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Abstract
Background/Aim: One of the most common neurological conditions 
that results in dementia is Alzheimer disease. The current treatment op-
tions for Alzheimer disease include acetylcholinesterase (AChE) and 
-methyl-D-aspartate (NMDA) inhibitors, but there is a significant need for 
further research. There are numerous molecular targets that can be used 
to treat Alzheimer disease. Aim of this study was to analyse β-secretase as 
a target because of its documented involvement in the pathophysiology of 
the illness. Additionally, prior research investigated the possible therapeu-
tic effects of derivatives based on guanidine.
Methods: A total of 146 well-known β-secretase inhibitors were collected 
from various literature sources. To forecast these compounds' inhibito-
ry potency, models were created using ligand-based drug design (LBDD) 
and quantitative structure-activity relationship (3D-QSAR) investigations. 
Six models were generated and based on the statistical parameters q² 
(cross-validated R²) and standard error of estimate (SEE), the 6th model 
was selected for further investigation.
Results: A cross-validated R2 (R2cv) value of 0.764 was obtained util-
ising the leave-one-out (LOO) method in the partial least squares (PLS) 
analysis for atom-based QSAR. With an F ratio of 337.2, a SEE of 0.2306 
and an R2 value of 0.9516, the non-cross-validated analysis produced 
these results. Field-based QSAR had an R2cv value of 0.7353, while the 
non-cross-validated analysis produced an F ratio of 283.1, an R2 value of 
0.9428 and a SEE of 0.2505. Predicting the inhibitory potency of novel 
compounds against β-secretase was done using the contour map anal-
ysis. Atom-based and field-based 3D-QSAR models projected the pIC50 

value of the proposed compound P1 to be 8.41 and 8.32, respectively.
Conclusion: The findings of this study provide valuable insights into 
the design of new molecules targeting β-secretase in Alzheimer disease. 
The predictive models and the newly designed molecules, particularly 
molecule P1, could serve as potential leads for the development of new 
chemical entities as anti-Alzheimer agents. These results may significantly 
contribute to the ongoing efforts to develop more effective treatments for 
Alzheimer disease.

Key words: Alzheimer disease; Pharmaceutical preparations; Quantita-
tive structure-activity relationship; Amyloid precursor protein secretases, 
antagonists and inhibitors; Guanidine.
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Introduction

Alzheimer disease (AD) is a neurodegenerative dis-
ease that primarily affects the elderly population 
worldwide. It is progressive and currently incurable. 
Short-term memory loss, speech impairment, de-
creased motor skills, poor coordination and dimin-
ished cognitive abilities are some of the symptoms of 
this most prevalent type of dementia.1

Approximately 6.7 million Americans 65 and old-
er currently suffer from Alzheimer dementia and 
unless there are major medical advancements that 
could prevent, slow, or cure the disease, this num-
ber is expected to rise to 13.8 million by 2060.2 A 
persistent deterioration in short-term memory and 
cognitive abilities is one of the early signs of AD, 
which is usually accompanied by behavioural abnor-
malities like depression and aggression.3 The cho-
linergic, tau and amyloid hypotheses are among the 
theories put forth to explain the pathophysiology of 
AD. While these theories provide insights into the 
disease’s progression, none fully explain its under-
lying cause.4 However, they have been instrumental 
in developing potential treatment strategies aimed at 
slowing AD progression.5 Among these hypotheses, 
the amyloid hypothesis is the most prominent. It sug-
gests that the buildup of amyloid-β (Aβ) peptides in 
the brain is what causes AD. The main components 
of amyloid plaques, these peptides are usually 39–43 
amino acids long and are thought to start a neuro-
toxic cascade that eventually leads to dementia and 
neuronal death. Two aspartic proteases, β-secretase 
(BACE1) and γ-secretase, sequentially cleave the 
membrane-bound amyloid precursor protein (APP) 
to produce Aβ peptides. The first cleavage of APP, 
which results in the membrane-bound carboxy-ter-
minal fragment (C99) and the secreted amino-termi-
nal fragment (sAPPβ), is caused by BACE1. Toxic Aβ 
peptides are created when γ-secretase further cleaves 
the C99 fragment.4-6

Genetic alterations in APP have been associated with 
both early-onset AD and protection against the dis-
ease, underscoring the importance of the amyloid 
pathway and Aβ production in AD pathogenesis. In 
order to stop or decrease Aβ production and, con-
sequently, treat AD, BACE1 inhibition has become 
a viable therapeutic approach.7, 8 Comprehending the 
mechanism of interaction between β-secretase and 
its inhibitors is essential for creating small molecule 
inhibitors that can efficiently target this enzyme. 
Numerous experimentally determined three-dimen-
sional structures of β-secretase, both by itself and in 
combination with different inhibitors (like Lol-Alq-
based peptidomimetic inhibitors), offer important in-
formation for drug discovery efforts that aim to stop 

β-secretase activity and thereby slow the progression 
of AD.9-12

Lead compound discovery and chemical analogue 
optimisation for a range of biological activities have 
greatly benefited from recent developments in quan-
titative structure-activity relationship (3D QSAR) 
methodologies. To identify the structural features 
critical for enhanced activity against Β-secretase, 
3D-QSAR studies were performed on a set of 146 
guanidine-containing compounds. The well-known 
3D QSAR techniques include comparative molecu-
lar field analysis (CoMFA)13 and comparative molec-
ular similarity indices analysis (CoMSIA),14 CoMFA 
focuses on the steric and electrostatic fields, while 
CoMSIA expands the analysis to include hydrogen 
bond acceptor, hydrogen bond donor and hydropho-
bic fields. Field-based QSAR techniques, such as 
those used in CoMSIA, utilise these five descrip-
tors, while atom-based QSAR methods cover addi-
tional descriptors, including hydrogen bond donor, 
hydrophobic, negative ionic, positive ionic and elec-
tron-withdrawing fields. In the present study, both 
field-based and atom-based QSAR techniques were 
employed to create a common 3D lattice around these 
molecules. This lattice enabled the calculation of ste-
ric and electrostatic interaction energies, as well as 
Gaussian-based similarity functions.15 To elucidate 
the correlation between the structure of guanidine 
derivatives and their biological activity, initially, 146 
guanidine-based derivatives with known β-secretase 
inhibitory activity were collected to construct the 
3D QSAR models. The application of Lennard-Jones 
and Gaussian-based approaches provided insights 
into the contributions of both favourable and unfa-
vourable regions to the compounds’ biological activi-
ty.16, 17 Utilising this knowledge, a novel molecule and 
predicted its potential as a β-secretase inhibitor was 
designed.

Methods

Data collection
To investigate potential BACE-1 inhibitors, a 
dataset of 146 compounds containing a common 
guanidine fragment (1-129) and its bioisostere 
acetimidic acid and acetamide fragment (130-
146) was curated from the ChEMBL database. 
These inhibitors exhibited potent activity with 
IC50 values ranging from 8 to 5500 nM. The exper-
imental IC50 values were converted to their cor-
responding negative logarithmic values (pIC50) 
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Table 1: Chemical structure of selected guanidine-based derivatives and its BACE-1 inhibitory potency

SN

1

3

5

2

4

6

500

600

600

600

600

700

SNIC50 IC50 Chemical structure Chemical structure

using the formula pIC50 = 9 - log10(IC50) and all 
compounds with pIC50 values within this range 
were included in the study, as detailed in Table 1. 
The 2D structures of these compounds were ini-
tially checked using ChemDraw which were ob-
tained from ChEMBL database. Subsequently, the 
geometry of each molecule was optimised using 
the LigPrep module in Schrodinger Maestro soft-
ware.15, 18 The preparation parameters included 
the use of the OPLS 2005 force field, consider-
ation of all possible ionisation states at physiolog-

ical pH, generation of potential tautomers, main-
tenance of original stereochemistry based on the 
number of chiral centres and generation of one 
low-energy ring conformation per ligand.19 These 
prepared molecules were then utilised for the de-
velopment of 3D-QSAR models. The 3D-QSAR cal-
culations, based on Gaussian distributions, were 
performed for all compounds using Schrodinger 
Maestro. The details of the training and test set 
molecules, along with their experimental IC50 val-
ues, are presented in Table 1.
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Alignment procedure
The alignment of molecules is a critical step in 
the development of 3D-QSAR models (Figure 1). 
For this study, molecule 73, identified as one of 
the most active compounds and characterised by 
its lowest energy conformation, was selected as 

the reference structure. All other molecules in 
the dataset were aligned to this reference mole-
cule to ensure consistency in the 3D spatial ar-
rangement, which is essential for accurate QSAR 
model generation.  

Figure 1: Common core-based alignment using highly active molecule 73; a) Non-aligned molecules; B) Aligned molecules;

SN: serial number;
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Field- and atom-based 3D-QSAR model 
energy calculations
The 3D-QSAR tool in Schrödinger Maestro soft-
ware was used to perform 3D-QSAR analysis us-
ing both field-based and atom-based techniques. 
The 3D-QSAR technique constructs predictive 
models by correlating the biological activities 
of aligned molecules with their 3D structural 
characteristics. The field-based QSAR model,20 
calculates interaction energies based on steric, 
electrostatic, hydrophobic, hydrogen bond do-
nor (HBD) and hydrogen bond acceptor (HBA) 
potential fields, utilising Gaussian functions for 
these calculations. This model is alignment-de-
pendent, meaning that the molecular field inter-
action energy terms are statistically correlated 
with biological activities or responses through 
multivariate analyses. During the construction 
of field-based models, the steric and electrostatic 
force fields were constrained to 30.0 kcal/mol. 

On the other hand, the atom-based QSAR 22 meth-
od depicts every molecule as a group of overlap-
ping van der Waals spheres. Each atom and thus 
each sphere, is classified according to certain 
criteria: atoms with a negative ionic charge are 
classified as negative ionic (N); atoms with a pos-
itive ionic charge are classified as positive ionic 
(P); non-ionic nitrogen and oxygen are classified 
as electron-withdrawing (W); hydrogens bonded 
to polar atoms are defined as hydrogen bond do-
nors (D); carbons, halogens and C–H hydrogens 
are defined as hydrophobic/non-polar (H); and 
all other atoms are classified as miscellaneous 
(X). When using atom-based QSAR, the regions of 
interest are highlighted using color-coded cubes, 
with blue and red representing different types of 
interactions.

Partial least square (PLS) analysis
In the PLS regression analysis used to generate 
the 3D-QSAR models, pIC50 values served as the 
dependent variables, while field and atom inten-
sities were employed as independent variables 
(descriptors).

Workflow for 3D-QSAR model generation
The generation of 3D-QSAR models requires the 
proper alignment of all molecules. To achieve 
this, guanidine analogues were processed to 
obtain their lowest energy conformations using 
LigPrep. The molecules were aligned based on a 
highly active reference compound. Ultimately, 
the lowest energy conformations of 73 molecules 

were selected for the development of Field- and 
Atom-based 3D-QSAR models. Figure 2 shows 
how the 3D-QSAR model generation process is 
carried out.

Figure 2: Workflow for 3D-QSAR model generation

Results

3D-QSAR
The 3D-QSAR analysis, encompassing both field-
based and atom-based approaches, was conduct-
ed on 146 guanidine-containing inhibitors of the 
BACE-1 enzyme. The biological activities of these 
146 compounds are presented in Table 1, with 
IC50 values ranging from 8 to 5500 nM. As indi-
cated in Table 2, the Predicated activity of the 
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models was assessed by transforming the in vitro 
IC50 values to equivalent pIC50 (–log IC50) values. 
3D-QSAR models were created using the PLS ap-
proach, with the pIC50 values acting as dependent 

Table 2: Experimental and predicted pIC50 values and prediction error for training and test sets

SN
Field based QSAR Atom based QSAR

QSAR Set Experimental 
pIC50

Predicted 
pIC50

Predicted 
activity

Prediction 
error

Prediction 
error

1

2

3

4

6

8

9

10

12

13

14

15

16

17

20

21

23

24

25

27

28

29

30

32

33

34

35

36

39

40

41

43

44

46

47

48

49

50

51

54

56

59

60

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

6.301

6.222

6.222

6.222

6.155

6.097

6.046

6.046

5.959

5.921

5.921

5.886

5.886

5.886

5.854

5.854

5.824

5.796

5.796

5.745

5.745

5.721

5.699

5.523

5.456

5.432

5.337

6.854

6.585

6.553

6.229

6.167

6.125

5.812

5.810

5.724

5.432

5.161

5.081

7.328

7.523

7.398

7.301

6.014

6.020

5.931

5.941

6.054

5.959

5.955

6.017

5.965

6.033

5.988

5.946

5.868

5.918

5.909

5.896

5.924

6.009

5.902

6.000

5.882

5.755

5.462

5.468

5.515

5.372

5.374

6.546

6.480

6.557

6.073

5.969

6.084

6.202

6.119

5.977

5.372

5.299

5.454

7.772

7.327

7.373

7.313

6.002

5.971

5.971

5.925

5.984

5.902

5.910

5.994

5.956

6.083

5.884

5.882

5.858

5.920

5.863

5.858

5.897

5.949

5.873

6.015

5.978

5.780

5.591

5.591

5.570

5.491

5.478

6.460

6.457

6.489

5.982

5.988

6.093

6.052

6.053

5.882

5.491

5.327

5.460

7.511

7.119

7.206

7.108

-0.299

-0.251

-0.251

-0.296

-0.171

-0.195

-0.136

-0.052

-0.003

0.162

-0.036

-0.004

-0.028

0.034

0.010

0.004

0.073

0.153

0.077

0.271

0.234

0.059

-0.108

0.068

0.114

0.059

0.140

-0.394

-0.128

-0.064

-0.247

-0.179

-0.032

0.240

0.244

0.158

0.059

0.165

0.379

0.183

-0.404

-0.192

-0.193

-0.287

-0.202

-0.291

-0.281

-0.101

-0.138

-0.090

-0.028

0.006

0.112

0.068

0.060

-0.018

0.031

0.055

0.042

0.100

0.213

0.106

0.255

0.138

0.034

-0.237

-0.055

0.059

-0.060

0.037

-0.308

-0.105

0.004

-0.157

-0.198

-0.041

0.389

0.309

0.254

-0.060

0.137

0.373

0.444

-0.195

-0.025

0.011

variables and the anticipated values acting as in-
dependent variables. As shown in Tables 3 and 4, 
the models’ q2 values were used to evaluate their 
predictive power.
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62

63

64

65

66

67

68

69

70

72

73

74

75

77

78

79

80

81

82

84

85

86

87

89

90

91

92

93

94

95

96

98

99

100

101

102

103

106

107

108

109

114

115

116

117

118

121

122

123

124

125

126

127

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

7.222

7.222

7.155

6.886

6.620

6.602

6.201

5.572

5.444

4.420

8.097

8.000

8.000

7.824

7.824

7.796

7.699

7.699

7.699

7.699

7.699

7.523

7.523

7.523

7.523

7.523

7.398

7.398

7.398

7.398

7.301

7.155

7.155

7.097

7.097

7.097

7.097

7.000

6.921

6.854

6.745

6.699

6.420

5.796

5.699

5.229

4.469

4.456

4.444

4.114

4.086

4.004

3.886

7.190

7.360

6.921

7.265

6.828

7.002

6.653

5.663

5.590

4.899

7.350

8.024

7.681

7.772

7.503

7.639

7.760

7.822

7.474

7.499

7.665

7.372

7.363

7.386

7.327

7.466

7.418

7.135

7.417

7.349

7.404

7.082

7.398

7.120

7.151

7.252

7.155

7.001

7.080

7.163

7.123

6.195

6.743

6.005

4.957

4.938

4.404

4.392

4.254

3.739

4.795

4.542

3.762

-0.032

0.138

-0.234

0.379

0.208

0.400

0.453

0.091

0.146

0.479

-0.747

0.024

-0.319

-0.052

-0.321

-0.157

0.061

0.123

-0.225

-0.200

-0.034

-0.151

-0.159

-0.137

-0.196

-0.057

0.020

-0.263

0.019

-0.049

0.103

-0.073

0.243

0.023

0.055

0.155

0.058

0.001

0.160

0.309

0.378

-0.504

0.323

0.209

-0.742

-0.291

-0.065

-0.064

-0.189

-0.375

0.709

0.537

-0.124

7.021

7.103

6.830

7.067

6.531

7.089

6.575

5.504

5.364

4.484

7.698

8.209

7.964

7.733

7.543

7.864

8.003

8.013

7.754

7.811

7.677

7.672

7.275

7.362

7.435

7.403

7.344

7.137

7.256

7.308

7.399

7.117

7.486

7.171

7.153

7.224

7.095

7.029

7.128

7.104

7.005

6.188

6.674

6.117

5.032

4.977

4.555

4.236

4.309

3.868

4.736

4.547

3.910

-0.201

-0.119

-0.325

0.181

-0.089

0.486

0.374

-0.068

-0.079

0.064

-0.399

0.209

-0.036

-0.091

-0.281

0.068

0.304

0.314

0.055

0.113

-0.022

0.150

-0.248

-0.161

-0.088

-0.120

-0.054

-0.261

-0.142

-0.090

0.098

-0.038

0.331

0.074

0.056

0.127

-0.002

0.029

0.207

0.251

0.260

-0.511

0.254

0.321

-0.667

-0.252

0.087

-0.220

-0.135

-0.245

0.650

0.543

0.024
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7.032
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5.721
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5.585

5.301

5.260

6.222

6.155

6.000

5.886

5.886

5.854

5.770

5.699

6.824
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6.032

4.222
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7.398

7.301
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8.000
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7.378

7.378
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7.014
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6.953
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5.747
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-0.216
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-0.284

0.205

0.203

-0.118

-0.345

-0.041

0.029

0.113

0.093

0.090

-0.190

-0.684

-0.283

-0.747

0.558

0.879

-1.292

-0.201

-0.068

-0.100

0.077

1.959

-0.458

-0.045

0.022

0.007

-0.032

0.198

0.521

0.655

1.678

-0.905

-0.051

0.311

0.881

-0.317

0.709

0.235

0.463

3.924

6.759

5.901

5.932

5.988

5.874

6.296
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5.798

5.707

5.542
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5.440

5.467

6.028
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5.884

5.834

5.892

6.023
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5.570

6.084

6.347

5.458

6.635

5.729
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7.184

7.136
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7.229
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7.688

7.699

7.624

7.187
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6.898

6.936

7.362

6.135
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4.946

4.674

5.620

6.661

5.711

5.918

0.266

-0.272

-0.273

-0.188
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0.349
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0.028
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-0.078
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0.207

-0.194
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0.147
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-0.740
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0.604

1.507

-1.388
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-0.387

-0.358

-0.072

1.810

-0.312
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0.101

-0.035

0.052

0.108

0.466

0.608

1.655

-0.962

-0.121

0.409

0.953

-0.176

0.891

0.255

0.634

SN: serial number;
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Field-based 3D-QSAR model
The initial field-based model was created to eval-
uate the molecules’ steric, electrostatic, hydro-
phobic, HBD and HBA characteristics related to 
their anti-Alzheimer action. Table 3 presents the 
statistical results obtained from this field-based 
model. Figure 6A illustrates a scatter plot of the 
field-based model, showing that nearly all mole-
cules fall within the expected range, indicating 
the model’s predictive capability. The steric, elec-
trostatic, HBA, HBD and hydrophobic strengths 
of the training set corresponded using partial 
least squares (PLS) regression using six factors to 
create the field-based 3D-QSAR model. Using the 
leave-one-out (LOO) cross-validation approach, 
the model obtained a R²cv value of 0.7353. The 
non-cross-validation analysis produced a R² value 
of 0.9428, with a F ratio of 283.1 and a standard er-
ror of the value of 0.2505. This model’s steric and 
electrostatic contributions were 0.387 and 0.072, 
accordingly, suggesting that steric interactions are 
more important in protein–ligand binding than 
electrostatic interactions. Table 3 provides spe-
cifics on the percentage contributions of the elec-
trostatic and steric field strengths. Expected pIC50 
values for 36 testing-set inhibitors were computed 
for model validation. The model appears to have 
a reasonably high predictive capacity, as shown 

Table 3: Partial least squares (PLS) regression using data sum-
mary on the percentage contributions of the electrostatic and 
steric field strengths

Statistical parameters Field-based QSAR

SD

R²

R²cv

R² scramble

Q2

Stability

F

P

RMSE

Pearson-r

Filed contributions
Gaussian steric

Gaussian electrostatic

Gaussian hydrophobic

Gaussian H-bond acceptor

Gaussian H-bond donor

0.2505

0.9428

0.7353

0.4028

0.6155

0.8400

283.100

1.23E-61

0.6300

0.7925

0.387

0.072

0.254

0.180

0.107

Figure 3: Contour maps obtained for the best Gaussian based 3D QSAR model; A. Steric; B. Electrostatic; C. Hydrophobic; D. Hydrogen 
bond acceptor; E. Hydrogen bond donor;

by the predictive correlation coefficient (q2) of 
0.6155.). Feld-based QSAR model generated con-
tour maps are showed in Figure 3A-E.

SD: standard deviation; RMSE: root mean squared error;
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Table 4: Partial least squares (PLS) data summary of the contri-
butions of the six distinct field intensities

Statistical parameters Field-based QSAR

SD

R²

R² cv

R² scamble

Q2

Stability

F

P

RMSE

Pearson-r

Field contribution
Gaussian hydrophobic/ non-polar

Electron withdrawing

Gaussian H-bond donor

Other

0.2306

0.9516

0.7640

0.5123

0.5551

0.8530

337.20

2.48E-65

0.6800

0.7519

0.678

0.238

0.051

0.033

Figure 4: Graphical representation of contours generated using the three-dimensional QSAR model on the most active compound 
(compound 73). Blue cubes represent favourable regions for the activity; red cubes represent unfavourable region for the activity. A. 
Hydrophobic/non-polar; B. Electron withdrawing; C. Hydrogen bond donor;

Atom-based 3D QSAR model
Using PLS regression with six factors, an at-
om-based QSAR model was developed by cor-
relating the biological activity with three key 
fields: hydrophobicity, hydrogen bond donor 
(HBD) and electron-withdrawing properties. The 
model obtained an R²cv value of 0.764 using the 
leave-one-out (LOO) cross-validation method. 
The non-cross-validated examination produced 
an R² value of 0.9516, a standard error of esti-
mate of 0.2306 and an F ratio of 337.2, indicat-
ing a strong model. Table 4 presents the statis-
tical analysis of the model. The contributions of 
the hydrophobic, HBD and electron-withdrawing 
fields were 0.678, 0.051 and 0.238, respectively. 

The higher contribution of the hydrophobic field 
(0.678) relative to the electron-withdrawing and 
HBD fields suggests that hydrophobic interac-
tions are more critical for protein-ligand bind-
ing in this context. The field-based QSAR model 
provided similar contributions to the produced 
model. Table 1 shows the predicted IC50 values for 
the compounds, while Table 4 describes the con-
tributions of the six distinct field intensities. At-
om-based QSAR model generated contour maps 
are shown in figure 4A-C.

Validation of field- and atom-based 
3D-QSAR models
Figures 5A-B show predicted versus true binding 
affinities for the training and test set inhibitors, 
corresponding to the field- and atom-based 3D 
QSAR models. 

Structure activity relationship (SAR)
The field- and atom-based QSAR analysis provid-
ed robust statistical data to elucidate the struc-
ture-activity relationship (SAR). This SAR study 
consists of four components (Figure 6): the first 
part is a ring bridge connected to the second part, 
which contains a heterocyclic ring; the other end 
is connected to the third part, a cyclic or open-
chain guanidine or its bioisostere residue, which 
is further extended by the fourth part, a ring or 
open-chain fragment. Sterically and electrostat-
ically favoured regions were identified on both 
sides of the bridge, with a higher HBA (hydrogen 
bond acceptor) to HBD (hydrogen bond donor) 
ratio, favouring HBA. The hydrophobic region in-
dicates that optimal lipophilicity, necessary for 
activity, shifts towards the hydrophobic region. SD: standard deviation; RMSE: root mean squared error;
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Figure 5: Scatter plots of A) field- and B) atom-based 3D QSAR model

Figure 6: SAR based on 3D-QSAR models like Field and Atom-based QSAR

In consideration of the information acquired so 
far, novel molecules have been developed (Table 5) 
and their pIC50 values have been predicted with 
the aid of field and atom-based QSAR models. Fur-
ther molecular docking studies (MOE 2022.02) 
supported to claim its BACE-1 inhibitory poten-
cy (Table 6 and Figure 7). The designed mole-
cules feature a heterocyclic core structure, with 
a fused ring bridge connected to an additional 
fragment, enhancing their structural complexi-
ty and potential biological activity. A key modi-
fication in these molecules is the replacement of 
the guanidine fragment with bioisosteric groups, 
which are designed to maintain or improve the 
pharmacological properties of the original scaf-

fold. Additionally, it optimises pharmacokinetic 
properties, particularly in alignment with AD-
MET predictions. Notably, the blood-brain barri-
er (BBB) permeability report suggests that this 
modification may enhance the molecule’s abili-
ty to cross the BBB, making it more suitable for 
central nervous system (CNS) applications. Addi-
tionally, the bioisosteric replacement is assumed 
to retain the biological activity of the original 
guanidine-containing structure, ensuring that 
the therapeutic potential of the designed mole-
cules remains intact while potentially improving 
their drug-like properties. These two series of 
molecules demonstrated strong predictive per-
formance against the 3D-QSAR models. Among 
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Table 5: Predicted activities of designed molecules by using field and atom based analysis

Compound
Predicted activities

Field based Atom based
Structure

P1

P2

P3

P4

P5

8.41

8.09

8.08

8.26

8.26

8.32

8.11

8.08

8.15

8.15

	

	

them, the quinolinone series was found to be 
more active than the flavonoid series. After sum-
marising the predictions from all QSAR methods, 
it was discovered that two bulky groups, divided 
by a nitrogen-containing ring and an alkyl spac-
er, have significant impacts on BACE-1 inhibitory 
potency. 

The molecular docking study highlights the 
strong binding potential of the designed mole-
cules, which interacts effectively with key resi-
dues of β-secretase, suggesting its potential as a 
promising inhibitor.
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Figure 7: Molecular docking results; A. 2D representation of P2 binding within the β-secretase active site; B. Barcode visualisation 
of amino acid interaction fingerprints; C. Population distribution of the barcode fingerprint; D. Generated PLIF depicting key residues 
and their interactions;

Figure 8: ADMET plot for predicted molecules

Figure 8 presents an ADMET plot as a two-dimen-
sional chart showing the relationship between 
ADMET_PSA_2D and ADMET_AlogP98. The plot 
includes two sets of ellipses representing the 95 
% and 99 % prediction confidence spaces for the 
blood-brain barrier penetration (BBB) and hu-
man intestinal absorption (HIA) models. Impor-
tantly, the predicted compounds P3 and P5 fall 
within the same ellipse as donepezil, suggest-
ing a similar predictive profile. The other three 
compounds are located in the outermost ellipse, 
aligning with the confidence space associated 
with the QUD-2WJO β-secretase inhibitor.

The molecular docking study of the designed 
molecules (P1–P5) and the active site ligand 
(QUD-2WJO) with the target enzyme β-secre-
tase (PDB ID: 2WJO) was conducted to evaluate 
their binding affinities and interactions within 
the enzyme’s active site. The docking scores, as 
presented in Table 6, indicate that two of the de-
signed molecules exhibited better binding scores 
than the QUD ligand. Figure 7 provides a detailed 
2D representation of protein-ligand interactions, 
highlighting the key active site interactions. Ad-
ditionally, the protein-ligand interaction profiler 
(PLIP) identified critical amino acid residues in-
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volved in these interactions. Among the designed 
molecules, P2 demonstrated significant interac-
tions with β-secretase, forming hydrogen bonds 
and hydrophobic interactions with key residues 
in the active site. Specifically, P2 interacted with 
ASP 228 (A) at a distance of 2.60 Å with a binding 
energy of -1.2 kcal/mol, LYS 224 (A) at 3.44 Å with 
-0.8 kcal/mol, TYR 71 (A) at 3.06 Å with -1.0 kcal/
mol and at 3.76 Å with -0.5 kcal/mol and PHE 108 
(A) at 3.96 Å with -0.5 kcal/mol. These interac-
tions suggest that designed molecules form sta-
ble binding interactions with key residues in the 
active site of β-secretase, potentially contribut-
ing to its inhibitory activity.

Table 6: Docking-derived parameters of the designed deriva-
tives within the binding site of β-secretase

mseq S E_conf E_refinermsd_refine

P1

P2

P3

P4

P5

QUD-2WJO

-7.62

-7.73

-6.27

-7.40

-6.84

-7.57

2.04

1.74

1.07

2.00

1.04

1.35

-23.19

-26.59

62.42

-38.85

63.60

-42.80

-17.64

-22.85

-18.84

-25.54

-22.32

-17.15

S, the score of placements of a compound into 
binding pocket of protein using London dG scoring 
function, rmsd_refine, the root-mean-squared-de-
viation (RMSD) between the heavy atoms of the 
predicted pose (after refinement) and those of 
the crystal structure (before refinement), E_conf, 
conformer energy in kcal/mol, E_refine, the score 
of refinement step of ligand conformer.

In the field-based QSAR model, steric interactions 
are visualised through green and yellow regions. 
Green regions signify areas where the introduc-
tion of bulky substituents is likely to enhance the 
compound’s biological activity. In contrast, yel-
low regions indicate that bulky substituents in 
these areas could diminish the activity. In Figure 
3A, for the highly active molecule (73), green con-
tours are observed near the pyrimidine and imid-
azole rings, suggesting that the addition of bulky 
groups at these sites could potentially increase 
the compound’s activity against the target. In 
contrast, the presence of a yellow contour close 
to the imidazole ring’s oxygen atom indicates that 
the  addition of bulky substituents in this area 

Discussion

may result in a reduction in biological activity. 
Figure 3B shows the electrostatic interactions in 
the field-based QSAR model, which are denoted 
by red and blue regions. Blue regions indicate 
areas where the incorporation of electropositive 
groups could increase the compound’s activity, 
while red regions indicate areas where electro-
negative groups could improve activity. A promi-
nent red contour near the imidazole ring’s oxygen 
atom indicates that electronegative atoms in this 
spot are likely to improve activity.  Furthermore, 
blue contours associated with the pyrimidine 
and pyrazole rings indicate that the presence of 
electropositive groups in these regions could also 
contribute positively to the compound’s biologi-
cal activity. In Figure 3C, hydrophobic interac-
tions are illustrated by grey and yellow contours 
in the hydrophobic plot. Grey areas are where 
hydrophobic groups are not favoured, so intro-
ducing them here might decrease activity. Yellow 
areas are where hydrophobic groups are accom-
modated and expected to enhance the biological 
activity of the compound. Specifically, grey con-
tours around the CH3 group near the pyrazole 
and imidazole rings denote unfavourable regions 
for hydrophobic interactions, while yellow con-
tours on the pyrimidine and pyrazole rings sug-
gest that hydrophobic groups in these areas are 
more favourable and could enhance the activity. 
The hydrogen bond acceptor (HBA) contour maps 
are shown in Figure 3D. Red contours in this map 
pinpoint certain regions in the molecule in which 
the presence of HBA groups is favourable to in-
creasing the compound activity. Whereas magen-
ta highlights regions in the molecule where HBA 
groups may be well accommodated; however, the 
presence of such group in those areas could po-
tentially reduce the activity of the molecule. A 
red contour near the pyrazole ring implies that 
incorporating HBA groups in this subunit could 
lead to increased activity. In contrast, magenta 
contours around the pyrimidine and imidazole 
rings suggest that HBA groups in these positions 
could potentially diminish the activity. Final-
ly, Figure 3E displays the hydrogen bond donor 
(HBD) contours, where areas favourable for HBDs 
are shown in cyan and regions where HBDs are 
unfavourable are depicted in purple. The cyan 
region near the benzene ring indicates that intro-
ducing HBDs in this area could be beneficial for 
the compound’s activity. Conversely, the purple 
contour near the imidazole ring suggests that the 
presence of HBDs in this region might be detri-
mental to the compound’s biological activity.
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Atom-based 3D QSAR model, Figure 4A displays 
the hydrophobic contour maps, where the blue 
cubes represent regions where hydrophobic 
groups are favourable for enhancing biological 
activity. Conversely, the red cubes indicate re-
gions where hydrophobic groups are unfavour-
able and may reduce activity. Notably, the blue 
cubes located on the pyrimidine ring and the 
amino group of the imidazole ring suggest that 
the presence of hydrophobic substituents in 
these areas is likely to be beneficial for activity. 
In contrast, the red cube near the benzene ring 
indicates that hydrophobic groups in this region 
may negatively impact activity. Figure 4B illus-
trates the electron-withdrawing contour maps. 
The blue cubes in this figure indicate regions 
where electron-withdrawing groups, acting as 
hydrogen bond acceptors (HBA), are favourable 
for biological activity. The red cubes, on the other 
hand, mark regions where such groups are unfa-
vourable. Specifically, a blue cube on the pyrazole 
and imidazole rings suggests that electron-with-
drawing groups at these positions could enhance 
activity. In contrast, the red cubes on the pyrim-
idine ring and the amino group of the imidazole 
ring indicate that electron-withdrawing groups 
in these regions may reduce activity. Figure 4C 
presents the hydrogen bond donor (HBD) con-
tour maps. Blue cubes in this figure highlight re-
gions where HBD groups are favourable for bio-
logical activity. Conversely, red cubes represent 
areas where HBD groups are unfavourable and 
could decrease activity. A blue cube on the ami-
no group of the imidazole ring suggests that the 
presence of an HBD group in this location is ad-
vantageous for activity. In contrast, the red cubes 
on the same amino group of the imidazole ring in-
dicate that HBD groups in these regions may be 
detrimental to activity.

The predicted correlation coefficients (r²) for the 
field-based model are 0.9428 and 0.9516, respec-
tively, indicating the atom-based model provides 
better predictive accuracy. A comparison of the 
experimentally observed and predicted IC50 val-
ues for β-secretase inhibitors further demon-
strates that the atom-based model excels in pre-
dicting the activities of both training and test 
molecules. Based on the analysis of the statisti-
cal parameters for the best field and atom-based 
3D-QSAR models, in conclusion, both models 
have good prediction ability and can provide 
some knowledge into the chemical properties of 
the ligands, which may be detrimental to inhibi-
tory processes against β secretase.

In this investigation, a 3D-QSAR study was 
conducted on selected guanidine (or bio-
isostere) derivatives. A total of 146 molecules 
were collected and prepared for the study. The 
first step involved aligning the dataset mol-
ecules after energy minimisation, using the 
highly active and lowest energy conformation 
of molecule 73 as a reference to align all oth-
er molecules in the series. The molecules were 
then divided into a training set and a test set 
in a 75:25 ratio. Field- and atom-based QSAR 
studies were performed and the scatter plots 
showed a strong correlation between experi-
mental and predicted pIC50 values, indicating 
good predictive power for the dataset.

The contour plot analysis helped in under-
standing the structural features required for 
biological activity. The common structure 
consisted of four parts: the first part is a ring 
bridge connected to the second part, which 
contains a heterocyclic ring; the other end is 
connected to the third part, a cyclic or open-
chain guanidine residue, which is extended 
by the fourth part, a ring or open-chain frag-
ment. The regions around the bridge exhibit-
ed sterically and electrostatically favourable 
characteristics, with a higher ratio of HBA to 
HBD, favouring HBA. The hydrophobic region 
indicated that optimal lipophilicity, necessary 
for activity, shifted towards the hydrophobic 
region.

Using the leave-one-out (LOO) cross-validation 
method, the PLS analysis for the atom-based 
QSAR model produced an R²cv value of 0.764, 
a non-cross-validated R² value of 0.9516, a 
standard error of estimate of 0.2306 and an F 
ratio of 337.2. According to the PLS analysis, 
the non-cross-validated R2 value was 0.9428, 
with a standard error of estimate of 0.2505, 
an F ratio of 283.1 and an R2cv value of 0.7353 
for the field-based QSAR model obtained using 
the LOO cross-validation method. Using both 
models, we predicted the activity of newly de-
signed molecules, which showed pIC50 values 
ranging from 8.41 to 7.99 for the field-based 
QSAR model and from 8.32 to 8.01 for the at-
om-based QSAR model. Additionally molecu-
lar docking indicate that designed molecules 
exhibit interactions with crucial amino acids 
in the active site of β-secretase, reinforcing its 

Conclusion
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potential for further investigation as a β-secre-
tase inhibitor. These findings lead us to the 
conclusion that both models are highly predic-
tive and can be applied successfully in future 
studies.

This was in silico study and did not directly in-
volve with human participants or experimental 
animals. Therefore, the ethics approval was not 
required in this paper.
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