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Abstract
Background/Aim: Therapy of diabetes mellitus type 2 includes drugs that act 
as inhibitors of dipeptidyl peptidase 4 (DPP-4) enzyme. Several DPP-4 inhibi-
tors are marketed today and although they have favourable safety profile and 
tolerability, they show moderate activity in controlling glycaemia. The 3D quan-
titative structure-activity relationship (3D-QSAR) methodology was employed 
in order to find pharmacophore responsible for good DPP-4 inhibitory activity 
and designed new compounds with enhanced activity.
Methods: For 3D-QSAR model development, 48 compounds structurally relat-
ed to sitagliptin were collected from ChEMBL database. Structures of all com-
pounds were optimised in order to find the best 3D conformations prior to 
QSAR modelling. To establish correlation between structure and biological ac-
tivity Partial Least Squares (PLS) regression method integrated in Pentacle 
software was used.
Results: Parameters of internal and external validation (R2 = 0.80, Q2 = 0.64 
and R2

pred = 0.610) confirmed reliability of developed QSAR model. Analysis of 
obtained structural descriptors enabled identification of key structural charac-
teristics that influenced DPP-4 inhibitory activity. Based on that information, 
new compounds were designed, of which 35 compounds had a better predicted 
activity, compared to sitagliptin.
Conclusion: This QSAR model can be used for DPP-4 inhibitory activity predic-
tion of structurally related compounds and resulting pharmacophore contains 
information useful for optimisation and design of new DPP-4 inhibitors. Finally, 
authors propose designed compounds for further synthesis, in vitro and in vivo 
testing, as new potential DPP-4 inhibitors.
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Introduction

Diabetes mellitus type 2 (DMT2) is a chronic met-
abolic disorder characterised by hyperglycaemia 
that is caused mainly by insulin resistance and/
or impaired insulin secretion. It is estimated that 
about 90 % of diabetic patient suffer from type 
2 diabetes and its prevalence has been increas-
ing steadily over the years, becoming a global 
health problem.1 Prediction of International Dia-

betes Federation (IDF) is that by the year of 2040, 
the number of patients with diabetes will rise to 
around 640 million.2

Therapy of DMT2 includes drugs with different 
mechanisms of action and chemical structures, 
such as biguanides, sulfonylurea derivatives 
(first, second and third generation), meglitinides, 



Methods

Data set
The data set comprised 48 compounds that had 
more than 85 % structural similarity to sita-
gliptin. The compounds were retrieved from the 
ChEMBL database, together with their experi-
mentally determined DPP-4 inhibitory activities, 
expressed as IC50 values. For simplicity, those 
were converted to negative decade logarithm 
(pIC50), to be further used for QSAR modelling. All 
activities were determined using the same exper-
imental procedure.

The initial data set was divided into a training 
set, comprising 35 compounds that were used to 
build a 3D-QSAR model and a test set, compris-
ing 13 compounds which were used for external 
validation of the model. Chemical structures of 
selected compounds from data set that were used 
for QSAR modelling are depicted in Figure 1.

α-glucosidase inhibitors, thiazolidinediones, in-
sulin and its analogues, sodium-glucose cotrans-
porter-2 (SGLT2) inhibitors, glucagon-like pep-
tide-1 (GLP-1) receptor agonists, dipeptidyl 
peptidase 4 (DPP-4) enzyme inhibitors.3

DPP-4 inhibitors (also called gliptins) are rel-
atively new class of antidiabetic drugs, which 
achieve satisfactory therapeutic efficiency. These 
drugs are generally well tolerated and do not 
carry a significant risk of hypoglycaemia and 
weight gain.4, 5 DPP-4 is a transmembrane glyco-
protein that belongs to the group of serine pro-
teases. This exopeptidase catalyses the cleavage 
of the dipeptide from the N-terminal end of the 
substrate, leading to its inactivation or genera-
tion of new bioactive metabolites. It is a ubiqui-
tous enzyme, found in many cells and tissues and 
since it shows affinity for different substrates, it 
can participate in a large number of physiological 
processes, including inflammation, cardiovascu-
lar function and immunity.6, 7 Increased activity 
of this enzyme has been found in various diseas-
es such as DMT2, atherosclerosis, diabetic kidney 
disease etc.8-10 DPP-4 has been important target 
for the treatment of DMT2 because of its effect on 
glucose control via metabolic inactivation of gas-
trointestinal incretins.11

Gastrointestinal incretins, glucagon-like peptide 
1 (GLP-1) and glucose-dependent insulinotropic 
peptide (GIP), play a very important role in the 
process of establishing blood glucose homeosta-
sis.12 GLP-1 and GIP are released from L and K in-
testinal cells, respectively, in response to nutrient 
ingestion (primarily fat and glucose). They en-
hance glucose-stimulated insulin secretion from 
β-cells of the pancreas in an additive manner and 
inhibit glucagon secretion from α-cells, thereby 
improving glycaemia. GLP-1 has additional bene-
ficial effects in the gastrointestinal tract such as 
delayed gastric emptying and reducing appetite, 
which also contribute to promoting normoglyce-
mia.13 The DPP-4 enzyme catalyses the cleavage 
of incretins from the N-terminal end, thus short-
ening their half-life. Inhibition of DPP-4 is used in 
therapy of DMT2 to prolong effect of these incre-
tins and lower blood glucose levels.14 Sitagliptin is 
first DPP-4 inhibitor introduced in DMT2 therapy 
in 2006 and since then various DPP-4 inhibitors 
have been marketed, but research in this area is 
continuing in an effort to discover more efficient 
antidiabetic drugs.15-18

Computer aided drug design (CADD) comprises 
various in silico techniques that have been used 
with great success in modern drug discovery 
process (especially in its early stages) to increase 

efficiency and save time and money.19-21 The aim 
of this study was to employ an in silico 3D-quan-
titative structure-activity relationship study 
(3D-QSAR) to identify key structural elements 
that are responsible for DPP-4 inhibitory activity 
and design new molecules that can lead to discov-
ery of new drugs in therapy of DMT2.

Figure 1: Chemical structures of two class of compounds in data 
set and their representatives, sitagliptin and compound L45

Before building the QSAR model, the dominant 
forms at pH 7.4 were determined for all molecules 
in the MarvinSketch version 6.3.0, ChemAxon 
(https://www.chemaxon.com). Given that qual-
ity of 3D-QSAR model is highly dependent on 
molecule conformation, the obtained dominant 
forms were previously subjected to geometrical 
optimisation in order to achieve the energy min-
imum. The optimal 3D structures were generat-
ed using the PM3 (Parameterised Model Revi-
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difference between them          < 0.2 and mean 
value          > 0.5.26, 29

Results
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sion 3) semi-empirical method22 in the Gaussian 
98W program extension23 incorporated into the 
Chem3D Ultra 7.0, PerkinElmer (http://www.
cambridgesoft.com).

3D-QSAR model development
For 3D-QSAR modelling, the Pentacle version 
1.0.6, Molecular Discovery Ltd (https://www.
moldiscovery.com/) was used. Unlike other 
3D-QSAR methodologies such as CoMFA and 
CoMSIA, which require prior alignment of mol-
ecules to calculate descriptors, Pentacle uses 
grid-independent descriptors (GRIND).24 For 
calculation of these descriptors molecule was 
placed in 3D-grid and subjected to interactions 
with different probes that represent most com-
mon type of ligand-receptors interactions. These 
included DRY probe that represent hydrophobic 
interactions, N1 probe that represents hydrogen 
bond acceptor (HBA) groups, O probe represent-
ing hydrogen bond donors (HBD) and TIP probe 
describing steric interactions. At each grid point, 
the steric and electrostatic interactions of attrac-
tion and repulsion between the probe and the 
molecule were calculated, to define molecular in-
teraction fields or MIFs. ALMOND algorithm was 
then used to extract regions (nodes) that were 
characterised by most intense favourable inter-
actions for each probe. Number of these extract-
ed nodes was set to 100. Consistently Large Auto 
and Cross Correlation (CLACC) algorithm was 
used to transform these nodes into GRIND de-
scriptors that represent distance between same 
and different nodes. Initial number of calculated 
descriptors was reduced using fractional factori-
al design (FFD) method. For correlation between 
descriptor values and DPP-4 inhibitory activities, 
Pentacle used Partial Least Squares (PLS) regres-
sion. Number of latent variables was set to 5.

Validation of 3D-QSAR model
Validation of the 3D-QSAR model was performed 
based on internal and external validation pa-
rameters. Internal validation was achieved using 
compounds from training set to obtain follow-
ing validation parameters: squared correlation 
coefficient or coefficient of determination (R2), 
cross-validated coefficient of determination (Q2) 
and Root Mean Square Error of Estimation (RM-
SEE). The Q2 parameter was calculated based on 
the LOO (Leave One Out) method, meaning that 
one component from the training set was left out 
each time and a new model was formed from the 
remaining molecules. This process was repeated 
until each component from the set was omitted 
once. Based on the obtained model, the activity 
of molecules from the training set was predicted 
and the difference between LOO-predicted and 

experimental activities e(i) was calculated. The 
sum of squared e(i) gave PRESS (Predicted Residu-
al Sum of Squares):

(Eq 1.)

(Eq 2.)

(Eq 4.)

(Eq 3.)

PRESS was used to calculate RMSEE and Q2:

where n represented number of compounds in 
training set, Yobs was experimentally determined 
DPP-4 inhibitory activity and Ytraining was mean 
value of the experimental activities for the train-
ing set.

Model was considered able to reliably predict ac-
tivity of compounds from training set if: R2 > 0.6, 
Q2 > 0.5 and RMSEE < 0.5.25, 26

Test set was used for external validation of model 
and calculation of following parameters:

where Yobs (test) was experimentally determined 
DPP-4 inhibitory activity of compounds in test set 
and Ypred (test) predicted inhibitory activity of com-
pounds in test set.

RMSEP value was calculated according to Eq. 2, 
where n represented number of compounds in 
test set.

In addition,         parameters                                              of 
external validation27, 28 were calculated. Model 
was considered able to reliably predict activity of 
external compounds if:
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(𝛥𝛥𝛥𝛥$%)	<	 
R2pred	>	0.5,	𝑟𝑟"# 	and	𝑟𝑟"

/#	>	0.5,  

Using the training set, a 3D-QSAR model was 
formed, whose predictive power was checked 
through calculation of internal and external val-
idation parameters. The experimental and pre-
dicted activities (pIC50) for the training and test 
set compounds, together with the calculated vali-
dation parameters are presented in Table 1.

(𝑟𝑟"#$$$) 
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Table 1: Experimental and predicted activities of compounds from data set with calculated values of 
validation parameters

Compound

Compound

Compound

Compound

Training set

Test set

Experimental
pIC50

Experimental
pIC50

Experimental
pIC50

Experimental
pIC50

Predicted
pIC50

Predicted
pIC50

Predicted
pIC50

Predicted
pIC50

7.740

7.010

7.640

6.740

7.430

7.120

7.060

7.680

5.990

6.820

7.190

7.520

6.580

7.570

7.540

6.630

6.310

6.840

8.150

5.800

6.440

6.890

6.870

7.080

7.160

6.660

7.220

7.060

6.910

7.040

8.400

8.633

6.651

6.769

7.000

6.994

7.131

7.044

5.941

7.213

6.912

7.107

6.657

7.945

7.520

6.720

6.290

6.090

7.090

6.570

8.300

7.040

6.680

6.110

6.940

6.880

7.150

6.760

8.700

8.400

6.480

7.648

7.102

7.521

7.141

7.438

7.114

7.182

7.403

5.935

6.763

7.270

7.278

6.582

7.696

7.476

6.563

6.389

6.964 R2 = 0.96; Q2 = 0.71

7.528

6.650

6.110

6.103

7.018

6.817

8.331

7.100

6.593

6.191

7.104

6.804

7.088

6.905

8.722

8.258

6.530

L1

L2

L3

L5

L7

L8

L9

L10

L11

L12

L14

L15

L16

L18

L19

L20

L21

L24

L4

L6

L13

L17

L22

L23

L25

L26

L27

L28

L30

L31

L32

L33

L36

L37

L38

L39

L40

L41

L43

L44

L45

L47

L48

L29

L34

L35

L42

L46

Table 2: Summary of the most important grid-independent descriptors (GRIND) variables

HBA: hydrogen bond acceptor; HBD: hydrogen bond donor;

Variable Node pair Distance [Å] Impact Description

Distance between two HBA.

Distance between the two steric centres located at the C4 position of the benzene ring.

Distance between the hydrophobic centre such as triazolopyrazine ring and the and the HBD.

Distance between the benzene ring and the ammonium ion as HBD.

Distance between the hydrophobic bicycle and the HBA such as triazole nitrogen.

Distance between the piperazine and the steric centre at the benzene ring.

Distance between the triazole and the steric centre at the benzene ring.

Distance between the HBD at the C3 position of butanone and the steric centre at the benzene ring.

Distance between triazole nitrogen and bulky radical, such as trifluoromethyl group, on triazole.

Distance between HBA and steric centre, not present in all compounds.

168

210

281

289

347

446

457

569

624

671

1N1-N1

TIP-TIP

DRY-O

DRY-O

DRY-N1

DRY-TIP

DRY-TIP

O-TIP

N1-TIP

N1-TIP

+

+

+

-

+

+

+

-

-

-

12.8 - 13.2

2.4 - 2.8

3.6 - 4

6.8 - 7.2

2.8 - 3.2

15.5 - 15.6

19.6 - 20

10 - 10.4

4.8 - 5.2

23.6 - 24

RMSEP = 0.396; R2
pred = 0.610

r      = 0.5525; r       = 0.5023

r      = 0.5274;         = 0.0502

2
m

2
m

/2
m

2
mr
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Figure 2: Plot of experimental versus 3D-QSAR predicted DPP-4 inhibitory activities, expressed as pIC50 values

Figure 3: The most important variables that have positive (red) and negative (blue) influence on dipeptidyl peptidase 4 (DPP-4) inhib-
itory activity. Hydrophobic regions are depicted in yellow, steric hot spots in green, hydrogen bond acceptors (HBA) regions in blue 
and hydrogen bond donors (HBD) regions in red
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Figure 4: Structures of selected designed compound from S- and N-series with highest predicted dipeptidyl peptidase 4 (DPP-4) 
inhibitory activity
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The good predictive power of the model can be 
shown in the plot of experimental versus pre-
dicted pIC50 values (Figure 2) of compounds from 
training and test set. The even distribution of 
pIC50 values around the regression line indicated 
a small difference between the experimental and 
model-predicted values.

The most important variables were selected to ex-
plain influence of present structural characteris-
tic on DPP-4 inhibitory activity (Table 2).

Selected variables with positive and negative in-
fluence on the activity are presented in Figure 3.

Sitagliptin and compound L45 (Figure 1) were 
used as lead compounds to design new DPP-4 in-
hibitors. Two series of compounds were designed, 
S-series based on sitagliptin structure and N-se-
ries based on L45 structure (Figure 4). Activities 
of designed compounds were predicted using 
3D-QSAR model (Table 3).

Table 3: Predicted DPP-4 inhibitory activities of selected designed 
compounds from S- and N-series

Compound CompoundExperimental
pIC50

Experimental
pIC50

S13

S18

S20

S24

S28

S62

S64

S66

S72

S75

S77

S78

S85

S98

S102

S103

N3

N5

N7

N20

N25

N29

N30

N38

N39

N46

N49

N50

N59

N63

N69

N72

N78

N79

N80

7.762

7.765

7.795

7.818

7.822

7.859

7.895

8.277

7.773

8.230

7.750

8.039

8.178

7.765

8.437

8.354

7.825

7.881

8.362

7.745

8.201

8.244

7.847

7.805

8.456

8.258

7.764

7.775

7.837

7.806

7.948

8.123

8.174

7.851

8.485

Discussion

QSAR modelling is one of the most frequently 
used in silico techniques, often applied in the ear-
ly stages of the discovery of potential drugs, pri-
marily in order to identify, design and optimise 

lead compounds and to predict toxic properties. 
Here, 3D-QSAR methodology was used to define 
key structural determinants that potent DPP-4 
inhibitor should possess and that information 
was used to design new compounds as poten-
tial DPP-4 inhibitors. After developing 3D-QSAR 
model, internal and external validation proce-
dure was performed, in order to demonstrate its 
reliability. Coefficient of determination parame-
ter (R2) was calculated which indicates how well 
the model reproduces the experimental data and 
Q2 which is a measure of the model’s internal pre-
dictive power (Table 1). Values of R2 = 0.96 and Q2 
= 0.71 show that model was good at predicting ac-
tivities of compounds from training set. However, 
true predictive power of model lies in its ability 
to predict activities of external compounds that 
are not used for building the QSAR model. Based 
on the values of calculated parameters of exter-
nal validation (Table 1), it can be concluded that 
this model can be reliably used for that purpose.
In the next step, the interpretation of the ob-
tained GRIND variables was approached (Table 
2) in order to define the pharmacophore respon-
sible for the DPP-4 inhibitory activity. That infor-
mation was used to design new potential DPP-4 
inhibitors based on structural modification on 
sitagliptin (S-series) and compound L45 (N-se-
ries), as a compound with the highest activity in 
data set. Of the 100 designed compounds from 
S-series, 16 compounds (Figure 4) were predict-
ed to have better activity compared to sitagliptin 
(pIC50 > 7.740), while of the 82 designed N-series 
compounds, 19 compounds (Figure 4) showed 
better predicted activity compared to sitagliptin 
(Table 3).

Based on the predicted activities of compounds 
from S-series it can be concluded that following 
structural features are essential for good DPP-4 
inhibitory activity: 

•	 methyl group at the N1 position of the tri-
azole ring (S-13, S-64, S-66, S-75, S-77, S-78, 
S-98, S-102);

•	 methylamino group at the C3 position of the 
butane chain (S-62, S-64, S-66, S-78, S-98);

•	 hydroxymethyl group at C4 of the butane 
chain (S-28, S-62, S-64, S-77, S-78, S-98, 
S-102, S-103);

•	 monochloro-/dichloro-fluoromethyl group 
at the C3 position of the triazole ring, pro-
vided that at least two of the aforemen-
tioned functional groups are present in 
the structure (S-75, S-77, S-78, S-98, S-102, 
S-103). The exception is S-85 with an ureido 
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Conclusion

In this study 3D-QSAR methodology was em-
ployed in order to define pharmacophore re-
sponsible for DPP-4 inhibitory activity and 
design new compounds with enhanced activ-
ity. The reliability of the developed 3D-QSAR 
model was confirmed by thorough internal 
and external validation. Guided by the ob-
tained GRIND variables, new compounds were 
designed by structural modification of the 

group at the N1 position, which significant-
ly increases activity;

•	 functional groups such as the nitro group 
at the C4 position of the benzene ring (S-
98), ethyl (S-24) and methoxy group (S-72) 
at the C4 position of the butane chain show 
moderate increase in activity.

After analysing most active compounds from 
N-series these structural characteristics were 
identified as important for high activity:

•	 bromine at the C4 position of benzene (N-7, 
N-20, N-59, N-80);

•	 methylpyridinium ion at position C4 of the 
condensed cycle (N-25);

•	 methyl group at the C4 position of the bu-
tane chain (N-29, N-79);

•	 methylthiazole instead of methylimid-
azole at the C4 position of the condensed 
cycle (var 624); methylthiazole with bro-
mine at the C4 position of benzene slightly 
increases activity compared to methylthi-
azole alone (N-39 and N-80);

•	 switch of triazolopyrazine bicycle to pyra-
zolopyrazine (N-46);

•	 formamide group at the C2 position of the 
butane chain, provided that the C4 posi-
tion of benzene is chlorine instead of flu-
orine; formamide alone does not affect the 
activity so much (N-69 and N-72);

•	 3,5-dinitrophenyl group at the C7 position 
of the triazolopyrazine (N-78);

•	 introduction of functional groups such as 
triazole ring (N-3), difluorochlorometh-
yl (N-5, N-38), dibromomethyl (N-79), di-
chloromethyl (N-63), hydroxymethyl (N-
50), fluorine instead of trifluoromethyl 
group (N -49, N-50), 2-buten-1-yl (N-20) 
and ethyl (N-30), leads to a moderate in-
crease in inhibitory activity.

leading molecules sitagliptin and compound 
L45. Groups that favourably influenced the ac-
tivity (electronegative sternal group at the C4 
position of benzene, donor of hydrogen bonds 
in the condensed cycle, amino group at the C3 
position of the butane chain) were left in the 
structure. As a result, 35 new compounds with 
better predicted inhibitory activity compared 
to sitagliptin, were designed. The modifica-
tions that led to an increase in inhibitory ac-
tivity were the introduction of a methyl group, 
the substitution of one/two fluorine atoms in 
the trifluoromethyl group with chlorine, the 
introduction of hydroxymethyl, ureido groups, 
changes in the condensed cycle and the intro-
duction of thiazole instead of imidazole in the 
structure of L45. Results from this study can 
be used as a basis for further structural mod-
ifications and optimisation of designed com-
pounds as new potential DPP-4 inhibitors.
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