulating the periph-
eral blood flow and blood pressure as well as for 
improving the cardiac function. Although these 
events are considered to reflect the role of RAS as 
a compensatory mechanism at initial stages, the 
increased activity of RAS (both systemically and 
locally) as well as the elevated levels of Ang II for 
a prolonged period are responsible for thickening 
of the vascular wall and aldosterone secretion. 
Hypertrophy of blood vessels, causes vasocon-
striction whereas water retention by aldosterone 
increases the accumulation of fluid in the vas-
cular system; both these situations augment the 
workload on the heart and promote fibrosis, left 
ventricular (LV) hypertrophy, adverse cardiac re-
modelling and defects in subcellular organelles, 
as well as worsen cardiac function in the heart 
failure patients.42-58 These AT1R-mediated effects 
of Ang II are antagonist by the activation of Ang 
type 2 receptors (AT2R) because the signalling 
mediated by AT2R induce vasodilatory, antifi-
brotic and antihypertrophic effects in heart fail-
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Figure 1: A schematic representation of the renin-angiotensin system (RAS) involving ACE as well as the activities associated with 
different angiotensin receptors.
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ure.59-62 Moreover, the homologue of ACE (ACE2) 
cleaves Ang I into a nonapeptide Ang 1-9 and Ang 
II into heptapeptide Ang 1-7; the activation of 
MAS receptors (MASR) by Ang 1-9 mediates sig-
nalling through (ACE2/Ang1–7/MASR pathway) 
to produce vasorelaxation, anti-inflammatory, 
anti-hypertrophic and cytoprotective effects, 
which also counteract with the pathophysiolog-
ical effects induced by ACE/Ang II/AT1R path-
way.63-73 Thus an imbalance between the adverse 
actions of AT1R activation and the beneficial 
effects of AT2R activation as well as MASR acti-
vation leads to an acceleration of cardiovascular 
disease progression and cardiac dysfunction.46, 63, 

74, 75  A schematic representation of RAS pathway 
and the Ang II induced cardiovascular activities 
are given in Figure 1. It is difficult to speculate 
the contribution and significance of the deleteri-
ous and beneficial effects of Ang II in eliciting car-
diac dysfunction during the progression of heart 
failure because the time-course information re-
garding these alterations needs to be obtained 
by employing AT1R-, AT2R- and MASR- knock-out 
mouse models. 

Different lines of evidence support the view that 
the blockade of RAS by ACE inhibitors prevents 
the vasoconstriction as well as reduce the all-
cause mortality and cardiac death upon atten-
uating the development of heart failure in both 
animals and patients. In this context, it is note-
worthy that inhibition of ACE has been shown to 
improve heart failure by decreasing the haemo-
dynamic afterload and preload as well as systolic 
wall stress, thus increasing cardiac output with-
out any change in heart rate. Apart from this, 
ACE inhibitors promote salt excretion by aug-
menting the renal blood flow and reducing the 
aldosterone and antidiuretic hormone produc-
tion. Several clinical studies have demonstrated 
the ability of these inhibitors to reduce cardiac 
remodelling and mortality in patients with LV 
dysfunction in different types of heart failure 
including post MI.17, 76-97 It should be mentioned 
that, ACE inhibitors also block bradykinin inacti-
vation which promotes dry cough and angioede-
ma; these side-effects occur more in women 
than men.98-102 However, reduced vagal tone and 
impaired baroreflex sensitivity in heart failure 
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patients are improved upon treatment with ACE 
inhibitors.103-107 Furthermore, the aldosterone fa-
cilitated retention of sodium and water as well as 
growth-promoting effects in patients with severe 
heart failure were attenuated by ACE inhibitors 
and aldosterone receptor blockers. In addition, re-
nin antagonists have also been shown to improve 
cardiovascular function in heart failure.108-111 The 
importance of these aspects associated with the 
activation of RAS has been extensively document-
ed elsewhere.50, 64, 71-73, 112 Accordingly, the present 
review is focused on describing the information 
related to ACE/Ang II–AT1R, pathway and its role 
in the pathogenesis of heart failure. Some obser-
vations regarding the effectiveness of ACE inhibi-
tors with respect to different mechanisms for re-
ducing oxidative stress and inflammation as well 
as improving cardiac function in heart failure are 
recorded. Since remodelling of subcellular organ-
elles has been suggested to be intimately asso-
ciated with the progression of heart failure, this 
article also outlines the beneficial effects of ACE 
inhibition in attenuating subcellular defects in 
myocardium and improving cardiac function in 
heart failure.26, 56, 113-124

Mechanisms for the develop-
ment of MI-induced heart fail-
ure
In order to understand the basis for the thera-
peutic use of ACE inhibitors for the treatment 
of heart failure; it is pertinent to briefly discuss 
its pathophysiology to identify appropriate mo-
lecular targets in the failing heart. It should be 
mentioned that heart failure due to MI (a mani-
festation of blockage of the coronary arteries) has 
been characterised as an entity due to a combina-
tion of pressure overload and volume overload, in 
which the myocardium experiences an excessive 
haemodynamic workload. The noticeable alter-
ations in ventricular haemodynamics associated 
with cardiac dysfunction are low cardiac output, 
reduced ejection fraction, elevated end-diastolic 
pressure, increased ventricular wall stress, ven-
tricular dilatation, ventricular hypertrophy and 
arrhythmias. These changes due to a large infarct 
size invariably lead to heart failure following MI. 
Some of the events associated with cardiac re-
modelling in heart failure due to MI involving the 
activation of RAS under both acute and chronic 

situations are represented in Figure 2. Abnor-
malities in Ca2+-handling, defects in energy pro-
duction and utilisation, developments of fibrosis, 
apoptosis and necrosis, as well as alterations in 
cardiac gene expression and subcellular defects 
have been examined in the failing heart.125-127 It is 
pointed out that the blockade of coronary blood 
flow leads to loss of myocardium, decrease in car-
diac output and fall in blood pressure which re-
sult in the activation of RAS. During initial phase 
of this pathological stimulus, the elevated levels 
of Ang II induce adaptive changes such as cardiac 
hypertrophy and increased activities of subcel-
lular organelles to stimulate cardiac function for 
maintaining cardiovascular homeostasis; howev-
er, chronic activation and increased plasma Ang II 
level for a prolonged period exert effects such as 
adverse cardiac remodelling and heart failure.40, 

48, 49  Prolonged exposure of hypertrophied heart 
to elevated levels of Ang II enhances progressive 
ventricular dysfunction and stimulates the ac-
tivities of various signalling transduction pro-
teins, such as phospholipase C, protein kinase C, 
tyrosine kinases and mitogen-activated protein 
kinase. All these alterations affect cardiac con-
traction and relaxation processes, in addition to 
inducing defects in cardiac metabolism and intra-
cellular Ca2+-handling in cardiomyocyte. Marked 
changes also occur in cardiac interstitium where 
oncogenes and genes, that regulate the expres-
sion of different hypertrophic factors, includ-
ing fibroblast growth factor, platelet-derived 
growth factor and transforming growth factor-β 
are stimulated and result in the accumulation of 
collagen and connective tissue in the heart. Thus 
adverse cardiac remodelling results in the devel-
opment of cardiac dysfunction and progression 
of heart failure in a complex manner. 89, 114, 128-135 It 
should also be noted that increased ANG II levels 
are associated with the activation of NADPH ox-
idase, production of reactive oxygen species and 
development of oxidative stress, which are con-
sidered to induce cardiomyocyte apoptosis and 
influence the expression and function of the exci-
tation-contraction coupling proteins resulting in 
cardiac dysfunction and heart failure.63, 136-140 

 
Because of the coordinated involvement of the 
activities of different subcellular organelles such 
as sarcolemma (SL), sarcoplasmic reticulum (SR), 
myofibrils (MF), mitochondria (MT) and extracel-
lular matrix (ECM) in determining the status of 
cardiac function, a defect in any activities of these 
organelles can be seen to produce disturbance in 
cardiac contractile cycle leading to cardiac dys-
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Figure 2: A schematic representation of events induced by myocardial infarction involving the acute and chronic activation of re-
nin-angiotensin system (RAS). A wide variety of alterations have been shown to occur in the hypertrophied myocardium leading to 
the development of cardiac dysfunction and heart failure.
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function and development of heart failure.126, 127 
In this regard, remodelling of the SL membrane 
has been shown to induce alterations in myocar-
dial cation composition and signal transduction 
pathways due to changes in membrane receptor 
proteins, cation channels and cation transport-
ers.141-150 As well as alterations in the SL micro-
domains, such as t-tubular network, caveolae and 
intercalated disc, the loss of SL viability may cause 
cell death, arrhythmias and contractile dysfunc-
tion in heart failure.151-159 While Ca2+-handling 
abnormalities in cardiomyocytes are mostly as-
sociated with defects in SR Ca2+-cycling proteins, 
changes in SR Ca2+-uptake and release activities 
are considered to explain impaired contraction 
and relaxation processes in the failing heart, re-
spectivley.149, 152, 160-163 Likewise, MF remodelling 
as a consequence of alterations in both contrac-
tile and regulatory proteins is also considered to 
produce alterations in cardiac contraction and re-
laxation due to modifications in their sensitivity 
to Ca2+ in the failing heart.132, 164-169 Furthermore, 
the occurrence of changes in cardiomyocyte ar-

chitecture and cardiac gene expression due to 
alterations in the extracellular matrix and nucle-
us, respectively, 96, 170-172 has been observed in ad-
dition to the degradation of extracellular matrix 
proteins in heart failure.40, 41 Alterations in these 
organelles in failing hearts have been explained 
on the basis of the activation of various prote-
ases and phospholipases as well as changes in 
different receptor-mediated signal transduction 
mechanisms.119, 121, 132, 173-176 Since heart failure is 
associated with alterations in energy transfer, 
production and utilisation, defects in MT function 
with respect of oxidative phosphorylation have 
been recognised as a significant contributor for 
the genesis of in heart failure.173-181 Furthermore, 
disorganisation of cellular structure has shown 
decreased mitochondrial mass, reduced effica-
cy of direct adenine nucleotide channelling and 
alterations of the creatine kinase shuttle asso-
ciated energetic deficiency; all these subcellular 
abnormalities lead to the development of cardiac 
dysfunction in the failing heart. It is also note-
worthy that MT-produced defects in redox status 

Bhullar et al. Scr Med 2022 Mar;53(1):51-76. 55



in the failing heart due to alterations in electron 
transport system and oxidative phosphorylation 
have been shown to generate oxidative stress,120, 

182-190 a most critical pathogenic factor for induc-
ing cardiac dysfunction.

There is ample evidence to show that the develop-
ment of cardiac contractile force is initiated as a 
consequence of increase in the cytosolic free Ca2+ 
concentration ([Ca2+]i) due to excessive Ca2+-en-
try through the SL Ca2+-channels as well as open-
ing of the SR Ca2+-release channels (ryanodine re-
ceptor type 2, RyR2).191-197 The binding of this Ca2+ 
with Troponin C (TnC) relieves its inhibitory ef-
fect on tropomyosin, promotes the interaction of 
myosin and actin filaments for the occurrence of 
the cardiac contraction.198-204 On the other hand, 
cardiac relaxation occurs upon sequestration of 
[Ca2+]i and dissociation of myosin filaments from 
actin filaments; Ca2+ sequestration is mainly af-
fected by the SR Ca2+-pump ATPase (SERCA2a) 
and SL Na+- Ca2+ exchanger.190, 199, 205-208 Thus dys-
regulation of different processes for Ca2+ handling 
in cardiomyocytes in failing hearts is considered 
to result in impaired cardiac function.209-211 A 
reduction in the maximal force-generating ca-
pacity of myofilaments in heart failure is also 
associated with suppression of α-myosin heavy 
chain expression, troponin T isoforms switch-
ing, decreased cyclic adenosine monophosphate 
(cAMP)-dependent phosphorylation and other al-
terations in the contractile apparatus.199, 212-214 It 
should be mentioned that MT serve as Ca2+-buffer 
because cardiomyocytes encounter an excessive 
level of [Ca2+]i during the development of heart 
failure.168, 215 When these organelles become 
overloaded with Ca2+, their function for produc-
ing ATP becomes impaired and this defect is also 
considered to result in cardiac dysfunction in the 
failing heart.184, 186

Role of ACE in MI-induced 
heart failure
ACE (a zinc metallopeptidase) was discovered in 
mid-1950s in plasma as well as kidney extract 
and was found to convert Ang I to Ang II.216, 217 
This enzyme was established to play a critical 
role in the RAS pathway, which exerts direct ef-
fects on vital organs such as the heart, kidneys, 
brain, blood vessels, adrenal glands and adipose 
tissues.218-220 Several biochemical and molecular 

studies concerning the expression of renin, an-
giotensinogen and ACE genes as well as the dis-
tribution of ACE in the heart have also revealed 
the existence of cardiac RAS indicating that some 
Ang II is also generated in the heart.221, 222 The 
contribution of systemic and tissue (local) RAS 
in elevating the circulating levels of Ang II during 
the development of heart failure remains to be es-
tablished. The upregulation of ACE and increased 
production of Ang II under various pathological 
conditions associated with cardiac remodelling 
provide further evidence of its involvement in 
deteriorating cardiac function during the devel-
opment of heart failure. 216, 223-227 It is pointed out 
that chymase, which has been shown to be pres-
ent in endothelial cells and cardiac interstitium, 
may also contribute in the formation of Ang II in 
the failing heart.228 It is noteworthy that the inhi-
bition of ACE has been reported to produce ben-
eficial effects by improving ventricular dilation, 
cardiac output as well as coronary circulation in 
addition to reducing ventricular wall stress in 
different types of failing hearts induced by MI, 
pressure overload or volume overload.229-235 The 
inhibition of ACE has also been reported to im-
prove cardiac function or delay the development 
of cardiac dysfunction by reducing the incidence 
of events associated with cardiac hypertrophy, 
cardiac remodelling, apoptosis, fibrosis, endo-
thelial dysfunction and subcellular defects.116, 181, 

236-238

Although the exact mechanisms of ACE inhibitors 
are not fully understood, various ACE inhibitors 
interfere with RAS, but their effects may not only 
be related alterations in the of Renin-Ang path-
way in the blood. Since ACE not only converts 
Ang I to Ang II but also degrades bradykinin, the 
mode of action of ACE inhibitors may be of com-
plex nature and may involve both blocking of ACE 
that reduces vasoconstriction and decreasing the 
breakdown of bradykinin that causes vasodila-
tion. It should be noted that Ang II induces direct 
vasoconstriction of the precapillary arterioles 
and postcapillary venules, restricts the reuptake 
of norepinephrine, promotes the release of cate-
cholamines from the adrenal medulla, decreases 
the urinary excretion of sodium and water, facili-
tates the synthesis and release of aldosterone and 
stimulates the growth of both vascular smooth 
muscle cells and cardiac myocytes. In fact, de-
creased production of Ang II by ACE inhibitors 
has been reported to enhance natriuresis, drop 
blood pressure, inhibit remodelling of smooth 
muscle and cardiac myocytes, as well as depress 
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Improvement of cardiac func-
tion in MI-induced heart fail-
ure by various ACE inhibitors
Since the synthesis of captopril as the first anti-
hypertensive drug,261, 262 various ACE inhibitors 
have been developed and their effects in heart 
failure have been extensively investigated both 
experimentally and clinically, either alone or in 
combination with other therapies.82, 263-267 In this 
regard, ACE inhibitors including captopril enal-
april, ramipril, benazepril, zofenopril, lisinopril, 
fosinopril, perindopril and imidapril have been 
increasingly helpful in advancing therapeutic 
potentials for attenuating cardiovascular events 
in heart failure.268 Their beneficial effects on 
haemodynamic congestion,269 acute and chron-
ic MI,270-272 cardiac remodeling;90, 273 myocardial 
metabolism;274 myeloid haematopoiesis, cardiac 
and vascular inflammation,275 cardiac function at 
subcellular and molecular levels as well as mor-
tality and morbidity of patients with heart failure 
are noteworthy.90, 276-278 It has been indicated that 
ACE inhibitors differ from each other in terms of 
their half-lives, bioavailability, lipophilicity, tis-
sue distribution, bradykinin site selectivity and 
routes of elimination.279 Nonetheless, the dis-

arterial and venous pressure for decreasing the 
preload and afterload on the heart.239-240 Since 
ACE regulates the balance between the vasodila-
tory and natriuretic properties of bradykinin and 
the vasoconstrictive and salt-retentive proper-
ties of Ang II, ACE inhibitors alter the balance by 
decreasing the formation of Ang II and degrada-
tion of bradykinin. 241 Alterations in the formation 
and degradation of other vasoactive substances 
such as substance P by ACE have been demon-
strated.242 The increase in Ang II levels has also 
been shown to be caused by oxidised low-density 
lipoprotein-cholesterol as well as different neuro-
hormones including endothelin, catecholamines 
and aldosterone.231-233 Thus ACE inhibitors can 
be seen to attenuate vasoconstriction not only 
by suppressing Ang II formation and inhibiting 
bradykinin metabolism but also by modulating 
the effects of other factors. These changes by ACE 
inhibitors have been shown to improve cardiac 
output, decrease preload, induce vasodilation 
and promote natriuresis in heart failure.243-245 By 
decreasing the destruction of bradykinin, ACE 
inhibitors may also augment the production of 
endothelium-derived factors, such as nitric oxide 
and prostacyclin and thus may improve haemo-
dynamic changes and attenuate endothelial dys-
function. It has been reported that bradykinin 
enhances the status of high energy phosphates 
stores in the ischemic myocardium.246-248 

ACE inhibitors have been shown to improve 
Ca2+-handling in hypertrophied cardiomyocytes 
and thus play a significant role in preventing the 
transition of cardiac hypertrophy to heart fail-
ure.249, 250 In addition, ACE inhibitors have been 
reported to improve the β-adrenergic receptor 
transduction by preventing depression in β1-ad-
renergic receptor density, decreased adenylyl 
cyclase activity and attenuated guanine nu-
cleotide-binding protein changes in the failing 
heart.175 Since the impaired cardiac dysfunction 
in the failing heart is associated with reduced 
myosin chain content, myosin isoform shift and 
altered myosin gene expression, improvement 
of cardiac function by ACE inhibition has been 
suggested to be associated with an increase in 
myosin heavy chain content and normalisation 
of myosin isoform shift. Such beneficial effects 
of the ACE inhibition are considered to be due to 
protection of sulfhydryl groups and antioxidant 
properties of ACE inhibitors. Although several 
agents exerting ACE inhibition have been shown 
to protect changes in myocardial energy metabo-

lism in the failing heart, it has been indicated that 
the possible mechanism by which ACE inhibitors 
improve myocardial metabolism is via bradyki-
nin (instead of Ang II inhibition) which is known 
to improve myocardial oxygen consumption by 
increasing the accumulation of nitric oxide. Fur-
thermore, ACE inhibitors have been shown to 
exert vagomimetic action and increase the baro-
reflex sensitivity in patients with heart failure. 
These agents also down-regulate the sympathet-
ic activity by modifying the effects of Ang II on 
the release of norepinephrine from the adrener-
gic nerve endings and improve variations in the 
heart rate.104-107, 251 Thus, treatments with ACE 
inhibitors have been demonstrated to improve 
cardiac function and delay the development of 
end-stage heart failure by diverse multiple mech-
anisms.86, 252-259 However, the disadvantage of the 
ACE inhibitor treatment is its effects on non-ACE 
pathways as well as increase in the levels of bra-
dykinin causing side effects such as dry cough 
and angioedema.98, 99, 260
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crepancy of observations in their effects seems 
to occur due to the time of administration and 
doses of ACE inhibitors given to heart failure pa-
tients.42 Although it would be desirable to discuss 
the clinical significance of different ACE inhibi-
tors in terms of their dosages and dose-schedules 
for the therapy of heart failure, these aspects are 
beyond the scope of this article. Nonetheless, the 
beneficial effects of some of these agents includ-
ing captopril, enalapril, lisinopril and ramipril 
specifically for the treatment of MI-induced heart 
failure are outlined in the following discussion. 

Captopril has been reported to the improve sur-
vival and reduce the mortality and morbidity as 
well as both the fatal and non-fatal cardiovas-
cular events in MI-induced heart failure.42, 280-283 
Since the infarct size and cardiac stiffness are 
important factors which influence the post-in-
farction process and the progression of heart fail-
ure, captopril alone or with combination of other 
therapies has been shown to reduce the infarct 
expansion significantly. It has been suggested 
that this reduction of the infarct size may be due 
to increased collateral blood flow to the areas of 
infarction at risk. Reduced myocardial infarct 
size during the early-phase (within 72 hours 
post-MI) was associated with increased exercise 
capacity, improved diastolic function and atten-
uated left ventricular remodeling,284-287 whereas 
reduction of myocardial stiffness in the infarcted 
and non-infarcted myocardium,288 was observed 
to delay the occurrence of cardiac dysfunction in 
patients after MI.289-292 Treatment of MI-patients 
with captopril has shown that this ACE inhibitor 
attenuated the progressive LV enlargement and 
improved the LV ejection fraction.293 The benefi-
cial effects of  this drug  against ischaemia-reper-
fusion induced cardiac injury have also been 
reported.294 Cardiac remodelling accompanied 
changes in membranes, contractile proteins and 
extracellular matrix, as well as intracellular cal-
cium handling defects were improved with cap-
topril treatment in MI-induced heart failure.295, 296 
As Ang II is considered to be a stress hormone,297 
the administration of captopril has been shown to 
reduce cardiovascular responses to acute stress 
in the post-infarction heart failure as well as in 
the chronically stressed infarcted animals.270 
Furthermore, captopril has been observed to 
improve cardiac function, reduce collagen levels 
and decrease artery media thickness,298 as well 
as produce long-term haemodynamic benefits in 
patients with MI-induced heart failure.281 

Since the hyperactivity of brain RAS is associated 
with the progression of diastolic dysfunction and 
heart failure after MI, the intracerebral therapy 
with captopril was found to reduce LV dilatation 
and improve LV filling, increase brain blood flow 
during moderate-intensity physical activity and 
delay the development of cardiac dysfunction in 
heart failure.299, 300 Because cardiac apoptosis in-
duced cell death has been shown to play a crit-
ical role in the transition from compensated to 
non-compensated cardiac hypertrophy for the 
progression of heart failure due to increased cir-
culatory levels of  Ang II,301-305 captopril has been 
reported to exert the protective effects on cardiac 
apoptosis due to the inhibition of Wnt3a/β-caten-
in signalling pathway, attenuate myocardial hy-
pertrophy via the suppression of Jak2/Stat3 path-
way and markedly improve cardiac function.306 
Furthermore, because MI-activated RAS and up-
regulation of mineralocorticoid receptors facili-
tate the production of aldosterone for ventricu-
lar remodelling and increase reactive fibrosis in 
the myocardium during the development of heart 
failure, captopril treatment has been reported 
to normalise cardiac mineralocorticoid recep-
tors protein and mRNA expression. These results 
support the view that ACE inhibitors diminish 
the reactive fibrosis by reducing Ang II produc-
tion and attenuating the aldosterone-signalling 
pathways by decreasing the expression of min-
eralocorticoid receptors.307 Captopril treatment 
has also been shown to suppress the expression 
of protein kinases in the Ang II-mediated mito-
gen-activated protein kinase signalling pathway 
which modulates gene expression in the vascular 
smooth muscle, prevents myosin targeting sub-
unit isoform switching to preserve normal blood 
flow due to nitric oxide-mediated vasodilatation 
and attenuates the depression in LV function.308, 

309 In addition, the beneficial effects of captopril 
on energy metabolism have been reported upon 
the treatment of MI- induced heart failure.80 

The efficacy of another ACE inhibitor, enalapril, in 
improving cardiac function has been established 
in both experimental animals and patients with 
heart failure.83, 310-313 Alone or in combination with 
other therapies, enalapril was observed to pro-
duce beneficial effects in patients with reduced 
LV ejection fraction,314-317 in addition to improv-
ing exercise performance,83, 318 and heart rate 
variability.319 This therapy was found to restore 
normal autonomic tone in the heart, enhance 
myocardial fatty acid metabolism,83, 274 prevent 
pathological hypertrophy,320 and reduce the risk 
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of atrial fibrillation development.321 Further-
more, enalapril suppressed aldosterone concen-
trations,83 increased junctional conductance,322 
inhibited cardiac remodelling and improved 
cardiac function in heart failure patients.323-326 
Treatment with enalapril was also seen to de-
crease cardiovascular events327-328 and mortal-
ity329 as well as delay the progression of heart 
failure, decrease hospitalisation and increase the 
survival rate in heart failure patients.330-335  It has 
been noted that the administration of enalapril 
started within 24 hours of the onset of acute MI 
in patients did not show any improvement in sur-
vival,317 whereas the benefits of enalapril in heart 
failure patients are most probably due to its ac-
tions on both bradykinin metabolism and Ang II 
production.336, 337 Enalapril treatment has been 
observed to improve Ang II-induced defects in 
subcellular organelles and attenuate cardiac dys-
function during the progression of MI-induced 
heart failure by partially preventing changes in 
SR gene expression338 and SL Na+-K+ ATPase activ-
ities145 in failing hearts. 
 

Several clinical studies have shown that ramipril 
is also an effective and well tolerated ACE inhib-
itor.339, 340 This agent has been demonstrated to 
prevent cardiovascular diseases,341-343 and pro-
duce beneficial effects on cardiovascular events 
in patients, who are at high risk of LV dysfunction 
or heart failure,344-346 as well as in patients with-
out any evidence of LV dysfunction.347 Moreover, 
the therapeutic efficacy of ramipril alone or in 
combination with other treatments343, 348, 349 has 
revealed significant reduction of the risk for fatal 
and nonfatal arrhythmic events in high-risk pa-
tients without clinical heart failure or LV dysfunc-
tion.350-353 Beneficial effects of this ACE inhibitor 
for adverse ventricular remodeling,354 LV hyper-
trophy,355 and atrial fibrillation,356 are associat-
ed with improving exercise performance357 and 
cardiac function358 in patients after acute MI.337 
It has also been demonstrated that ramipril, by 
decreasing the vasopressor activity, aldosterone 
secretion, and bradykinin degradation, improves 
different haemodynamic, thrombotic and inflam-
matory events.279, 359-362  Furthermore, ramipril 
treatment has been observed to reduce the risk of 

Figure 3: Modification of myocardial infarction induced changes in adverse cardiac remodelling and subcellular defects following 
treatment with ACE (angiotensin converting enzyme) inhibitors. ANG II, angiotensin II.
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worsening angina and the occurrence of revascu-
larisation,363 the progression of heart failure and 
the all-cause mortality and morbidity following 
acute MI.352, 364-366 In addition, ramipril treatment 
has been indicated to limit the decline of cardiac 
function in non-infarcted regions and prevent the 
circumferential shortening in the sub endocardi-
um after MI.345 Another ACE inhibitor, benazepril, 
has also been shown to exert several beneficial 
effects including increased survival time in con-
gestive heart failure.367-369  The use of the benaz-
epril in combination of spironolactone results 
in delaying the recurrence of heart failure and 
its associated clinical signs as well as reducing 
the death rate.369 Long-term ACE inhibition with 
fosinopril was also observed to improve the de-
pressed responsiveness to Ca2+ in myocytes from 
the aortic-banded rats.249 Additionally, the inhi-
bition of ACE with perindopril has been shown 
to exert a reduction in the cardiovascular mor-
tality and a significant decrease in the non-fatal 
MI in both preclinical and clinical settings.370-373 
The benefits of perindopril are evident during its 
long-term efficacy and tolerability for reducing 
cardiac events while achieving the targeted heart 
rate and blood pressure levels.374-376 
 
Various ACE inhibitors such as zofenopril, which 
contain sulfhydryl groups, have offered addi-
tional favourable effects for scavenging oxyrad-
icals and reducing the reperfusion damage in 
heart failure.377-381 By providing high lipophilicity, 
long-lasting tissue penetration and good effica-
cy, zofenopril has been shown to reverse cardiac 
remodelling in congestive heart failure and de-
crease the short-term and long-term mortality in 
MI patients.349, 382,383 Administration of zofenopril 
was found to produce cardiac-specific effects and 
modulation of gene expression involved in the 
pathophysiology of myocardial ischaemia and 
heart failure, in addition to increasing the resis-
tance to ischaemia.348,384 It needs to be empha-
sised that imidapril, a long-acting non-sulfhydryl 
ACE inhibitor, has been shown to improve the 
prognosis of MI in mild, moderate and severe cas-
es of heart failure with a lower incidence of dry 
cough as compared to other ACE inhibitors.336, 385 

Prevention of MI-induced haemodynamic chang-
es and protection of the cardiovascular system by 
early treatment with imidapril have been demon-
strated  experimentally.269 ,386 Other beneficial ef-
fects of this ACE inhibitor on LV hypertrophy,387 
exercise capacity in chronic heart failure,388 LV 
remodeling in acute MI,389 and subcellular or-
ganelle defects have also been reported in failing 

hearts.198, 390-394 A schematic representation of the 
beneficial effects of ACE inhibitors at different 
subcellular targets for improving heart function 
and preventing heart failure due to MI is shown 
in Figure 3.

Modification of subcellular 
defects in MI-induced heart 
failure by ACE inhibitors

Although the activation of RAS and elevated lev-
els of Ang II are known to produce cardiac dys-
function in MI-induced heart failure and different 
ACE inhibitors have been reported to prevent or 
delay the progression of heart failure,395, 396  the 
mechanisms of their action for improving cardiac 
function are not fully understood. Various ACE in-
hibitors have shown to produce beneficial effects 
on changes on collagen expression,397 myocardi-
al energy metabolism,80,177 SL PLC isoenzymes as 
well as SL Na+-K+-ATPase activities, protein con-
tent and mRNA levels in heart failure.143-146, 398, 

399 Furthermore, alterations in SR Ca2+ transport 
activities, Ca2+-pump ATPase, phospholamban 
protein and gene expression,142, 160, 196, 400 as well as 
myofibrillar ATPase activities,198, 390 extracellular 
matrix,401 cardiac gene expression and cardiac 
function181, 184, 185, 196, 402 were observed to be atten-
uated by ACE inhibitors in MI-induced heart fail-
ure. Enalapril treatment was found to partially or 
fully prevent the MI-induced SL remodelling, and 
changes in protein content and mRNA levels for 
different isoforms of Na+-K+ ATPase.145  Enalapril, 
captopril and cilazapril have also been reported 
to affect SR remodelling in MI-induced heart fail-
ure.338, 403, 404 Alterations in MF Ca2+-stimulated 
ATPase activities, myosin gene expression and 
protein content induced by MI were attenuated by 
the treatments of infarcted rats with agents such 
as imidapril and trandolapril.198, 405  Imidapril, has 
shown the efficacy of partially preventing the al-
tered PKC activities and its isoforms as well as 
phospholipase C and D activities,146, 391 in addition 
to attenuating changes in Gi‐proteins and adeny-
lyl cyclase,406 and improving cardiac function in 
MI-induced heart failure. It should also be men-
tioned that imidapril has been reported to im-
prove haemodynamic parameters and morbidity 
as well as reduce mortality in MI-induced heart 
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Table 1: Cardiac function, status of RAS and oxidative stress in 
control and MI rats with or without IMP treatment for 4 weeks 
starting at 3 weeks after the induction of MI.

Table 2: Sarcolemmal activities, protein content and mRNA lev-
els for Na+-Ca2+ exchanger as well as N+-K+ ATPase in control 
and MI rats with or without IMP treatment for 4 weeks starting 
at 3 weeks after the induction of MI.

Data are based on analysis of information in our paper394 (Shao et al. Am J 
Physiol Heart Circ Physiol 2005; 288: H1674-H1682) as well as from our pa-
per144 (Shao et al. Am J Physiol Heart Circ Physiol 2005; 288: H2637-2646). 
Values are mean ± SE of 6 animals in each group. IMP: Imidapril (1 mg/kg/day); 
MI: myocardial infarction; LV: left ventricle; LVEDP: LV end diastolic pressure; 
LVSP: LV systolic pressure; + dP/dt: maximal rate of pressure development; 
-dP/dt: maximal rate of pressure decay; RAS, renin-angiotensin system; ANG II, 
angiotensin II; ACE, angiotensin-converting enzyme; MDA, malondialdehyde, 
GSH, reduced glutathione, GSSG, oxidised glutathione. *P < 0.05 compared 
with respective control; †P < 0.05 compared with respective MI group.

Data are based on analysis of information in our paper144 (Shao et al. Am J 
Physiol Heart Circ Physiol 2005; 288: H2637-H2646). Values are mean ± SE of 
6 animals in each group. IMP: Imidapril (1 mg/kg/day); MI, myocardial infarc-
tion. *P < 0.05 compared with respective control; †P < 0.05 compared with 
respective MI group.

Parameters
Parameters

Control
Control

MI
MI

MI + IMP
MI + IMP

A. Cardiac functions:
A. Sarcolemmal activities:  

B. Na+-K+-ATPase isoform protein content:

C. Na+-K+-ATPase isoform mRNA level 

(% of control)

(% of control)

B. RAS activity parameters:

C. Oxidative stress levels:

LV mass, mg

LVEDP, mmHg

LVSP, mmHg

+ dP/dt, mmHg/s

- dP/dt, mmHg/s

Plasma ANG II
(fmol/ml)
Plasma ACE activity
(nmol/min/ml)
LV ACE activity
(nmol/min/mg protein)

Na+-dependent Ca2+-uptake 
(nmol/mg/2 sec)
Na+-Ca2+ exchanger protein 
content (% of control)
Na+-Ca2+ exchanger mRNA 
(% of control)
Na+-K+ ATPase
(μmol Pi/mg/hr)

α1

α2

α3

β1

α1

α2

α3

β1

LV MDA
(nmol/mg tissue lipids)
LV GSH
(μmol/g tissue)
LV GSSH
(μmol/g tissue)

7.6 ± 1.24

56 ± 3.7

0.50 ± 0.04

5.4 ± 0.3

72 ± 2.9

16.3 ± 0.9

118 ± 5.8*

74 ± 4.9*

0.81 ± 0.03*

16.7 ± 0.6*

32 ± 3.6*

26.5 ± 1.8*

30 ± 3.4†

50 ± 3.8†

0.41 ± 0.02†

460 ± 15.3

100
  

100

61.1 ± 4.9

100

100

100

100

100

100

100

100

230 ± 30.6*

21.9 ± 4.7*

43.3 ± 5.0*

23.1 ± 13.2*

10.9 ± 1.7*

4.7 ± 0.9*

150.0 ± 6.25*

68.2 ± 5.0*

53.3 ± 8.3*

48.3 ± 10.3*

250.0 ± 4.2*

43.1 ± 3.4*

383.3 ± 15.3†

43.7 ± 6.2†

81.7 ± 6.7†

54.4 ± 11.5†

82.6 ± 3.5†

41.3 ± 3.5 †

96.9 ± 5.0†

90.9 ± 4.5†

86.7 ± 6.7†

98.3 ± 6.9 †

133.3 ± 8.3†

82.75 ± 5.17†

39.8 ± 0.7†

62 ± 2.4†

14.4 ± 1.2†

981 ± 20*

14.2 ± 1.3*

139 ± 3.3

4,290 ± 618*

4,064 ± 574*

898 ± 20†

4.6 ± 0.3†

135 ± 13

7,726 ± 648†

7,840 ± 1,026†

894 ± 16

3.2 ± 0.8

144 ± 14

9,450 ± 1,186

9,624 ± 1,068

failure.392, 393, 395 Improvement of cardiac function 
in heart failure due to coronary occlusion148, 398 
by imidrapil treatment has been suggested to 
be due to reduction in the Ang II-induced sub-
cellular defects.144, 394 This view is based on our 
observations that treatment of infarcted animals 
with imidrapil attenuated the elevated LV end-di-
astolic pressure as well as depressions in both 
contraction and relaxation rates (± dP/dt) in the 
failing hearts (Table 1). The improved cardiac 
function upon imidrapril treatment was associ-
ated with reductions in the MI-induced increases 
in RAS activities as reflected by changes in plas-
ma Ang II, plasma ACE and LV ACE levels (Table 
1). The imidrapil-treated MI-animals also showed 
depressed content of malondialdehyde, conjugat-
ed dienes, and oxidised glutathione, as well as in-
creased content of reduced glutathione (Table 1), 
indicating depression in oxidative stress param-
eters in the failing heart. These findings provide 
evidence that ACE inhibitors exert beneficial ef-
fects by decreasing oxidative stress during the 
development of MI-induced heart failure.144, 394 

Because cardiac dysfunction in heart failure is re-
lated to remodelling of subcellular organelles and 
Ca2+-handling abnormalities,114, 116, 119 the effects 
of imidrapil on SL, MF and SR changes in the in-
farcted animals were also examined. The results 
in Table 2 show that treatment of MI-induced an-
imals with imidrapril attenuated changes in the 
SL Na+-Ca2+ exchange activity, mRNA levels and 
protein content in the failing heart. In addition, 
alterations in SL Na+-K+ ATPase activity as well 
as mRNA levels and protein content of different 
isoforms were fully or partially prevented in the 
failing hearts by imidrapil treatment (Table 2).  
The beneficial effects of imidapril treatments on 
changes in MF Ca2+-stimulated ATPase and MHC 
isoforms and mRNA levels in the failing hearts 
are shown in Table 3. Furthermore, the data in 
Table 4 indicate that marked alterations in SR 
Ca2+ uptake and Ca2+ release activities as well as 
protein content and gene expressions, (except 
calsequestrin) in the failing hearts, were attenu-
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Table 3: Myofibrillar ATPase activities, protein content and 
mRNA levels in control and MI rats with or without IMP treat-
ment for 4 weeks starting at 3 weeks after the induction of MI.

 Data are based on analysis of information in our paper198 (Wang et al. J Mol 
Cell Cardiol 2002; 34: 847-857). Values are mean ± SE of 7 animals in each 
group. MHC: myosin heavy chain. *P < 0.05 compared with control; †P < 0.05 
compared with MI group.

Parameters Control MI MI + IMP

A. Myofibrillar activities:

B. Myosin heavy chain content

C. Myosin heavy chain mRNA levels

(% of Total)

(Relative intensity)

Ca2+-stimulated ATPase
activity (μmol Pi/mg/h) 
Mg2+-ATPase activity
(μmol Pi /mg/h)

10.32 ± 0.58

3.49 ± 0.19

6.83 ± 0.37*

3.87 ± 0.12

8.3 ± 0.42†

3.47 ± 0.2

Total MHC

α-MHC

β-MHC

α-MHC

β-MHC

100

94.63 ± 5.37

5.37 ± 0.3

100

100

45.5 ± 11.25*

150.95 ± 4.5*

80.75 ± 13.0†

111.25 ± 11.25†

102.67 ± 5.4

50.43 ± 5.9*

49.57 ± 4*

90.725 ± 7.9

72.1 ± 4.6†

27.93 ± 0.65†

ated by treatments with imidapril. These obser-
vations provide evidence that ACE inhibitors may 
improve cardiac dysfunction during the develop-
ment of MI-induced heart failure by attenuating 
alterations in subcellular organelles.

Conclusion

From the foregoing discussion, it is evident 
that the activation of RAS and formation of Ang 
II due to pathological stimuli such as haemody-
namic overload and heart attack (MI) play a 
critical role in the occurrence of cardiac hyper-
trophy and heart failure. At initial stages, the 
activation of RAS and release of Ang II increase 
myocardial muscle mass (adaptive cardiac 
remodelling or physiological cardiac hyper-
trophy) and blood pressure to maintain car-
diovascular homeostasis. On the other hand, 
elevated levels of plasma Ang II for a prolonged 
period have been demonstrated to result in the 
development of cardiac dysfunction (patholog-
ical cardiac hypertrophy or adverse cardiac re-
modelling) and heart failure. A wide variety of 
defects in adverse cardiac remodelling includ-
ing fibrosis, apoptosis, necrosis, inflammation, 
oxidative stress, Ca2+-handling abnormalities, 
mitochondrial Ca2+-overload and the loss of 
myofibril Ca2+-sensitivity have been identified 
during the development of heart failure. How-

ever, the exact contribution of these alterations 
for explaining pathogenesis of cardiac dysfunc-
tion due to elevated levels of Ang II for a pro-
longed period is not clearly understood. None-
theless, both experimental and clinical studies 
have revealed that blocking the formation of 
Ang II by different ACE inhibitors or preventing 
the actions of Ang II by various AT1R antago-
nists produce beneficial effects for improving 
heart function as well as delaying the progres-
sion of heart failure. In this review we have 
attempted to analyse the existing information 
regarding the effects of various ACE inhibitors 
to understand the role of Ang II as well as the 
mechanisms of its action for inducing cardiac 
dysfunction and heart failure. 

Since ACE inhibitors not only attenuate the 
formation of Ang II by preventing the conver-
sion of Ang I to Ang II but also interfere with 
the breakdown of bradykinin, the beneficial 
effects of these agents in heart failure are con-
sidered to be due to both the reduction of Ang 
II levels as well as the accumulation of bra-
dykinin. However, it should be noted that the 
accumulation of bradykinin upon the admin-
istration of ACE inhibitors has also been sug-
gested to account for their side effects such as 
dry cough and angioedema. Furthermore, the 
reduction in the level of Ang II by ACE would 
attenuate the beneficial effects of AT2R acti-
vation as well as that of the MASR activation 
because the formation of Ang 1-7 will be de-
creased. On the other hand, the formation of 
oxyradicals and subsequent development of 
oxidative stress will be reduced due to depres-
sion in the activation of both SL and MT NADPH 
oxidases by treatment with ACE inhibitors. Al-
though the balance of opposing changes due to 
ACE treatments may be of a complex nature, 
the depression of oxidative stress and associat-
ed inflammation in the failing myocardium can 
be seen to attenuate subcellular alterations, 
Ca2+-handling abnormalities as well as loss of 
myofilament Ca2+-sensitivity. These observa-
tions support the view that the modification 
of all these subcellular defects upon the reduc-
tion of oxidative stress in cardiomyocytes due 
to treatment with ACE inhibitors results in im-
proving cardiac function and delaying the pro-
gression of heart failure. It is emphasised that 
it is not the authors’ intention to exclude oth-
er Ang II-induced mechanisms for partially or 
fully preventing metabolic abnormalities and 
diverse signal transduction defects in eliciting 
the beneficial effects of ACE inhibitors in heart 
failure.
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