

Recent Advances in Natural Hydrolates for Burn Care: Anti-Inflammatory, Antioxidant and Antimicrobial Perspectives

Polina P Skovorodko,¹ Mikhail A Parshenkov,¹ Ivan M Ignatichiev,¹ Togrul Abyshev,¹ Pasiyat I Alypkacheva,² Ekaterina S Bakaeva,¹ Eva R Borga,¹ Anna I Tsibisova,¹ Nino B Bekveriia,¹ Manas S Simonyan,¹ Salikhat Abdulatipova¹

Abstract

Burn injuries represent a significant global health burden, characterised by complex pathophysiology that extends far beyond the initial thermal insult. The healing process is profoundly influenced by a cascade of molecular and cellular events, including acute and chronic inflammation, oxidative stress and microbial colonisation. These interconnected challenges frequently lead to severe complications such as delayed wound closure, impaired tissue regeneration and pathological scarring. A critical and escalating issue in contemporary burn care is the pervasive rise of antibiotic resistance, which severely compromises treatment efficacy, prolongs hospital stays and significantly increases both patient morbidity and mortality. This literature review critically examines the multifaceted aspects of burn wound healing, focusing on the intricate interplay between inflammation, oxidative stress and infection. It delves into the molecular mechanisms underlying these processes, including the dual role of reactive oxygen species (ROS) in cellular signalling and tissue damage and the dysregulation of key pathways that perpetuate chronic inflammation and promote fibrosis. The alarming rise of multidrug-resistant pathogens (eg *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, etc) further exacerbates these challenges, highlighting the urgent need for novel therapeutic strategies. The limitations of conventional therapies in precisely modulating these complex biological processes and effectively countering resistant microorganisms are thoroughly discussed. Special attention is given to the therapeutic potential of natural compounds, particularly hydrolates, as innovative and complementary interventions. Current evidence in specific literature demonstrates their anti-inflammatory, antioxidant and antimicrobial properties, supporting their capacity to create a favourable healing microenvironment and mitigate the impact of antibiotic resistance. By elucidating the mechanisms through which these botanical extracts may influence wound healing, this review seeks to identify critical knowledge gaps and provide a robust foundation for future research into integrative approaches that can optimise burn wound outcomes and address urgent clinical needs.

Key words: Burns; Inflammation; Drug resistance, microbial; Hydrolates; Wound healing; Natural compounds; Oxidative stress.

1. FSAEI HE I.M. Sechenov First MSMU of MOH of Russia (Sechenovskiy University), Moscow, Russia
2. Department of General and Social Psychology, Dagestan State University, Makhachkala, Russia.

Citation: —

Skovorodko PP, Parshenkov MA, Ignatichiev IM, Abyshev T, Alypkacheva PI, Bakaeva ES, et al. Recent advances in natural hydrolates for burn care: anti-inflammatory, antioxidant and antimicrobial perspectives. Scr Med. 2025 Nov-Dec;56(6):1201-16.

Corresponding author:

MIKHAIL PARSHENKOV
E: misjakj@gmail.com
T: +7(919) 7201-069

Received: 9 August 2025

Revision received: 11 September 2025

Accepted: 11 September 2025

Introduction

Burn injury represents a major global health problem, imposing a profound physical, psychological and socioeconomic burden on millions each year.¹ The catastrophic wildfires in Los Angeles in 2025, which resulted in a surge of severe burn cases, underscored the critical importance of advancing burn care and the broader implications for public health systems worldwide.² The complex pathophysiology of burn wounds arises from cascading inflammatory responses, oxidative stress and impaired healing: it often culminates in infection, delayed closure, pathological scarring and, in severe cases, multi-organ failure and psychosomatic complications.³ Current clinical practice relies on advanced surgical interventions and established supportive therapies, yet infection control and the accelerating threat of antimicrobial resistance remain formidable challenges.⁴ These realities emphasise the urgent need for innovative, biologically based strategies that not only mitigate excessive inflammation and address the global crisis of antimicrobial resistance but also actively promote effective re-epithelialisation and optimal skin tissue regeneration, ultimately improving long-term outcomes for burn patients.

One of the most alarming threats in modern burn care is the growing crisis of antibiotic resistance. The widespread and often indiscriminate use of antibiotics, although crucial for the prevention and treatment of infections in burn patients, inadvertently favours the emergence and spread of multidrug-resistant (MDR) bacterial strains.⁵ This phenomenon renders conventional antimicrobial therapy ineffective, resulting in prolonged hospital stays, increased treatment costs, increased incidence of adverse events (ie sepsis) and increased mortality.⁶ Environmental studies are a clear illustration of this global problem: for example, a study by Kristiansson et al demonstrated alarmingly high concentrations of active pharmaceutical ingredients, including antibiotics, in wastewater from pharmaceutical plants in Hyderabad, India, with levels in the Musi River downstream exceeding those found in the blood of treated patients.⁷ This environmental reservoir of resistance genes not only fuels the clinical burden of antimicrobial resistance but also represents a growing threat to global health and the well-being of future generations.

In response to these growing challenges, clinical guidelines from organisations like the American Burn Association and the World Health Organisation offer standard protocols for the management of burns that emphasise early excision, wound closure and infection prevention.⁸⁻¹¹ However, these recommendations primarily focus on traditional pharmacological and surgical interventions, often leaving a critical gap in addressing the nuanced modulation of the wound microenvironment and the ongoing threat of resistant pathogens. The limitations of conventional therapies combined with the increasing prevalence of MDR organisms necessitate the search for new, complementary therapeutic strategies.

In the context of this topic, natural compounds with inherent antimicrobial, anti-inflammatory and regenerative properties are of particular interest to many researchers.^{12, 13} Among them, hydrolates (or "hydrosol" can also be found in specialised literature) – aqueous by-products of distillation of essential oils of medicinal plants, represent a promising but still insufficiently studied area. Unlike essential oils, hydrolates have a milder chemical profile, making them potentially safer for topical application on damaged skin, while retaining a complex array of water-soluble bioactive compounds.¹⁴ Preliminary studies suggest that these plant extracts may modulate inflammatory mediators, exhibit antioxidant activity and have direct antimicrobial effects, offering a mild but effective means of supporting the healing process and combating microbial colonisation.^{15, 16}

Given the multifaceted challenges of burn wound management, in particular the dual burdens of inflammation and increasing antibiotic resistance, a comprehensive understanding of alternative therapies is essential. This review aimed to critically assess the current landscape of burn wound healing, with a particular focus on the growing problem of antibiotic resistance and the potential of plant-derived hydrolates as innovative therapeutic tools. By summarising the available evidence and highlighting knowledge gaps, we aim to lay the groundwork for future research into integrative strategies that can optimise burn wound outcomes, mitigate complications and address the urgent need for novel antimicrobial and anti-inflammatory agents.

Methods

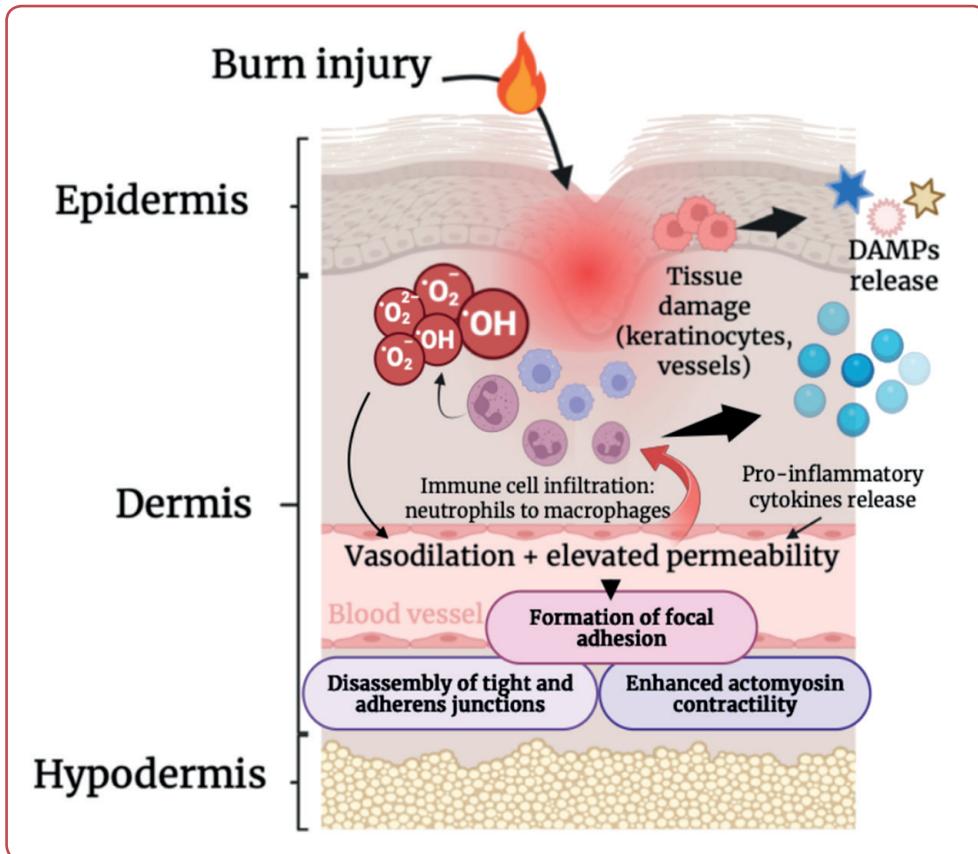
A comprehensive literature search was systematically performed across *PubMed*, *Scopus*, *Web of Science* and *Google Scholar*. The search was performed using a combination of keywords and Medical Subject Headings (MeSH) terms, tailored to each database's indexing system. Key search terms included, but were not limited to: "burn injury", "wound healing", "inflammation", "oxidative stress", "antibiotic resistance", "multidrug-resistant bacteria", "hydrolates", "hydro-sols", "herbal medicine", "plant extracts", "antimicrobial activity", "antioxidant properties" and "clinical applications".

Only peer-reviewed original research, systematic reviews, meta-analyses and clinical guidelines published in English that directly addressed the pathophysiology of burn wounds, antimicrobial resistance, or the therapeutic role of natural compounds were included. Data were extracted by three independent researchers.

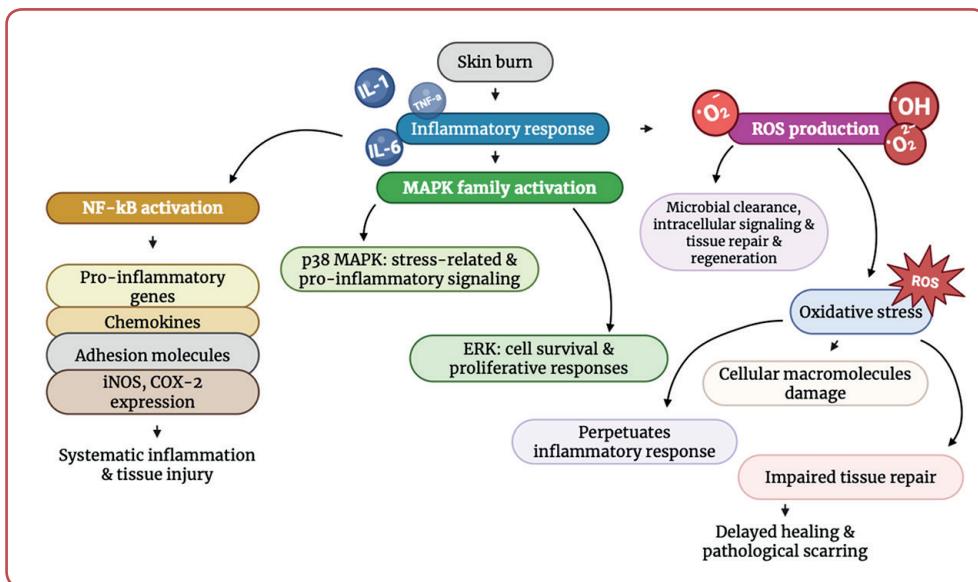
Molecular pathways of burn wound healing

Burn wound healing is a regulated biological process, involving a complex interplay of cellular and molecular events. This intricate cascade can be broadly divided into three overlapping phases: inflammation, proliferation and maturation (commonly referred to as the remodelling phase in specialised literature).¹⁷ Each of these phases is meticulously regulated by a myriad of signalling pathways, growth factors, cytokines and extracellular matrix components. Even minor dysregulation at any stage can cause molecular dysfunction, delayed healing, chronic wounds, or pathological scarring. In this section, we examine the three key phases of burn wound repair through their molecular and cellular mechanisms.

The inflammatory phase. The initial response to burn injury is an acute inflammatory phase that plays a central role in clearing cellular debris, controlling microbial invasion and initiating tissue repair (Figure 1). This stage is characterised by vasodilation, increased vascular permeability and rapid recruitment of immune cells


to the wound site (primarily neutrophils and macrophages).¹⁸ As emphasised by Chen et al, the inflammatory response is indispensable for wound debridement and pathogen control; however, when it becomes excessive or prolonged, it contributes to collateral tissue damage, delays epithelialisation and can trigger systemic inflammatory response syndrome (SIRS).¹⁹

At the molecular level, early inflammation is initiated and regulated by pro-inflammatory cytokines, including interleukin-1 (IL-1), IL-6, IL-8 and tumour necrosis factor-alpha (TNF- α), which act as key mediators of leukocyte recruitment and activation.²⁰⁻²² These cytokines activate major intracellular signalling cascades: most notably the NF- κ B (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) pathways.²³


NF- κ B is a core regulator of the inflammatory response: once stimulated by TNF- α , IL-1 β , or pathogen-associated molecular patterns (MAMP), it translocates into the nucleus and induces the expression of pro-inflammatory genes, chemokines, adhesion molecules and inflammatory enzymes like iNOS and COX-2 (Figure 2). Persistent NF- κ B activation in burn wounds has been directly linked to systemic inflammation and tissue injury.²⁴

In parallel, the MAPK family (ERK, JNK and p38) mediates cellular responses to stress. As noted by Johnson et al, p38 MAPK predominantly drives stress-related and pro-inflammatory signalling, whereas ERK activation is often associated with cell survival and proliferative responses.²⁵ This contrast illustrates the context-dependent duality of MAPK signalling in burn injury.

Beyond cytokine-driven pathways, reactive oxygen species (ROS) play a dual role in the inflammatory phase. These highly reactive molecules arise primarily from mitochondrial respiration and enzymatic reactions (eg NADPH oxidase activity and the Fenton reaction), generating superoxide anion (O_2^-), hydrogen peroxide (H_2O_2), hydroxyl radicals (OH^-), nitric oxide (NO^-), peroxynitrites ($ONOO^-$) and hypochlorite (ClO^-), etc.²⁶⁻²⁸ While physiological levels of ROS are crucial for essential cellular processes, including microbial clearance and intracellular signalling pathways vital for tissue repair and regeneration, their excessive accumulation, particularly during ischaemia-reperfusion injury and acute inflammation, leads to a state of oxidative stress.²⁹

Figure 1: Early inflammatory phase of burn wound healing. Thermal injury induces keratinocyte and vascular damage, leading to damage-associated molecular patterns (DAMP) and reactive oxygen species (ROS) release. These signals activate IL-1, IL-6, IL-8 and TNF- α pathways, driving endothelial activation, vasodilation and cytoskeletal remodelling. The resulting permeability promotes neutrophil and macrophage infiltration, initiating debridement and amplifying local inflammation

Figure 2: Key pathways of burn injury: ROS – reactive oxygen species, NF- κ B – nuclear factor kappa-B, MAPK – mitogen-activated protein kinase, ERK – extracellular signal-regulated kinase, iNOS – inducible nitric oxide synthase, COX-2 – cyclooxygenase-2;

Oxidative stress, driven by an imbalance between pro-oxidants and antioxidants, damages cellular macromolecules: cellular lipids, proteins and DNA. This damage perpetuates the inflammatory response and severely impairs tissue repair, leading to delayed healing and pathological scarring (Figure 2).³⁰

In response to this oxidative challenge, the nuclear factor erythroid 2-related factor-2 (Nrf-2) pathway emerges as a pivotal endogenous defence mechanism.³¹ Nrf-2, a core regulator of anti-oxidant and detoxification responses, is activated under conditions of oxidative stress.²⁹ Upon activation, Nrf-2 translocates to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter regions of target genes, upregulating the expression of a battery of cytoprotective enzymes, for example heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase-1 (NQO1) and glutathione S-transferases (GSTs).³² The robust activation of the Nrf-2 pathway has been consistently shown to mitigate oxidative damage, reduce inflammation and promote more efficient tissue regeneration in various models of burn injury.^{33, 34}

The proliferative phase. Following the initial inflammatory response, the wound healing cascade transitions into the proliferative phase, a critical period characterised by interdependent processes including angiogenesis, granulation tissue formation, collagen synthesis and re-epithelialisation. This phase is meticulously regulated by a diverse array of growth factors and cytokines (vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor-beta (TGF- β)).³⁵

Central to the cellular and molecular tools of this phase are several key signalling pathways. The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway serves as a fundamental regulator of cell growth, proliferation, survival and angiogenesis.³⁶ In the context of burn wound healing, activation of this pathway has been shown to significantly promote fibroblast proliferation, enhance collagen synthesis and facilitate endothelial cell migration (all of which are indispensable for robust granulation tissue formation and effective revascularisation).³⁷ However, dysregulation of the PI3K/Akt/mTOR pathway can contribute to pathological scarring, highlighting the importance of its precise control.³⁸

Concurrently, the Wnt/ β -catenin pathway plays a pivotal role in cell proliferation, differentiation and overall tissue regeneration. Interestingly, that in wound healing, Wnt signalling is intricately involved in modulating fibroblast activity, promoting epithelial cell migration and critically, facilitating hair follicle regeneration, thereby contributing to efficient re-epithelialisation and dermal repair.³⁹ Mi et al, in a recent study, showed that activation of the Wnt/ β -catenin pathway promotes fibroblast proliferation and migration, which are critical for wound closure.⁴⁰

Furthermore, transforming growth factor-beta (TGF- β) is a pleiotropic cytokine with multifaceted roles in wound healing.⁴¹ While its presence is essential for physiological collagen synthesis and extracellular matrix deposition, excessive or prolonged TGF- β signalling, particularly through the canonical Smad pathway, is a well-established major contributor to the development of hypertrophic scarring and fibrosis, common and debilitating complications of deep burn injuries.⁴² Studies have indicated that fibroblasts derived from hypertrophic scars exhibit altered TGF- β signalling, underscoring its role in pathological outcomes.⁴³

The remodelling phase. The final and often most protracted phase of wound healing is maturation (or remodelling), a dynamic process that can extend for months to several years post-injury.⁴⁴ This phase is anatomically characterised by the gradual maturation and reorganisation of the newly synthesised collagen fibres within the scar tissue, leading to a progressive increase in the wound's tensile strength.⁴⁵ Morphologically, this involves a transition from the initial haphazard deposition of type III collagen to a more organised, cross-linked network predominantly composed of stronger type I collagen.⁴⁶ This intricate process is governed by a delicate balance between collagen synthesis (primarily by fibroblasts) and collagen degradation, mediated by a diverse family of matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs).⁴⁷ Dysregulation of this finely tuned equilibrium can lead to adverse outcomes, ranging from insufficient scar formation and wound dehiscence to excessive, pathological scarring, clinically manifesting as hypertrophic scars and keloids, which are characterised by aberrant collagen accumulation and architectural disorganisation.⁴⁸

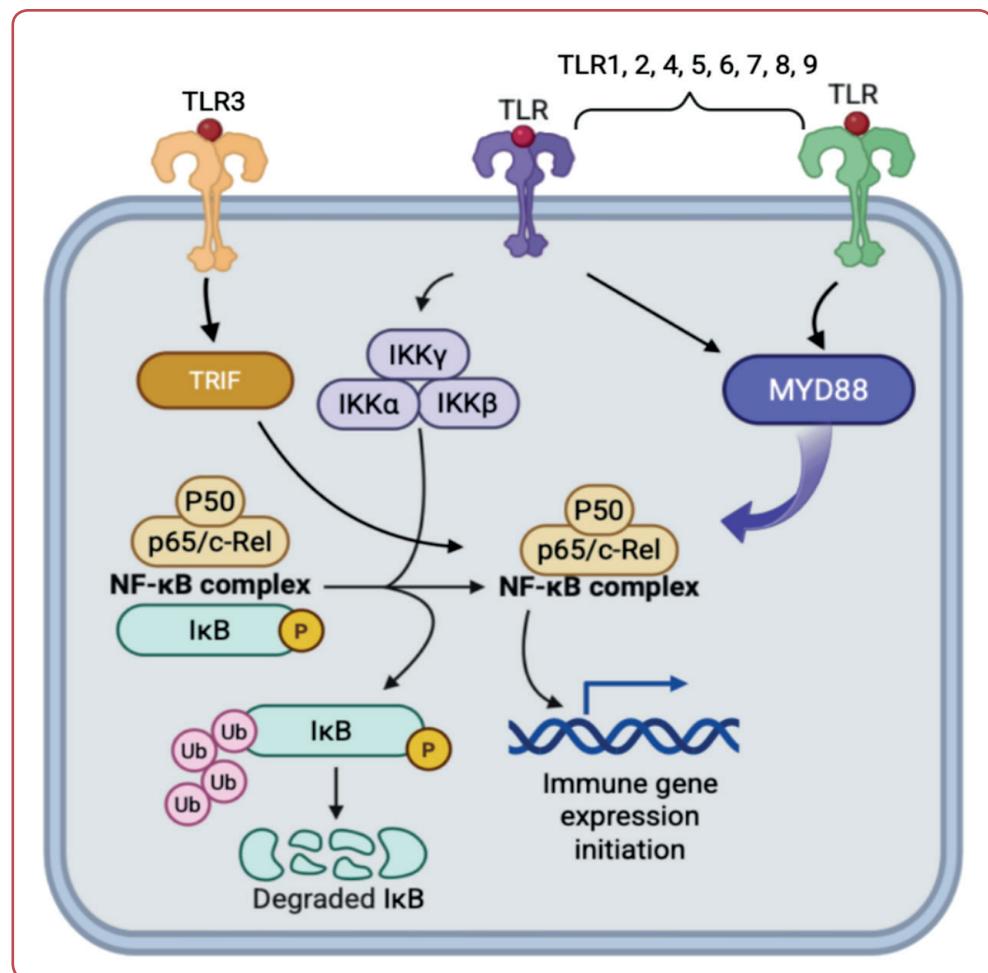
Understanding the molecular, cellular and genetic

pathways that govern burn healing is critical for designing targeted therapies. Precise modulation of these streams could enhance tissue regeneration, accelerate recovery and reduce complications, for example pathological scarring. The key challenge lies in developing agents that promote reparative signalling while suppressing harmful responses.

The role of inflammation in burn pathology

Inflammation is an indispensable physiological response to injury, protecting from infection and initiating tissue repair. In burn injuries, however, this response is often excessive and prolonged – especially in the case of additional microbiological contamination of the wound, large lesion area and delayed therapy; shifting from a protective mechanism to a driver of tissue damage and systemic complications.⁴⁹ Focus of this paper was on investigating this dual nature of inflammation, aiming to unravel its underlying mechanisms and translate these insights into targeted therapeutic strategies.

Acute inflammatory response. A rapid localised inflammatory response arises immediately after thermal injury. This critical initial phase is characterised by the release of damage-associated molecular patterns (DAMPs) from necrotic and damaged cells like high-mobility group box 1 (HMGB1) and S100 proteins.⁵⁰ These DAMPs act as endogenous danger signals, activating innate immune cells, including resident macrophages and mast cells, through pattern recognition receptors like Toll-like receptors (TLRs).⁵¹ This activation initiates a cascade of molecular events, leading to increased vascular permeability, localised oedema and the rapid recruitment of neutrophils and macrophages to the wound site (Figure 3). The phagocytic cells are essential for the enzymatic debridement of necrotic tissue and the efficient phagocytosis of pathogens, crucial steps for preventing infection and preparing the wound bed for subsequent healing phases.⁵²


However, in severe burn injuries, this normally protective localised response can rapidly escalate into a SIRS.⁵³ This systemic amplification is driven by the massive and sustained release of potent pro-inflammatory cytokines, including

interleukin-1 beta (IL-1 β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF- α), into the systemic blood circulation.⁵⁴ SIRS can lead to widespread endothelial dysfunction, remote organ damage and significantly contributes to the high morbidity and mortality associated with severe burns, often culminating in sepsis and multiple organ failure. The sustained activation of key intracellular signalling pathways (NF- κ B and MAPK), plays a central role in perpetuating chronic and detrimental systemic inflammation by upregulating the expression of pro-inflammatory genes and adhesion molecules.²³ Therefore, a comprehensive understanding of these complex molecular, cellular and genetic pathways is paramount.

Chronic inflammation and impaired healing. While acute inflammation is an indispensable component of the initial wound healing response, its persistence beyond the necessary early stages can severely impede wound closure and predispose to pathological scarring.⁵⁵ This transition to chronic inflammation (particularly prevalent in deep burn injuries) is morphologically characterised by a sustained influx and presence of immune cells, notably macrophages and lymphocytes, alongside activated fibroblasts, leading to continuous tissue destruction and aberrant extracellular matrix (ECM) remodeling.^{56, 57} Anatomically, this manifests as a non-healing wound bed, often with friable granulation tissue, impaired re-epithelialisation and progressive fibrotic changes in the surrounding dermis.

At a biochemical level, this prolonged inflammatory state drives a cascade of detrimental processes. Persistent activation of neutrophils and macrophages leads to the continuous production of excessive ROS via enzymatic systems like NADPH oxidases and myeloperoxidase.^{58, 59} The resulting oxidative burst overwhelms endogenous antioxidant defences, including superoxide dismutase, catalase and glutathione peroxidase, causing the accumulation of ROS and reactive nitrogen species (RNS).⁶⁰ This imbalance inflicts widespread oxidative damage on lipids through peroxidation, on proteins via carbonylation and nitration and on nucleic acids, ultimately disrupting cellular function and viability. Damaged and oxidised cellular components further amplify inflammatory signalling pathways, creating a self-perpetuating cycle of tissue injury and inflammation.⁶¹

In addition, chronic inflammation is intrinsically

Figure 3: TLR-mediated activation of NF-κB signalling in burn injury: TLR – Toll-like receptor, TRIF – TIR-domain-containing adapter-inducing interferon- β , MYD88 – myeloid differentiation primary response 88, IKK – inhibitor of nuclear factor κB kinase, NF-κB – nuclear factor kappa-B, IκB – inhibitor of NF-κB, Ub – ubiquitin, p65/c-Rel – NF-κB subunits.

Following burn injury, damage-associated molecular patterns (DAMPs) released from necrotic cells bind to Toll-like receptors (TLR1–9) on innate immune cells. Most TLRs signal via the adaptor protein MYD88, while TLR3 and partially TLR4 can signal through TRIF. These adaptors recruit and activate the IKK complex (IKK α , IKK β , IKK γ), which phosphorylates the NF-κB inhibitor IκB. Phosphorylated IκB undergoes ubiquitination (Ub) and proteasomal degradation, releasing the NF-κB complex (p50/p65 or p65/c-Rel). The active NF-κB translocates into the nucleus, initiating transcription of immune and pro-inflammatory genes, thereby amplifying the inflammatory response in the burn wound.

linked to an upregulation and dysregulation of proteolytic enzymes (PE). Specifically, an excessive activity of matrix metalloproteinases (MMPs): MMP-1, -8 and -9, along with serine proteases like elastase and cathepsins, leads to the uncontrolled degradation of vital ECM components, including collagen, elastin and fibronectin.^{62, 63} This biochemical imbalance between synthesis and degradation of ECM components prevents proper tissue reconstruction, impairs growth factor bioavailability and contributes significantly to the chronicity of non-healing burn wounds by creating a hostile microenvironment for cellular migration and proliferation.⁶⁴

Prolonged inflammation creates a microenvironment that favours fibrosis, where excessive fibroblast proliferation and disorganized ECM deposition disrupt normal tissue architecture.⁶⁵ In this setting, persistent pro-fibrotic signalling – exemplified by the chronic activation of the TGF- β /Smad axis, drives myofibroblast differentiation and uncontrolled collagen synthesis. The resulting hypertrophic scars and keloids exhibit dense, irregular collagen bundles, increased cellularity and a loss of the skin's native architecture, causing both functional impairment and aesthetic morbidity in burn patients.^{42, 43}

Therapeutic modulation of inflammation. Given the critical yet complex role of inflammation in burn trauma, therapeutic strategies must focus on targeted modulating, rather than completely suppressing, the inflammatory response. The core goal is to attenuate the detrimental, self-perpetuating aspects of excessive inflammation while meticulously preserving its beneficial functions in pathogen clearance, debridement of necrotic tissue and initiation of repair. Traditional pharmacological approaches have included corticosteroids, utilised with caution due to their broad immunosuppressive effects and potential to impair wound healing and non-steroidal anti-inflammatory drugs (NSAIDs), which offer symptomatic relief but may also carry risks in burn patients.⁶⁶ More targeted biological agents (like monoclonal antibodies) against specific cytokines (eg TNF- α , IL-6), represent a promising, albeit often costly, avenue for precise immunomodulation.⁶⁷

However, there is a burgeoning interest in natural compounds with potent anti-inflammatory properties that can offer a safer, more nuanced and holistic approach to burn care. For instance, research by Professor Chen and colleagues highlighted the anti-inflammatory and wound healing properties of natural extracts, demonstrating their potential to modulate the inflammatory cascade without severe systemic side effects.⁶⁸ Similarly, studies by Wang et al have explored novel hydrogel systems incorporating anti-inflammatory agents, showcasing their efficacy in reducing excessive inflammation and promoting angiogenesis in burn wounds.⁶⁹

Hydrolates, with their complex phytochemical profiles derived from aromatic plants, represent a particularly promising avenue for such gentle yet effective immunomodulation. Their inherent ability to scavenge free radicals, as demonstrated by research from Süntar et al on the antioxidant capacity of various plant extracts and to modulate key inflammatory mediators positions them as valuable candidates for integrative burn care strategies.³² Also, recent work by Professor Dem'yashkin et al further supports the therapeutic potential of plant-based formulations, showing that hydrogels containing water extracts of medicinal plants significantly enhance burn wound healing, stimulate keratinocyte proliferation and reduce local inflammation in *Pseudomonas aeruginosa*-infected models.⁷⁰ This approach moves burn care beyond nonspecific suppression toward targeted molecular modulation of the healing microenvironment.

The challenge of antibiotic resistance in burn wounds

Burn wounds create an ideal environment for microbial colonisation and different infections, complicating patient management and sharply increasing morbidity and mortality. A disrupted skin barrier, necrotic tissue and a transiently suppressed immune response provide favourable conditions for diverse microorganisms to proliferate.⁷¹ The growing crisis of antibiotic resistance intensifies this risk, rendering conventional antimicrobial therapies less effective and underscoring the urgent need for innovative treatment strategies.

The microbial landscape of burn wounds. The microbial landscape of burn wounds is dynamic and complex, evolving significantly over time and posing a formidable challenge to effective clinical management. Initially, burn wounds are often colonised by the patient's endogenous skin flora, predominantly gram-positive (G+) bacteria like *Staphylococcus aureus* (including both *methicillin-sensitive S aureus* (MSSA) and *methicillin-resistant S aureus* (MRSA)) and coagulase-negative staphylococci, notably *Staphylococcus epidermidis*.^{72, 73} However, within days, a critical shift often occurs, with gram-negative (G-) bacteria emerging as dominant pathogens. Prominent among these are *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* and *Acinetobacter baumannii*, frequently originating from the patient's gastrointestinal tract or the hospital environment (an additional critical factor is hospital-acquired antimicrobial resistance) (Table 1).⁷⁴

Beyond bacterial threats, opportunistic fungal infections, primarily caused by *Candida* species, are a significant concern, particularly in immunocompromised patients or those undergoing prolonged antibiotic therapy.⁸⁴ Other notable bacterial species that can colonise and infect burn wounds include *Proteus mirabilis* and *Enterococcus* species, further diversifying the microbial challenge.^{87, 88}

Among these, *Pseudomonas aeruginosa* stands out as a particularly pathogen in burn units due to its intrinsic resistance to numerous antibiotics, its remarkable ability to form robust biofilms and its production of various virulence factors that contribute to extensive tissue damage and systemic infection.⁸⁹ Biofilm formation, a complex

Table 1: Major microbial pathogens in burn wounds: taxonomic classification, origin, resistance traits and clinical impact

Microorganism	Class	Primary origin	Main resistance mechanisms	Clinical relevance	Ref
<i>Staphylococcus aureus</i> (MSSA/MRSA)	Gram + cocci	Skin flora, healthcare environment	β-lactamase production (MSSA), mecA-mediated PBP2a expression (MRSA)	Common early coloniser; MRSA causes severe invasive infections	75, 76
<i>Staphylococcus epidermidis</i>	Gram + cocci	Skin flora	Biofilm formation, multidrug efflux pumps, β-lactam resistance	Opportunistic infections, biofilm-associated device infections	77
<i>Pseudomonas aeruginosa</i>	Gram – rod	GI tract, hospital environment	Efflux pumps, β-lactamases, porin loss, biofilm formation	Major burn pathogen; high intrinsic and acquired resistance	78–80
<i>Klebsiella pneumoniae</i>	Gram – rod	GI tract, hospital environment	ESBL and carbapenemase production	Causes wound infection and sepsis; often multidrug-resistant	81
<i>Acinetobacter baumannii</i>	Gram – rod	Hospital environment	Carbapenemases, efflux pumps, desiccation resistance	Highly resistant; associated with outbreaks in burn units	76, 82
<i>Candida</i> spp.*	Yeast	Endogenous mucosal flora, hospital environment	Azole resistance via ERG11 mutations, efflux pumps	Opportunistic fungal infections; more frequent after antibiotics	83, 84
<i>Proteus mirabilis</i>	Gram – rod	GI tract	β-lactamases, swarming motility aiding biofilm	Secondary coloniser, often in mixed infections	85
<i>Enterococcus</i> spp.**	Gram + cocci	GI tract	Vancomycin resistance (van genes)	Causes wound infections; problematic in immunocompromised patients	85, 86

MSSA: methicillin-sensitive *Staphylococcus aureus*; MRSA: methicillin-resistant *Staphylococcus aureus*; PBP2a: penicillin-binding protein 2a; mecA: gene encoding PBP2a, conferring β-lactam resistance; GI tract: gastrointestinal tract; ESBL: extended-spectrum β-lactamase; ERG11: gene encoding 14α-demethylase (azole target); Van genes: genes mediating vancomycin resistance (vanA, vanB). *Candida* spp includes *C albicans*, *C glabrata*, *C parapsilosis*, *C tropicalis*; *Enterococcus* spp includes *E faecalis* and *E faecium*.

aggregation of bacteria encased within an extracellular polymeric substance, provides a formidable protective barrier against both antibiotic penetration and host immune defences, rendering eradication exceedingly difficult.⁹⁰ Similarly, MRSA represents a significant threat due to its widespread resistance to β-lactam antibiotics and its capacity to cause severe, invasive infections, often leading to prolonged hospital stays and increased morbidity.⁹¹

The widespread and often indiscriminate use of antibiotics in burn care has inadvertently contributed to the alarming emergence and dissemination of multidrug-resistant (MDR) strains. This phenomenon, termed antibiotic resistance, occurs when bacteria develop sophisticated mechanisms to withstand the effects of antimicrobial agents, rendering these crucial drugs ineffective. The implications for burn patients are dire, leading to prolonged hospitalisation, escalated treatment costs, higher rates of sepsis and significantly elevated mortality.^{5, 92}

Mechanisms of antibiotic resistance are diverse and include enzymatic inactivation of antibiotics (eg β-lactamases that degrade penicillin and cephalosporin derivatives), alteration of target sites (eg mutations in ribosomal subunits affecting aminoglycoside binding), the activation of efflux pumps that actively expel antibiotics from the bacterial cell and reduced permeability of the bacterial cell wall.^{93–95}

Horizontal gene transfer, a process where bacteria share resistance genes via plasmids or transposons, further accelerates the rapid spread of resistance within and between bacterial populations, complicating infection control efforts.^{96, 97}

The inherent presence of biofilms in burn wounds further exacerbates the issue, as bacteria within these structured communities exhibit significantly higher resistance to antibiotics compared to their planktonic (free-floating) counterparts, often requiring substantially higher antibiotic concentrations for effective treatment.⁹⁸

Therapeutic potential of hydrolate compositions in burn wound healing

Hydrolats (hydrosol or floral water) are aromatic waters obtained in the process of steam distillation of medical plant raw materials for the extraction of essential oils. Unlike essential oils, which are lipophilic and highly concentrated, hydrolats are hydrophilic, containing water-soluble volatile compounds and trace amounts of essential oils.^{99, 100} This unique composition endows them with pronounced therapeutic properties, making them attractive candidates for dermatological applications, especially in the delicate context of burn wound healing.

Antioxidant properties. One of the most significant challenges in burn wound healing is the excessive production of ROS and the resultant cumulative oxidative stress, which can damage cellular components, perpetuate inflammation and impair tissue regeneration.¹⁰¹

Hydrolates, particularly those derived from plants rich in phenolic compounds and flavonoids, exhibit potent antioxidant activities.⁹⁹ Recent studies indicate that hydrolates from *Origanum vulgare L*, *Thymus vulgaris L* and *Melissa officinalis L* exhibit notable antioxidant activity and can protect human skin fibroblasts from ROS.^{102, 103} This effect is particularly relevant in burn wounds, where limiting oxidative damage supports a healthier cellular environment and accelerates healing (it is important to consider the cumulative impact of oxidative stress on cellular signalling, particularly how cells respond to ROS and how peroxisomal molecules may enter the blood circulation).¹⁰⁴ The presence of bioactive compounds: for example thymol, nerol and geranial likely contributes to these effects, partly through the modulation of endogenous antioxidant pathways.¹⁰⁵

Modulating the immune response. As mentioned, excessive and prolonged inflammation (eg chronic inflammation) is a major impediment to optimal burn wound healing. Hydrolates have anti-inflammatory properties that may help modulate the immune response, reducing the deleterious effects of chronic inflammation without completely suppressing the necessary initial inflammatory cascade.⁹⁹ While direct studies of

hydrosols in models of burn-induced inflammation are just emerging, works in context of essential have already been widely described in the medical literature. For example, Rosanna Avola et al demonstrated that *Origanum vulgare L* essential oil reduces pro-inflammatory mediators, including ICAM-1, iNOS and COX-2, in human keratinocytes and inhibits DNA damage induced by inflammatory stimuli.¹⁰⁶ Given that hydrolates contain water-soluble anti-inflammatory compounds (primarily low-molecular-weight terpenoids, phenolic acids and flavonoid glycosides¹⁰⁷), they are expected to exert similar effects to the parent essential oils, albeit in a milder and more skin-tolerant form. This makes them particularly suitable for application on sensitive and inflamed burn tissue, where harsh synthetic anti-inflammatory agents might cause irritation or side effects. The ability of hydrolates to modulate pathways like NF- κ B and MAPK,¹⁰⁸ which are central to inflammatory responses and need for further investigation.

Antimicrobial properties. Bacterial infection, especially caused by multidrug resistant strains, is a major issue of morbidity and mortality among burn patients.¹⁰⁹ The antimicrobial properties of certain hydrolates offer a promising adjunctive strategy to combat these pathogens and reduce the reliance on conventional antibiotics. Studies have demonstrated that hydrolates from plants like *Origanum vulgare L*, *Satureja montana L* and *Coriandrum sativum L* exhibit antibacterial activities against common skin-infecting bacteria, including *Staphylococcus spp.* and *Pseudomonas aeruginosa*.⁷⁰ While the concentrations of active compounds are lower than in essential oils, the aqueous nature of hydrolates allows for direct application and penetration into the wound bed.¹⁴ Their multi-component nature may also make it more difficult for bacteria to develop resistance compared to single-target antibiotics.⁹⁹

A significant advantage of hydrolates is their generally favourable safety profile, making them suitable for topical application, even on compromised skin. Their acidic to neutral pH help restore the skin's natural acid mantle, which is often disrupted in burn injuries.⁹⁹

However, as with any natural product, standardisation and formulation, validation of vapor droplet manufacturing processes, quality control and thorough safety assessment are essential. The efficacy of hydrolates can also be enhanced by advanced formulation strategies: for example, in-

corporation into hydrogels, emulsions, nanopolymers or liposomes to improve stability, bioavailability and targeted delivery to the wound site.

Conclusion

This review underscores the intricate and dynamic nature of burn wound healing, a process profoundly influenced by a delicate balance of inflammatory responses, cellular proliferation and tissue remodelling. The critical challenges posed by dysregulated inflammation and the escalating threat of antibiotic resistance is highlighted, both of which significantly impede optimal patient outcomes and contribute to long-term morbidity. The current therapeutic landscape, while offering essential interventions, often falls short in providing nuanced modulation of these complex biological processes, particularly in the face of microbial threats.

Presented findings highlight an urgent need for targeted, mechanism-based therapies in burn care. Plant-derived hydrolates offer a promising alternative: these complex botanical distillates possess anti-inflammatory, antioxidant and antimicrobial properties that may help curb excessive inflammation and combat resistant infections, without the collateral damage of broad-spectrum antibiotics.

To realise their clinical potential, future research must rigorously assess efficacy, safety and mechanisms of action through robust preclinical and clinical studies. Standardised methods for extraction, characterisation and quality control are essential to ensure consistency. Ultimately, the integration of validated hydrolates into burn care may improve outcomes and help mitigate the growing threat of antibiotic resistance.

Ethics

This study was a secondary analysis based on the currently existing data and did not directly involve with human participants or experimental animals. Therefore, the ethics approval was not required in this paper.

Acknowledgement

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data access

The data that support the findings of this study are available from the corresponding author upon reasonable individual request.

Author ORCID numbers

Polina Petrovna Skovorodko (PPS):
0009-0000-5624-4731
Mikhail Alekseevich Parshenkov (MAP):
0009-0004-7170-8783
Ivan Mikhailovich Ignatichiev (IMI):
0009-0000-2215-7402
Togrul Abyshev (TA):
0009-0000-0186-6971
Pasiyat Isayevna Alypkacheva (PIA):
0009-0002-2143-9939
Ekaterina Sergeevna Bakaeva (ESB):
0009-0001-4275-3903
Eva Romanovna Borga (ERB):
0009-0006-3961-8512
Anna Igorevna Tsibizova (AIT):
0009-0002-1503-4046
Nino Besikovna Bekveriia (NBB):
0009-0002-1942-8712
Manas Sarkisovich Simonyan (MSS):
0009-0000-3580-3514
Salikhat Abdulatipova (SA):
0009-0006-2087-6538

Author contributions

Conceptualisation: PPS, MAP, IMI, TA, PIA, EBS, NBB, MSS
 Methodology: PPS, MAP, TA, PIA, ESB, EBR, AIT, NBB, MSS
 Validation: PPS, MAP, IMI, TA, PIA, ESB, EBR, NBB, MSS, SA
 Formal analysis: MAP, IMI, TA, ESB, EBR, AIT, NBB, MSS, SA
 Investigation: PPS, MAP, IMI, TA, ESB, EBR, AIT, NBB, SA
 Data curation: MAP, IMI, TA, PIA, ESB, AIT, NBB, MSS, SA
 Writing – original draft: PPS, MAP, IMI, TA, PIA, ESB, NBB, MSS, SA
 Writing – review and editing: PPS, MAP, IMI, TA, EBR, MSS, SA
 Visualisation: PPS, MAP, IMI, TA, PIA, ESB, EBR, AIT, MSS, SA
 Supervision: PPS, MAP
 Project administration: MAP

References

- WHO. Burns [Internet]. [Cited: 2-Jul-25]. Available at: <https://www.who.int/news-room/fact-sheets/detail/burns>.
- Casey JA, Gu YM, Schwarz L, Frankland TB, Wilner LB, McBrien H, et al. The 2025 Los Angeles wildfires and outpatient acute healthcare utilization. *medRxiv* [Preprint]. 2025 Mar 15:2025.03.13.25323617. doi: 10.1101/2025.03.13.25323617.
- Burgess M, Valdera F, Varon D, Kankuri E, Nuutila K. The immune and regenerative response to burn injury. *Cells*. 2022 Sep 29;11(19):3073. doi: 10.3390/cells11193073.
- Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for global public health. *healthcare* (Basel). 2023 Jul 5;11(13):1946. doi: 10.3390/healthcare11131946.
- Vinaik R, Barayan D, Shahrokhi S, Jeschke MG. Management and prevention of drug resistant infections in burn patients. *Expert Rev Anti Infect Ther*. 2019 Aug;17(8):607-19. doi: 10.1080/14787210.2019.1648208.
- Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuglio F, Saturnino C, et al. Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. *Molecules*. 2022 Jan 18;27(3):616. doi: 10.3390/molecules27030616.
- Kristiansson E, Fick J, Janzon A, Grbic R, Rutgersson C, Weijdegård B, et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. *PLoS One*. 2011 Feb 16;6(2):e17038. doi: 10.1371/journal.pone.0017038.
- Romanowski KS, Carson J, Pape K, Bernal E, Sharar S, Wiechman S, et al. American Burn Association Guidelines on the Management of Acute Pain in the Adult Burn Patient: a review of the literature, a compilation of expert opinion, and next steps. *J Burn Care Res*. 2020 Nov 30;41(6):1129-51. doi: 10.1093/jbcr/iraa119.
- Cartotto R, Johnson LS, Savetamal A, Greenhalgh D, Kubasiak JC, Pham TN, et al. American Burn Association Clinical Practice Guidelines on Burn Shock Resuscitation. *J Burn Care Res*. 2024 May 6;45(3):565-89. doi: 10.1093/jbcr/irad125.
- Lee F, Wong P, Hill F, Burgner D, Taylor R. Evidence behind the WHO guidelines: hospital care for children: what is the role of prophylactic antibiotics in the management of burns? *J Trop Pediatr*. 2009 Apr;55(2):73-7. doi: 10.1093/tropej/fmp017.
- Smolle C, Cambiaso-Daniel J, Forbes AA, Wurzer P, Hundeshagen G, Branski LK, et al. Recent trends in burn epidemiology worldwide: A systematic review. *Burns*. 2017 Mar;43(2):249-257. doi: 10.1016/j.burns.2016.08.013.
- Osmokrovic A, Stojkovska J, Krunic T, Petrovic P, Lazic V, Zvicer J. Current state and advances in antimicrobial strategies for burn wound dressings: from metal-based antimicrobials and natural bioactive agents to future perspectives. *Int J Mol Sci*. 2025 May 5;26(9):4381. doi: 10.3390/ijms26094381.
- Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound healing properties of natural products: mechanisms of action. *Molecules*. 2023 Jan 6;28(2):598. doi: 10.3390/molecules28020598.
- Smiljanić K, Prodić I, Trifunovic S, Krstić Ristivojević M, Aćimović M, Stanković Jeremić J, et al. Multistep approach points to compounds responsible for the biological activity and safety of hydrolates from nine lamiaceae medicinal plants on human skin fibroblasts. *Antioxidants (Basel)*. 2023 Nov 9;12(11):1988. doi: 10.3390/antiox12111988. PMID: 38001841; PMCID: PMC10669667
- Serra D, Bellu E, Garroni G, Cruciani S, Sarais G, Desssi D, et al. Hydrolat of *Helichrysum italicum* promotes tissue regeneration during wound healing. *Physiol Res*. 2023 Dec 31;72(6):809-818. doi: 10.33549/physiolres.935101.
- Demyashkin GA, Parshenkov MA, Tokov AA, Sataieva TP, Shevkoplyas LA, Said BS, et al. Therapeutic efficacy of plant-based hydrogels in burn wound healing: focus on *Satureja montana* L. and *Origanum vulgare* L. *Scripta Med*. 2025;1:27-32. doi: 10.5937/scriptamed56-56050.
- Broughton G 2nd, Janis JE, Attlinger CE. The basic science of wound healing. *Plast Reconstr Surg*. 2006 Jun;117(7 Suppl):12S-34S. doi: 10.1097/01.pr.0000225430.42531.c2.
- Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. *Int J Environ Res Public Health*. 2022 Jan 25;19(3):1338. doi: 10.3390/ijerph19031338.
- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. *Oncotarget*. 2017 Dec 14;9(6):7204-18. doi: 10.18632/oncotarget.23208.

20. Mulder PPG, Vlijg M, Fasse E, Stoop MM, Pijpe A, van Zuijlen PPM, et al. Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. *Front Immunol.* 2022 Nov 14;13:1034420. doi: 10.3389/fimmu.2022.1034420.

21. Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. *Front Pharmacol.* 2024 Feb 15;15:1345779. doi: 10.3389/fphar.2024.1345779.

22. Janakiram NB, Valerio MS, Goldman SM, Dearth CL. The Role of the inflammatory response in mediating functional recovery following composite tissue injuries. *Int J Mol Sci.* 2021 Dec 17;22(24):13552. doi: 10.3390/ijms222413552.

23. Du W, Hu H, Zhang J, Bao G, Chen R, Quan R. The mechanism of MAPK signal transduction pathway involved with electroacupuncture treatment for different diseases. *Evid Based Complement Alternat Med.* 2019 Jul 31;2019:8138017. doi: 10.1155/2019/8138017.

24. Liu T, Zhang L, Joo D, Sun SC. NF- κ B signaling in inflammation. *Signal Transduct Target Ther.* 2017;2:17023-. doi: 10.1038/sigtrans.2017.23.

25. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. *Science.* 2002 Dec 6;298(5600):1911-2. doi: 10.1126/science.1072682.

26. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. *Int Wound J.* 2017 Feb;14(1):89-96. doi: 10.1111/iwj.12557.

27. Finkel T. Oxidant signals and oxidative stress. *Curr Opin Cell Biol.* 2003 Apr;15(2):247-54. doi: 10.1016/s0955-0674(03)00002-4.

28. Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. *Chem Soc Rev.* 2011 Sep;40(9):4783-804. doi: 10.1039/c1cs15037e.

29. Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. *Antioxidants (Basel).* 2018 Jul 24;7(8):98. doi: 10.3390/antiox7080098.

30. Remigante A, Morabito R. Cellular and molecular mechanisms in oxidative stress-related diseases 2.0/3.0. *Int J Mol Sci.* 2023 Nov 6;24(21):16018. doi: 10.3390/ijms242116018.

31. Liu Y, Yang X, Liu Y, Jiang T, Ren S, Chen J, et al. NRF2 signalling pathway: New insights and progress in the field of wound healing. *J Cell Mol Med.* 2021 Jun 18;25(13):5857-68. doi: 10.1111/jcmm.16597.

32. Sütar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L. Regulatory role of nrf2 signaling pathway in wound healing process. *Molecules.* 2021 Apr 21;26(9):2424. doi: 10.3390/molecules26092424.

33. Li M, Yu H, Pan H, Zhou X, Ruan Q, Kong D, et al. Nrf2 Suppression delays diabetic wound healing through sustained oxidative stress and inflammation. *Front Pharmacol.* 2019 Sep 20;10:1099. doi: 10.3389/fphar.2019.01099.

34. Zhou X, Ruan Q, Ye Z, Chu Z, Xi M, Li M, et al. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. *Burns.* 2021 Feb;47(1):133-139. doi: 10.1016/j.burns.2020.10.016.

35. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. *Wound Repair Regen.* 2008 Sep-Oct;16(5):585-601. doi: 10.1111/j.1524-475X.2008.00410.x.

36. Gan D, Su Q, Su H, Wu L, Chen J, Han B, Xiang M. Burn ointment promotes cutaneous wound healing by modulating the PI3K/AKT/mTOR signaling pathway. *Front Pharmacol.* 2021 Mar 8;12:631102. doi: 10.3389/fphar.2021.631102.

37. Ramhormozi P, Ansari JM, Simorgh S, Asgari HR, Najaifi M, Barati M, et al. Simvastatin accelerates the healing process of burn wound in Wistar rats through Akt/mTOR signaling pathway. *Ann Anat.* 2021 Jul;236:151652. doi: 10.1016/j.aanat.2020.151652.

38. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing facilitates corneal wound healing after alkali burns by promoting autophagy via blocking the PI3K/Akt/mTOR signaling pathway. *Invest Ophthalmol Vis Sci.* 2020 Sep 1;61(11):19. doi: 10.1167/iovs.61.11.19. Erratum in: *Invest Ophthalmol Vis Sci.* 2021 Mar 1;62(3):19. doi: 10.1167/iovs.62.3.19.

39. Choi S, Yoon M, Choi KY. Approaches for regenerative healing of cutaneous wound with an emphasis on strategies activating the Wnt/ β -Catenin Pathway. *Adv Wound Care (New Rochelle).* 2022 Feb;11(2):70-86. doi: 10.1089/wound.2020.1284.

40. Mi Y, Zhong L, Lu S, Hu P, Pan Y, Ma X, et al. Quercetin promotes cutaneous wound healing in mice through Wnt/ β -catenin signaling pathway. *J Ethnopharmacol.* 2022 May 23;290:115066. doi: 10.1016/j.jep.2022.115066.

41. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. critical role of transforming growth factor beta in different phases of wound healing. *Adv Wound Care (New Rochelle).* 2013 Jun;2(5):215-224. doi: 10.1089/wound.2012.0406.

42. Penn JW, Grobelaar AO, Rolfe KJ. The role of the TGF- β family in wound healing, burns and scarring: a review. *Int J Burns Trauma.* 2012;2(1):18-28. PMID: 22928164.

43. Gabriel VA. Transforming growth factor-beta and angiotensin in fibrosis and burn injuries. *J Burn Care Res.* 2009 May-Jun;30(3):471-81. doi: 10.1097/BCR.0b013e3181a28ddb.

44. Grubbs H, Manna B. Wound Physiology. [Updated 2023 May 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK518964/>.

45. Ladak A, Tredget EE. Pathophysiology and management of the burn scar. *Clin Plast Surg.* 2009 Oct;36(4):661-74. doi: 10.1016/j.cps.2009.05.014.

46. Verhaegen PD, van Zuijlen PP, Pennings NM, van Marle J, Niessen FB, van der Horst CM, Middelkoop E. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. *Wound Repair Regen.* 2009 Sep-Oct;17(5):649-56. doi: 10.1111/j.1524-475X.2009.00533.x.

47. Machesney M, Tidman N, Waseem A, Kirby L, Leigh I. Activated keratinocytes in the epidermis of hypertrophic scars. *Am J Pathol*. 1998 May;152(5):1133-41. PMID: 9588880.

48. Romanowski KS, Sen S. Wound healing in older adults with severe burns: Clinical treatment considerations and challenges. *Burns Open*. 2022 Apr;6(2):57-64. doi: 10.1016/j.burnso.2022.01.002.

49. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gi-bran NS, Logsetty S. Burn injury. *Nat Rev Dis Primers*. 2020 Feb 13;6(1):11. doi: 10.1038/s41572-020-0145-5.

50. Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-associated molecular patterns, a class of potential psoriasis drug targets. *Int J Mol Sci*. 2024 Jan 7;25(2):771. doi: 10.3390/ijms25020771.

51. Rani M, Nicholson SE, Zhang Q, Schwacha MG. Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. *Burns*. 2017 Mar;43(2):297-303. doi: 10.1016/j.burns.2016.10.001.

52. Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An overview of recent developments in the management of burn injuries. *Int J Mol Sci*. 2023 Nov 15;24(22):16357. doi: 10.3390/ijms242216357.

53. Baddam S, Burns B. Systemic Inflammatory Response Syndrome. 2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. PMID: 31613449

54. George B, Suchithra TV, Bhatia N. Burn injury induces elevated inflammatory traffic: the role of NF-κB. *Inflamm Res*. 2021 Jan;70(1):51-65. doi: 10.1007/s00011-020-01426-x.

55. Potekaev NN, Borzykh OB, Medvedev GV, Pushkin DV, Petrova MM, Petrov AV, et al. The role of extracellular matrix in skin wound healing. *J Clin Med*. 2021 Dec 18;10(24):5947. doi: 10.3390/jcm10245947.

56. Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK, Hsu CK. Inflammation in wound healing and pathological scarring. *Adv Wound Care (New Rochelle)*. 2023 May;12(5):288-300. doi: 10.1089/wound.2021.0161.

57. Sousa AB, Águas AP, Barbosa MA, Barbosa JN. Immunomodulatory biomaterial-based wound dressings advance the healing of chronic wounds via regulating macrophage behavior. *Regen Biomater*. 2022 Sep 6;9:rbac065. doi: 10.1093/rb/rbac065.

58. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. *Antioxid Redox Signal*. 2014 Mar 1;20(7):1126-67. doi: 10.1089/ars.2012.5149.

59. Zhou J, Fang C, Rong C, Luo T, Liu J, Zhang K. Reactive oxygen species-sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration. *Smart Mater Med*. 2023;4:427-46. doi: 10.1016/j.smaim.2023.01.004.

60. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. *Arch Toxicol*. 2024 May;98(5):1323-67. doi: 10.1007/s00204-024-03696-4.

61. Nebbioso M, Franzone F, Lambiase A, Bonfiglio V, Limoli PG, Artico M, et al. Oxidative stress implication in retinal diseases-a review. *Antioxidants (Basel)*. 2022 Sep 10;11(9):1790. doi: 10.3390/antiox11091790.

62. Lee HS, Kim WJ. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases. *Int J Mol Sci*. 2022 Sep 11;23(18):10546. doi: 10.3390/ijms231810546.

63. de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. *Pharmacol Rev*. 2022 Jul;74(3):712-68. doi: 10.1124/pharmrev.121.000349.

64. Schilirreff P, Alexiev U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. *Int J Mol Sci*. 2022 Apr 28;23(9):4928. doi: 10.3390/ijms23094928.

65. Mayorca-Guiliani AE, Leeming DJ, Henriksen K, Mortensen JH, Nielsen SH, Anstee QM, et al. ECM formation and degradation during fibrosis, repair, and regeneration. *NPJ Metab Health Dis*. 2025 Jun 10;3(1):25. doi: 10.1038/s44324-025-00063-4.

66. Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. *Crit Care*. 2015 Jun 12;19:243. doi: 10.1186/s13054-015-0961-2.

67. Boldeanu L, Boldeanu MV, Bogdan M, Meca AD, Coman CG, Buca BR, et al. Immunological approaches and therapy in burns (Review). *Exp Ther Med*. 2020 Sep;20(3):2361-7. doi: 10.3892/etm.2020.8932.

68. Chen ZC, Wu SS, Su WY, Lin YC, Lee YH, Wu WH, et al. Anti-inflammatory and burn injury wound healing properties of the shell of *Haliothis diversicolor*. *BMC Complement Altern Med*. 2016 Nov 28;16(1):487. doi: 10.1186/s12906-016-1473-6.

69. Wang P, Huang S, Hu Z, Yang W, Lan Y, Zhu J, et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. *Acta Biomater*. 2019 Dec;100:191-201. doi: 10.1016/j.actbio.2019.10.004.

70. Demyashkin G, Sataieva T, Shevkoplyas L, Kuevda T, Ahrameeva M, Parshenkov M, et al. Burn wound healing activity of hydroxyethylcellulose gels with different water extracts obtained from various medicinal plants in *pseudomonas aeruginosa*-infected rabbits. *Int J Mol Sci*. 2024 Aug 18;25(16):8990. doi: 10.3390/ijms25168990.

71. Vo V, Haidari H, Cowin AJ, Wagstaff M, Dearman B, Kopecki Z. Dermal substitutes for clinical management of severe burn injuries: Current and future perspectives. *Adv Ther*. 2025;8(3):2400455. doi: 10.1002/adtp.202400455.

72. Severn MM, Horswill AR. *Staphylococcus epidermidis* and its dual lifestyle in skin health and infection. *Nat Rev Microbiol*. 2023 Feb;21(2):97-111. doi: 10.1038/s41579-022-00780-3.

73. Siciliano V, Passerotto RA, Chiuchiarelli M, Leanza GM, Ojetti V. Difficult-to-treat pathogens: a review on the management of multidrug-resistant *Staphylococcus epidermidis*. *Life (Basel)*. 2023 May 4;13(5):1126. doi: 10.3390/life13051126.

74. Denissen J, Reyneke B, Waso-Reyneke M, Hovinga B, Barnard T, Khan S, Khan W. Prevalence of ES-KAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. *Int J Hyg Environ Health*. 2022 Jul;244:114006. doi: 10.1016/j.ijheh.2022.114006.

75. Almuhayawi MS, Alruhaili MH, Gattan HS, Alharbi MT, Nagshabandi M, Al Jaouni S, et al. *Staphylococcus aureus* induced wound infections which antimicrobial resistance, methicillin- and vancomycin-resistant: assessment of emergence and cross sectional study. *Infect Drug Resist.* 2023 Aug 16;16:5335-5346. doi: 10.2147/IDR.S418681.

76. Gao L, Abu Kwaik Y. Hijacking of apoptotic pathways by bacterial pathogens. *Microbes Infect.* 2000 Nov;2(14):1705-19. doi: 10.1016/s1286-4579(00)01326-5.

77. Otto M. *Staphylococcus epidermidis*-the 'accidental' pathogen. *Nat Rev Microbiol.* 2009 Aug;7(8):555-67. doi: 10.1038/nrmicro2182.

78. Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P. Metabolomic studies of *Pseudomonas aeruginosa*. *World J Microbiol Biotechnol.* 2019 Nov 7;35(11):178. doi: 10.1007/s11274-019-2739-1.

79. Salerian AJ. Burn wound infections and *Pseudomonas aeruginosa*. *Burns.* 2020 Feb;46(1):257-8. doi: 10.1016/j.burns.2019.07.008.

80. Santamaría-Corral G, Aguilera-Correa JJ, Esteban J, García-Quintanilla M. Bacteriophage therapy on an in vitro wound model and synergistic effects in combination with beta-lactam antibiotics. *Antibiotics (Basel).* 2024 Aug 24;13(9):800. doi: 10.3390/antibiotics13090800.

81. Singh AN, Singh A, Singh SK, Nath G. *Klebsiella pneumoniae* infections and phage therapy. *Indian J Med Microbiol.* 2024 Nov-Dec;52:100736. doi: 10.1016/j.ijmm.2024.100736.

82. Shoja S, Moosavian M, Rostami S, Farahani A, Peymani A, Ahmadi K, Ebrahimi-fard N. Dissemination of carbapenem-resistant *Acinetobacter baumannii* in patients with burn injuries. *J Chin Med Assoc.* 2017 Apr;80(4):245-52. doi: 10.1016/j.jcma.2016.10.013.

83. Eggimann P, Pittet D. Postoperative fungal infections. *Surg Infect (Larchmt).* 2006;7 Suppl 2:S53-6. doi: 10.1089/sur.2006.7.s2-53.

84. Malinovská Z, Čonková E, Váczí P. Biofilm formation in medically important *Candida* species. *J Fungi (Basel).* 2023 Sep 22;9(10):955. doi: 10.3390/jof9100955.

85. Roy S, Mukherjee P, Kundu S, Majumder D, Raychaudhuri V, Choudhury L. Microbial infections in burn patients. *Acute Crit Care.* 2024 May;39(2):214-25. doi: 10.4266/acc.2023.01571.

86. Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC. Infection in burns. *Surg Infect (Larchmt).* 2016 Apr;17(2):250-5. doi: 10.1089/sur.2013.134.

87. Ruegsegger L, Xiao J, Naziripour A, Kanamuambidi T, Brown D, Williams F, et al. Multidrug-resistant gram-negative bacteria in burn patients. *Antimicrob Agents Chemother.* 2022 Sep 20;66(9):e0068822. doi: 10.1128/aac.00688-22.

88. Ghasemian S, Karami-Zarandi M, Heidari H, Khoshnood S, Kouhsari E, Ghafourian S, et al. Molecular characterizations of antibiotic resistance, biofilm formation, and virulence determinants of *Pseudomonas aeruginosa* isolated from burn wound infection. *J Clin Lab Anal.* 2023 Apr;37(4):e24850. doi: 10.1002/jcla.24850.

89. Zhang Y, Liu X, Wen H, Cheng Z, Zhang Y, Zhang H, et al. Anti-biofilm enzymes-assisted antibiotic therapy against burn wound infection by *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother.* 2023 Jul 18;67(7):e0030723. doi: 10.1128/aac.00307-23.

90. Sharma S, Mohler J, Mahajan SD, Schwartz SA, Brugemann L, Aalinkeel R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. *Microorganisms.* 2023 Jun 19;11(6):1614. doi: 10.3390/microorganisms11061614. Erratum in: *Microorganisms.* 2024 Sep 27;12(10):1961. doi: 10.3390/microorganisms12101961.

91. Abebe AA, Birhanu AG. Methicillin resistant *Staphylococcus aureus*: molecular mechanisms underlying drug resistance development and novel strategies to combat. *Infect Drug Resist.* 2023 Dec 14;16:7641-62. doi: 10.2147/IDR.S428103.

92. Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial infections after burn injuries: impact of multidrug resistance. *Clin Infect Dis.* 2017 Nov 29;65(12):2130-6. doi: 10.1093/cid/cix682.

93. Elamin WF, Weinberg S, Spoors C, Roberts P, Martin N, Berry P, et al. Multi-drug resistance in burns units—more than just a burning issue. *Clin Infect Dis.* 2018 Aug 31;67(6):981-2. doi: 10.1093/cid/ciy191.

94. Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. *Front Pharmacol.* 2024 Aug 16;15:1444781. doi: 10.3389/fphar.2024.1444781.

95. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. *Pharmaceuticals (Basel).* 2023 Nov 15;16(11):1615. doi: 10.3390/ph16111615.

96. Tao S, Chen H, Li N, Wang T, Liang W. The spread of antibiotic resistance genes in vivo model. *Can J Infect Dis Med Microbiol.* 2022 Jul 18;2022:3348695. doi: 10.1155/2022/3348695.

97. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. *Pathogens.* 2021 Oct 12;10(10):1310. doi: 10.3390/pathogens10101310.

98. Almatroudi A. Biofilm resilience: molecular mechanisms driving antibiotic resistance in clinical contexts. *Biology (Basel).* 2025 Feb 6;14(2):165. doi: 10.3390/biology14020165.

99. Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro MF. Unlocking the potential of hydrosols: transforming essential oil byproducts into valuable resources. *molecules.* 2024 Sep 30;29(19):4660. doi: 10.3390/molecules29194660.

100. Değirmenci H, Erkurt H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of *Citrus aurantium* L. flowers. *J Infect Public Health.* 2020 Jan;13(1):58-67. doi: 10.1016/j.jiph.2019.06.017.

101. Ukaegbu K, Allen E, Svoboda KKH. Reactive oxygen species and antioxidants in wound healing: mechanisms and therapeutic potential. *Int Wound J.* 2025 May;22(5):e70330. doi: 10.1111/iwj.70330.

102. Michalak M. Plant-derived antioxidants: significance in skin health and the ageing process. *Int J Mol Sci.* 2022 Jan 6;23(2):585. doi: 10.3390/ijms23020585.

103. Abbasnia V, Eslimi Esfahani D, Khazdair MR, Oryan S, Foadoddini M. The therapeutic potential of *Melissa of-*

ficinalis L. hydroalcoholic extract and rosmarinic acid in a rat asthmatic model: A study on anti-inflammatory and antioxidant effects. *Avicenna J Phytomed.* 2024 Mar-Apr;14(2):252-67. doi: 10.22038/AJP.2023.23321.

104. Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The role of antioxidants on wound healing: a review of the current evidence. *J Clin Med.* 2021 Aug 13;10(16):3558. doi: 10.3390/jcm10163558.

105. Grigore-Gurgu L, Dumitrașcu L, Aprodă I. Aromatic herbs as a source of bioactive compounds: an overview of their antioxidant capacity, antimicrobial activity, and major applications. *Molecules.* 2025 Mar 14;30(6):1304. doi: 10.3390/molecules30061304.

106. Avola R, Granata G, Geraci C, Napoli E, Graziano ACE, Cardile V. Oregano (*Origanum vulgare* L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. *Food Chem Toxicol.* 2020 Oct;144:111586. doi: 10.1016/j.fct.2020.111586.

107. Vuko E, Dunkić V, Ruščić M, Nazlić M, Mandić N, Soldo B, et al. Chemical composition and new biological activities of essential oil and hydrosol of *Hypericum perforatum* L. ssp. *veronense* (Schrank) H. Lindb. *Plants (Basel).* 2021 May 19;10(5):1014. doi: 10.3390/plants10051014.

108. Olędzka AJ, Czerwińska ME. Role of plant-derived compounds in the molecular pathways related to inflammation. *Int J Mol Sci.* 2023 Feb 28;24(5):4666. doi: 10.3390/ijms24054666.

109. Hagiga A, Dheansa B. Multi-resistant organisms in burn patients: an end or a new beginning. *Burns.* 2024 Jun;50(5):1045-52. doi: 10.1016/j.burns.2024.02.024.