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Abstract: 

This paper sets out to explore whether the investor herding in the 
cryptocurrency market induces correlations in cryptocurrency returns 
using the methodology of Chang et al. (2000) and Galariotis et al. (2015) 
from a daily data sampling period of 3/30/2015 to 5/24/2019. The initial 
regression results show that the cross-sectional absolute deviation of 
return can only be explained by GSCI oil and gold index return, but 
no relationship exists between cross-sectional absolute deviation of 
return and other regression variables, such as return on CCi30, US 
equity risk premium and US/Euro exchange rate return. The herding 
regression results under normal market condition show that a strong 
tendency exists to herd on non-fundamental information that explains 
cross-sectional absolute deviation of returns. As such, cryptocurrency 
returns cannot be predicted on the basis of fundamental economic 
information (e.g., major macroeconomic announcements). Herding on 
non-fundamental information is found to be more pronounced during an 
upward-trending period of the market and other than upward-trending 
period. No signs of herding on fundamental information could be ob-
served under other market conditions. Although the theory suggests 
that herding on non-fundamental information results in more efficient 
outcomes, the above findings do not encourage the diversification of 
traditional assets with cryptocurrency on the basis of low correlation. 
Since cryptocurrency lacks intrinsic value, the exchange is shown to 
provide a pseudo-efficient trading platform for speculative investors.  
Implications for future research are discussed. 
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INTRODUCTION

Herding in financial markets has been a heated debate in the scholarly world over the past two 
decades. Investor herding is a market phenomenon in which a group of investors simply imitate the 
actions of others or base their decisions upon the actions of other investors in the market. It can also be 
a situation in which the trades of a group of investors move in one direction (Nofsinger and Sias, 1999), 
or investors follow trends in the previous trades, ignoring their initial assessments (Avery and Zemsky, 
1998). When herding is present, investor behaviour converges to the average price change pattern of 
the market (Hirshleifer et al., 2003) which may eventually lead to mutual imitation. Not all investors 
have the same set of information about security prices at any given point in time, while prices adjust 
to information as and when the information becomes available to investors. If investors trade without 
information about the trading securities, price movements will reflect the information variables related to 
common premiums in the market, while price changes may co-move closely with this premium on aver-
age because investors sometimes trade for the sake of trading with speculative profit motives (Senarathne 
and Jayasinghe, 2017). In such a case, the benchmark for expected payoffs would be the common market 
expectation (or premium), because there is no security (i.e., firm) specific information 1.  

The term ‘herding’ is closely associated with ‘efficiency’.  Herding is one of the critical factors that 
contribute to market inefficiency. Froot et al. (1992) argue that speculators may choose to study infor-
mation that is completely unrelated to firms, microeconomic and macroeconomic fundamentals. On 
the other hand, scholars show that herding on fundamental information (i.e., mimicking fundamental 
factors) results in inefficient outcomes, whereas herding on non-fundamental information (i.e., mim-
icking firm-specific factors) leads to efficient market conditions (See Bikhchandani and Sharma 2000). 
These findings can be effectively observed in markets with instruments (i.e., assets) that have underly-
ing assets. Cryptocurrencies do not have underlying assets to justify whether the trading occurs due to 
firm-specific (or underlying asset-specific) factors. Although scholars have established efficiency in the 
cryptocurrency market through their findings (e.g. Urquhart, 2016; Wei 2018), no scholar has attempted 
to understand the type of efficiency in cryptocurrency trading with reference to any critical factor af-
fecting market efficiency. Moreover, the papers dealing with detecting herding in the cryptocurrency 
market have so far not attempted to distinguish herding between the fundamental and the spurious 
(i.e., non-fundamental) in order to understand its impact on market efficiency. 

The objective of this paper is to examine the herd behaviour in the cryptocurrency market using the 
framework of Chang et al. (2000). This paper also attempts to distinguish the herding phenomenon 
between fundamental and spurious (i.e., non-fundamental) by applying the methodological approach 
followed by Galariotis et al. (2015). The findings show that there is a strong tendency to herd on non-
fundamental information that explains cross-sectional absolute deviation of returns under normal and 
up-trending market conditions. The paper is organized as follows: Section two provides the econometric 
framework. Section three provides the statistical properties of the sample data. Section four outlines 
and discusses the findings. Section five concludes the paper.   

LITERATURE REVIEW

The famous work of Chang et al. (2000) examines the herd behaviour in the stock markets of five 
countries namely, the USA, Japan, South Korea, Hong Kong and Taiwan, and finds no evidence for herding 
in the U.S. and Hong Kong markets. However, they find partial evidence for herding in Japanese markets, 
and significant evidence for herding in the stock markets of South Korea and Taiwan. 

1	 This is known as common market premium, which is the difference between overall market expectation (i.e., market risk) 
and the aggregate expectations formed on the basis of firm-specific information.
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Herding has now become a common phenomenon in equity markets, and a number of scholars have ob-
served herd behaviour in equity markets around the world (See, e.g., Peiyuan and Donghui, 2002; Demirer and 
Kutan, 2006; Tan et al., 2008; Chiang and Zheng, 2010; Demirer et al., 2010; Balcilar et al., 2013; Chen, 2013). 

Since the introduction of cryptocurrency (i.e., Bitcoin) in the year 2009, there have been several 
large literature attempts to understand the nature and characteristics of cryptocurrency. Among them, 
several papers identify Bitcoin (i.e., the largest cryptocurrency according to market capitalization) as a 
speculative instrument, although the main purpose of its introduction was to facilitate the settlement 
of commercial transactions. Along these lines, Yermack (2015), Baek and Elbeck, (2015), Cheah and 
Fry (2015), Bouoiyour and Selmi (2015), Dyhrberg, (2016), Baur et al. (2017), and Senarathne (2019) 
establish cryptocurrency (or Bitcoin) as a speculative asset rather than a medium of exchange. The main 
feature of cryptocurrency is that it does not have an underlying asset and, as such, no reliable method 
could be used to assess the value of the currency. 

Herding phenomenon could be effectively interpreted for financial markets with instruments (i.e., 
securities) having underlying assets. However, Vidal-Tomás et al. (2018) find evidence for herding during 
a down-trending market, and observe that the smallest cryptocurrencies tend to herd towards the price 
change dispersion of the largest ones. Using a rolling window analysis, Bouri et al. (2018a) find that the herd 
behaviour varies over time in the cryptocurrency market as uncertainty increases. Caporale et al. (2018) 
examine the degree of predictability of cryptocurrencies, and find that the current value of cryptocurrency 
is highly positively correlated with its past and future values. They attribute these findings to market inef-
ficiency and the ability of investors to earn arbitrage profits by analyzing the trends in price movements. 

Poyser (2018) examines the herd behaviour using Markov-Switching approach, and finds evidence for 
herding. Derived from a single-factor capital asset pricing model, the framework introduced by Chang et 
al. (2000) can be meaningfully applied when the asset prices are determined by the information available 
to investors on the underlying trading assets. In the absence of an underlying asset of a trading currency, 
investors are either trading for speculative reasons or gambling (Senarathne 2018). Van Wijk (2013) shows 
that the Bitcoin price is determined mainly by the macroeconomic and financial developments of major 
economies. However, Cheah et al. (2015) unearth an important fact about Bitcoin in that the fundamental 
value of Bitcoin prices is zero, and demonstrate that it exhibits speculative bubbles.  

The papers reviewed so far have made no attempts to understand what drives herding in the crypto-
currency market. Understanding that would give us an idea about market efficiency (See Bikhchandani 
and Sharma 2000), because spurious herding may lead to an efficient outcome, while intentional herd-
ing may not. In the absence of underlying assets in the cryptocurrency market, it is difficult to establish 
market efficiency without carrying out an adequate analysis of the market behaviour. Efficiency in the 
cryptocurrency market cannot simply be assessed by observing the level of correlation between crypto-
currencies and other speculative assets or economic variables, as shown by a number of scholars (See, e.g., 
Chuen et al., 2017; Guesmi et al., 2019). Instead, additional test procedures must be employed to understand 
what factually drives efficiency of cryptocurrency. The framework used by Galariotis et al. (2015) provides a 
meaningful way to analyze the type of herding that can impact cryptocurrency market efficiency.

Econometric Framework

Chang et al. (2000) introduce a simple framework to detect herd behaviour in financial markets. They 
use cross-sectional absolute deviation (CSAD) as a proxy for the unobservable expected CSAD. In their 
work, CSAD is estimated using the average absolute value deviation of each stock relative to the return 
on an equally-weighted market portfolio. The model assumes a non-linear relationship between CSAD 
and square of the market return.2 Consider the following model in the sense of Chang et al. (2000):

2	 Note that this study omits cross-sectional standard deviation (CSSD) method given the inherent limitations associated 
with its regression (e.g. effect of outliers) 
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where Rit is the observed return of cryptocurrency i at time t , and CSADN is the total number of cryp-
tocurrencies in the portfolio. The portfolio is formed with Bitcoin, Litecoin, Tether, Nem, Ripple. CCi30t 
is the cryptocurrency market return proxied by the CCi30 cryptocurrency index at time t , which was 
created and has been maintained since 1st January 2017. The base value is set at 100 on 1st January 2015 
for the computation of index, and its constituents are maintained by an independent team of mathemati-
cians and fund managers led by a panel of professors and experts (See https://cci30.com/#statistics for 
a detailed description on constituents and methodology). 30 cryptocurrencies were chosen based on 
five main characteristics: 1. diversified; 2. replicable; 3. transparent; 4. provides in-depth coverage of the 
entire sector; 5. presents the best risk-adjusted performance profile possible. The following specification 
can be used to investigate the general herd behaviour in the cryptocurrency market: 

where L is the lag operator, and a is the constant of the conditional variance equation, ht . Obviously, 
a>0 and π  and λ  are the non-negative ARCH and GARCH coefficients whose auto-regressive struc-
ture requires shocks to volatility to persist over time. Henceforth, coefficients of all mean equations 
are estimated by the above GARCH variance specification (04), which is unnecessary to repeat under 
each mean regression. A number of authors document that there is no leverage effect in the cryptocur-
rency market (see: e.g., Dyhrberg, 2016; Urquhart, 2017; Othman et al., 2019; Senarathne 2019) and, as 
such, the volatility estimation is limited to the GARCH (1, 1) specification see also Glaser et al., 2014 
for a well-received work).    

In the presence of herding, the coefficient γ3 should be negative and statistically significant. The idea 
is that, if investors tend to follow the aggregate market behavior during periods of large average price 
movements or during the periods of extreme market conditions, there should be a less-than-proportional 
increase or even decrease in the cross-sectional absolute return deviation. 

Equations (1) and (2) are based on the idea that the market exhibits herding when investors react 
to information relating to microeconomic or macroeconomic fundamentals, rather than firm-specific 
information events. In view of this, Galariotis et al. (2015) examine whether the herd behaviour is 
caused by fundamental information (e.g., fundamental macroeconomic announcements) attached 
to securities trading. A more appropriate way to distinguish between intentional (or fundamental) 
herding and spurious herding is to identify whether the herding outcome results in efficient market 
conditions. Spurious herding may sometimes present due to spurious correlation between the trading 
behaviour (pattern) of a group of investors and the average trading pattern of the market. This does not 
necessarily indicate that the investors move towards the market average on fundamental information 
because there is a common premium in the market (see Senarathne and Jianguo 2018). If herding is 
present when similar fundamental information is not available to investors, or when investors do not 
react to fundamental information, this type of herding can be identified as ‘spurious,’ as opposed to 
the general idea of herding. This form of herding may lead to an efficient outcome, while intentional 
or fundamental herding results in a fragile market, excess volatility, and systematic risk.     

(1)

(2)

(3)

(4)
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In order to estimate CSAD driven by non-fundamental information or the spurious component of 
price changes, the following method could be used in the pattern of Galariotis et al. (2015). Regress   
CSAD on some variables could explain cryptocurrency returns. 

where RPUS  is the US equity risk premium, which is the value-weighted return of all CRSP firms incor-
porated in the US and listed on the NYSE, AMEX, or NASDAQ exchanges. GSCIGOLD and GSCIOIL are 
the S&P Dow Jones major investable GSCI commodity indices for gold and oil. CCi30 is the cryptocur-
rency index mentioned above, and EXR is the U.S/Euro exchange rate. 

Emulating Galariotis et al. (2015), let the CSAD driven by non-fundamental information be esti-
mated by the following equation:

Herding under fundamental and non-fundamental information could be estimated by the following 
equations:

In the presence of herding, coefficient γ3  should be negative and statistically significant. It is clear 
that the cryptocurrencies do not have underlying assets. However, a number of scholars have shown 
that it is driven by macroeconomic fundamentals (see especially van Wijk 2013). Another section of 
scholars show that the cryptocurrency price changes are random and, as such, the prices are driven by 
random information events (see section 1 literature). In the absence of an underlying asset, this random 
information may include cryptocurrency-specific events, for example, ICO project, trading restrictions, 
frauds, hacking, trading suspension, or restrictions on cash withdrawal, etc. 

The literature shows that herding is more intensive when the markets are on the uptrend (see, e.g., 
Ouarda et al., 2013; Litimi et al., 2016; BenSaïda 2017). A dummy variable Dt

up is introduced at time t , 
which takes the value 1 for all positive observations during the sampling period, or zero otherwise. The 
following herding regression specification captures the magnitude of investor herding under upward-
trending market condition: 

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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Coefficient γ4 should be negative and statistically significant if the investor herding is more pro-
nounced when the market is up, rather than down or neutral. If the herding is more intensive during 
periods other than up-trending market, the coefficient γ3 should be statistically significant and negative. 

Scholars have also shown that herding is more pronounced in crisis and bullish periods (see Bikh-
chandani and Sharma 2000; Bowe and Domuta 2004; Hwang and Salmon 2004; Philippas et al., 2013; 
Yao et al., 2014; Galariotis et al., 2015; Bekiros et al., 2017). As such, dummy variables Dbullish and Dcrisis  
are introduced, which take value 1 during the period of the bullish market (the largest bullish cluster) 
from 3/15/2017 to 1/05/2018, and during the period of crisis (the largest crisis cluster) from 1/07/2018 
to 12/05/2018, respectively, or otherwise zero. The following two separate regressions detect the herd 
behavior during bullish and crisis periods of the market:  

Similarly, if the herding is more pronounced under bullish or crisis market conditions, the coefficient γ4 
should be negative and statistically significant. If the herding is more intensive during periods other 
than bullish or crisis market periods, coefficient γ3 should be negative and statistically significant. 

Market volatility and trading activities are highly correlated, and this induces market participation 
and active trading (Darrat and Rahman 1995; Gallo and Pacini, 2000). A number of scholars demon-
strate that investors tend to herd more when the market is highly volatile (see, e.g., Dennis and Strick-
land 2002; Gleason et al., 2004; Gabaix et al., 2006; Holmes et al., 2013). A dummy variable Dvolatility  is 
introduced, which takes the value 1 when the volatility of CCi30 index (i.e., market volatility) return 
exceeds the average market volatility of the sampling period. The average market volatility can easily 
be computed from the following GARCH (1, 1) volatility estimates by Eviews: 

(12)

(13)

(14)

(15)

recall  (03)

recall  (04)

(16)

(17)

(18)
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If herding is more pronounced during high market volatility periods, the coefficient γ4 should be 
statistically significant and negative. The coefficient γ3 should be negative and statistically significant, 
if herding is more intensive in periods other than high volatility periods. 

Data and Sample

The S&P GSCI commodity indices data are obtained from S&P Dow Jones Indices LLC (available 
at https://us.spindices.com) and the US/Euro exchange rate data are available on the Federal Reserve 
Bank of St. Louis webpage (available at https://fred.stlouisfed.org). US equity risk premium data are 
obtained from the data library (MBA portal) of Kenneth R. French (http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/index.html). The cryptocurrency index CCi30 data were downloaded from 
the webpage www.cci30.com (available at ttps://cci30.com/). Readers are advised to visit the webpage 
above for a detailed description about the computation and its constituents. The cryptocurrency price data 
are obtained from the webpage https://coinmarketcap.com. The sample covers 1,048 daily observations 
from the period 3/30/2015 to 5/24/2019. The following steps were followed in processing the data and 
generating the final outcome. The relevant data are first downloaded from the respective websites and 
double-checked for accuracy before the return series is generated for each selected cryptocurrency, Bitcoin, 
Litecoin, Tether, Nem, Ripple (https://coinmarketcap.com), and other assets. The sample is drawn from 
the top twenty cryptocurrencies ranked by market capitalization. Since most of the cryptocurrencies were 
launched very recently, priority was given to the date of launch, in addition to the market capitalization, in 
order to cover a sufficient amount of observations. When portfolio returns are computed, equally-weighted 
average returns were considered. Once the returns are generated, regressions are run on Eviews statistical 
software. The raw data used for the research can be reached at http://dx.doi.org/10.17632/k32dph9hjc.1. 
The correlations among regression variables and the descriptive statistics of the sample data are as follows: 

Table 1 – Correlation Matrix of Regressors

Variable PRUS GSCIOIL GSCGOLD Rcci30t | Rcci30t | EXR Dup Dbullish Dcrises Dvolatility

PRUS 1 0.334 -0.114 0.066 -0.072 -0.077 0.017 0.020 -0.025 -0.014
GSCIOIL 0.334 1 0.033 0.026 -0.057 0.029 -0.003 0.021 -0.019 0.028
GSCGOLD -0.114 0.033 1 0.050 0.065 0.425 0.035 0.023 -0.022 0.015
Rcci30t 0.066 0.026 0.050 1 -0.033 0.013 0.656 0.140 -0.144 0.029
| Rcci30t | -0.072 -0.057 0.065 -0.033 1 0.040 -0.003 0.188 0.151 0.303
EXR -0.077 0.029 0.425 0.013 0.040 1 0.033 0.054 -0.029 0.001
Dup 0.017 -0.003 0.035 0.656 -0.003 0.033 1 0.123 -0.123 -0.002
Dbullish 0.020 0.021 0.023 0.140 0.188 0.054 0.123 1 -0.261 0.242
Dcrises -0.025 -0.019 -0.022 -0.144 0.151 -0.029 -0.123 -0.261 1 0.308
Dvolatility -0.014 0.028 0.015 0.029 0.303 0.001 -0.002 0.242 0.308 1

As Table 1 reports, the correlations among regression variables are very low. The highest correlation 
is recorded at 0.656 and the lowest is -0.001. Crisis dummy, absolute market return, and up-dummy 
are negatively correlated with most of the other variables. In addition to the abovementioned variables, all 
other variables are mostly positively correlated with each other. Since the reported correlations are consid-
erably low, the cryptocurrency pricing and herding regressions are free from multicollinearity problem.
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Table 2 – Descriptive Statistics of Sample Data

Variable Mean Med. Max. Min. JB ADF Q (20)
CSADpt 0.033 0.021 0.218 1.7E-05 1410.72 -12.37 792.64

CSAD FUND 0.025 0.024 0.045 0.013 1124.6 -34.79 27.31
pt

CSADNONFUND 0.008 -0.004 0.195 -0.032 1441.62 -12.33 786.96
pt

PRUS 3.9E-04 0.001 0.051 -0.040 702.55 -32.24 34.96
GSCIOIL 1.8E-04 0.001 0.101 -0.080 168.68 -35.59 26.49
GSCIGOLD 8.0E-05 -1.2E-04 0.046 -0.034 422.21 -33.61 25.08
Rcci30t 0.004 0.004 0.196 -0.292 1073.6 -31.55 58.76
| Rcci30t | 0.032 0.019 0.292 2.1E-05 3364.4 -10.69 456.1
EXR 3.0E-05 0.000 0.031 -0.027 282.37 -33.07 26.84
Dup 0.563 1.000 1.000 0.000 174.68 -31.10 49.81
Dbullish 0.195 0.000 1.000 0.000 421.80 -1.79 18512
Dcrises 0.219 0.000 1.000 0.000 322.13 -1.70 18709
Dvolatility 0.383 0.000 1.000 0.000 176.84 -6.73 4887

Notes: 

1. JB is the Jarque–Bera test statistic for normality. Under null hypothesis for normality, critical 
value of χ2 (2) distribution at 5% significance level is 5.99.

2. ADF is the Augmented Dickey–Fuller test statistic for stationarity of data for maximum 21 lags. 
Under null hypothesis for data having unit root, the critical value at 5% significance level is -2.87.

3. Q (20) is the Ljung-Box Q statistic for serial correlation upto20 lags. Under the null hypothesis 
for no serial correlation, the critical value of χ2 (20) distribution at 5% significance level is 31.41.

As Table 1 reports, all regression variables including the distribution of CSAD are highly nonnormal, 
as JB test statistic substantially exceeds the critical value of 5.99 at 5 percent significance level. Certain 
variables such as absolute market return and dummy variables are usually nonnormal, as their values 
are generated from specific computations. The descriptive statistics of these sample data are reported 
for readers who understand the nature of their distributions. Except for bullish and crisis dummy vari-
ables, all other variables are highly stationary. The ADF test statistic substantially exceeds the critical 
value of -2.87 for these variables. However, variables such as CASDp

FUND , returns on GSCI gold, and oil 
indices and exchange rate return data are serially uncorrelated, as null hypothesis for no serial correla-
tion up to 20 lags is accepted under the Ljung-Box Q test. Other variables are highly serially correlated.  
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Figure 1 – Distributions of CSAD and return on CCi30 Index

As Figure 1 exhibits, CCi30 index return is highly volatile during 2017 and 2018. This period is 
characterized by the largest cluster of price changes in the history of cryptocurrency trading. CSAD 
driven by fundamental information seems to fluctuate somewhat during 2015 and 2016. No signifi-
cant variation in CSAD driven by fundamental information is observed from 2017 to 2018, although 
a significant variation in market return (i.e., CCi30 index return) can be observed during this period. 
This provides an indication as to whether the herding during bullish and crisis periods (i.e., 2017-2018) 
was not driven by fundamental information pertaining to cryptocurrency price changes. Furthermore, 
non-fundamental CSAD is highly variable from 2017 to 2018, and seems to correlate somewhat with 
CCi30 index return. However, a conclusion on the above can only be reached based on the results of 
herding regression specifications outlined above. 

Empirical Findings 

As Table 3 outlines, US equity risk premium, cryptocurrency market return, and US/Euro exchange 
rate return are not significant for explaining CSAD. However, GSCI index for oil and gold are significant 
in the regression equation (5) at 10 percent significance level. 
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Numerous papers show that the cryptocurrency returns are not correlated with macro/microeconomic 
variables; thus, exhibiting a speculative nature of price changes. The scholars have argued that it provides 
significant diversification benefits (see, e.g., Briere et al., 2015; Baur et al., 2018) based on the assess-
ment of correlation between cryptocurrency and other speculative assets. However, CSAD is shown to 
provide some predictive power of GSCI oil and gold commodity index returns. ARCH and GARCH 
coefficients are highly statistically significant at 5% significance level. The sum of π and λ is less than 
unity, indicating a good fit for the underlying return series volatility process. Since the leverage effect is 
not observed in the cryptocurrency market for the considered period, the GARCH (1, 1) model more 
preciously captures the time-varying volatility. 

Table 3 – CSAD Regression Results

Coefficient Value t-statistic P-value
ϕ 0.024** 27.85 0.000

ψ1 -0.104 -1.051 0.293

ψ2 -0.071* -1.874 0.061

ψ3 0.200* 1.800 0.072

ψ4 0.013 0.455 0.649

ψ5 -0.171 -0.859 0.391

a 5.6E-05** 2.835 0.005

π 0.176** 3.573 0.000

λ 0.792** 17.124 0.000

1. **Statistically significant at 5 percent, assuming returns are conditionally normally distributed. 
*Statistically significant at 10 percent. 

2. The coefficients are estimated using the methods described by Bollerslev and Wooldridge (1992) 
for obtaining quasi-maximum likelihood (QML) covariances and robust standard errors.

3. Log likelihood is 2154.78 and Durbin-Watson statistic for autocorrelation in the residuals 
from the regression above is 1.106 and Akaike info criterion for the model is -4.098.

Table 4 outlines the test results of general herding regressions. The results show that the coefficient γ3 , 
which captures the herd behaviour of investors (on fundamental information) in the cryptocurrency 
market, is positive and statistically insignificant at 5 percent significance level. This confirms that there 
is no evidence for herding on fundamental information (e.g., information regarding economic policy 
uncertainty, financial and economic crisis, economic innovation, regularity formwork, economic 
growth, IT sector innovations, etc.) in the cryptocurrency market during the sampling period. Herd-
ing on fundamental information generally results in inefficient market conditions (Bikhchandani and 
Sharma 2000). However, there is a tendency to herd on non-fundamental information as coefficient 
γ3 is negative and statistically significant at 1 percent significance level. This non-fundamental infor-
mation may include information concerning cryptocurrency trading itself, for example, ICO project, 
trading restrictions, system failures such as hacking, frauds, trading suspension, or restrictions on cash 
withdrawal, etc. Concerning stock markets, Kremer and Nautz, (2013, p. 1) argue that unintentional 
herding can sometimes be inefficient if the trading is not driven by fundamental values. 
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Unlike assets trading in other markets, there are no underlying assets for cryptocurrency trading. 
Therefore, there is no meaningful information flow that reflects the true value of underlying cryptocur-
rencies. As such, the cryptocurrency price changes can be pseudo-efficient based on the findings above. 
These findings do not suggest that traditional assets could be diversified with cryptocurrencies simply 
on the basis of correlation (e.g., low correlation) between cryptocurrencies and traditional assets. If 
diversified, care must be taken in periodically evaluating the investment portfolio for possible under-
estimation of true risk associated with cryptocurrency investments (See Šoja and Senarathne 2019).     

Table 4 – General Herding Regression Results

 Dep.  
Variable γ1 γ2 γ3 π λ AIK DW4 LogL

CSAD FUND 0.012*
(9.355)

0.004
(0.800)

0.003
(0.114)

0.152*
(3.371)

0.809*
(20.25)

-9.26 2.15 4854
pt

CSADNONFUND 0.013
(0.510)

0.490*
(8.182)

-1.217*
(-3.232)

0.193*
(4.170)

0.765*
(13.79)

-4.30 1.23 2256
pt

Notes: 
1. Asymptotic t-statistic appears in parenthesis. 
2. *Statistically significant at 1 percent, assuming returns are conditionally normally distributed.  
3. The coefficients are estimated using the methods described by Bollerslev and Wooldridge (1992) 

for obtaining quasi-maximum likelihood (QML) covariances and robust standard errors.
4. DW is the Durbin-Watson statistic for autocorrelation in the residuals from the respective 

regression. Field (2000)’s rule of thumb suggests that values under 1 or more than 3 are a 
definite cause for concern and any value within the rage is acceptable. 

5. LogL is the Log likelihood value and AIK is the Akaike info criterion.  

Table 5 reports the herding regression test results under different market conditions. Equations 
10 and 11 estimate the impact of herding under up-trending market and other than upward-trending 
market conditions during the sampling period. Using logistic regression techniques, Bouri et al. (2018b) 
find evidence for significant herding when uncertainty increases. Therefore, it is likely that herding may 
be more intensive under extreme market conditions. More importantly, Vidal-Tomás et al. (2018) find 
evidence for herding only during down-trending markets. However, the findings of this study show that 
the cryptocurrency market is characterised by herding during down-trending and upward-trending 
mark conditions on non-fundamental information, as coefficients γ3 and γ4 are negative and highly 
statistically significant at 1 percent significance level. Herding on non-fundamental information does 
not indicate inefficient conditions in the cryptocurrency market, although herding on fundamental 
information does. Given the lack of intrinsic value of cryptocurrency, this form of herding can lead to 
pseudo-efficient conditions as opposed to the market-efficiency concept put forward by Fama (1965) 
and many of his successors (see, e.g., Tobin 1984; Roll 1988). There is no evidence for the presence of 
herding during other market conditions (bullish, crisis, and high market volatility) under fundamen-
tal and non-fundamental CSAD regressions, as coefficients γ3 and γ4 are not negative, although some 
coefficients are significant. 
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Table 5 Herding under Market Conditions
Equ. Dep. Var. γ1 γ2 γ3 γ4 π λ AIK DW4 LogL

10& 
11

CSADFUND 0.009*
(1.687)

0.017**
(3.225)

0.006
(0.189)

-0.012
(-0.325)

0.153**
(3.375)

0.808**
(20.15)

-9.28 2.14 4855
pt

CSADNONFUND -0.463**
(-6.203)

0.563**
(6.717)

-1.096**
(-2.492)

-1.792**
(-2.503)

0.197**
(4.217)

0.762**
(13.77)

-4.29 1.23 2257
pt

12& 
13

CSADFUND 0.014**
(7.495)

0.012**
(6.962)

0.033**
(2.002)

0.008
(0.740)

0.153**
(3.312)

0.807**
(19.63)

-9.27 2.15 4855
pt

CSADNONFUND 0.048*
(1.752)

-0.006
(-0.113)

1.240**
(4.450)

2.258**
(5.907)

0.160**
(4.359)

0.819**
(22.17)

-4.22 1.21 2217
pt

14& 
15

CSADFUND 0.013**
(8.548)

0.012**
(4.306)

0.019*
(1.910)

0.020
(0.983)

0.152**
(3.354)

0.810**
(20.27)

-9.26 2.15 4854
pt

CSADNONFUND 0.030
(1.081)

-0.010
(-0.248)

2.266**
(9.067)

0.771**
(2.681)

0.160**
(4.397)

0.822**
(22.33)

-4.24 1.21 2227
pt

17& 
18

CSADFUND 0.013**
(5.904)

0.012**
(7.053)

0.041**
(1.999)

0.017
(1.354)

0.153**
(3.368)

0.809**
(20.37)

-9.26 2.15 4856
pt

CSADNONFUND 0.021
(0.481)

0.047*
(1.840)

3.032**
(6.998)

0.982**
(4.538)

0.167**
(4.655)

0.814**
(22.32)

-4.26 1.15 2236
pt

Note: 
1. Asymptotic t-statistic appears in parenthesis.   
2. **Statistically significant at 5 percent assuming returns are conditionally normally distributed. 

*Statistically significant at 10 percent
3. The coefficients are estimated using the methods described by Bollerslev and Wooldridge (1992) 

for obtaining quasi-maximum likelihood (QML) covariances and robust standard errors.
4. DW is the Durbin-Watson statistic for autocorrelation in the residuals from the respective 

regression. Field (2000)’s rule of thumb suggests that values under 1 or more than 3 are a 
definite cause for concern and any value within the rage is acceptable. 

5. LogL is the Log likelihood value. 

CONCLUDING REMARKS

The notion of herding was first rooted in zoology before it had been widely used in sociology, psy-
chology, economics, and finance. It is the act of bringing individual animals together into a group and 
maintaining or moving the group from place to another; where the herder directs the animals (the 
animals need not worry about where they go). However, there is no-one to direct investors in specula-
tive markets (e.g., cotton futures, stock markets, oil and gold, etc.); instead, the investors are directed 
by the information they have received. As such, investor herding in speculative markets can only be 
identified with reference to the information pertaining to underlying assets (e.g., firms).   

The initial regression results show that the CSAD can only be explained by GSCI oil and gold index 
return. No relationship exists between CSAD and other variables such as return on CCi30, US equity 
risk premium, and US/Euro exchange rate return. These findings are in line with the observations of 
Baur and Lucey (2010), Briere et al. (2015) and Baur et al. (2018), in that for return on stocks, exchanges 
rates are uncorrelated with cryptocurrency returns.3  
3	 These studies examine the relationship between cryptocurrency return and return on other speculative variables such stocks, 

exchange rates, oil and gold. However this study finds that CSAD can be explained by the GSCI oil and gold index returns. 
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The herding regression under normal market (i.e., general market) conditions shows that a strong 
tendency exists to herd on non-fundamental information that explains CSAD of returns. This clearly 
indicates the speculative nature of cryptocurrency price changes, and supports the argument that 
cryptocurrency returns cannot be predicted on the basis of fundamental economic information (e.g., 
major macroeconomic announcements), as documented by a number of scholars. Furthermore, herding 
regression under different market conditions reveals that herding on non-fundamental information 
in the cryptocurrency market is more pronounced during an upward-trending market and other than 
upward-trending market periods. No evidence for herding on fundamental information could be ob-
served under normal or other market conditions (e.g., bullish, crisis, high volatility). 

The findings of this research have several implications for future research. Although the cryp-
tocurrency market may be efficient at the pricing stage, as shown by numerous papers, herding on 
non-fundamental information suggests that the trading is functionally efficient. However, this form 
of efficiency does not reflect the true underlying security-specific information (e.g., firm-specific in-
formation in the case of stock market) in the absence of underlying assets (i.e., lack of intrinsic value) 
in the cryptocurrency trading platform. As such, cryptocurrency can be regarded as a pseudo-efficient 
instrument for speculative exchange traders. Previous research on market efficiency must be revisited 
to research the behavioural factors affecting cryptocurrency price changes. These findings do not sug-
gest that traditional assets could be diversified with cryptocurrency simply on the basis of correlation 
(i.e., low correlation) between cryptocurrencies and traditional assets. Furthermore, the findings are 
important for investors and portfolio managers to understand the market dynamics and the role of 
cryptocurrency in portfolio diversification.
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Rezime: 
Ovaj rad ima za cilj da istraži da li gomilanje investitora, na tržištu 
kriptovalute, dovodi do korelacije u prinosu kriptovalute – uz upotrebu 
metodologije Čenga i dr, Galariotisa i dr, a na primeru uzorka poda-
taka u vremenskom okviru 30.03.2015-24.05.2019. Početni rezultati 
regresije ukazuju na to da apsolutna, standardna devijacija širokog 
spektra u prinosu može biti objašnjena samo indeksom prinosa GSCI 
ulja i zlata, kao i da ne postoji spona između apsolutne standardne 
devijacije širokog spektra i drugih varijabli regresije, poput prinosa 
u vezi sa Cci30, premije za tržišni rizik SAD-a, kao i prinosa koji se 
odnosi na kurs američkog dolara ili Evra. Rezultati regresije gomilanja 
– u standardnim uslovima tržišta, pokazuju da postoji izražena sklo-
nost gomilanja na ne-fundamentalnim informacijama, što objašnjava 
apsolutnu standardnu devijaciju prinosa širokog sprektra. Kao takvi, 
prinosi kriptovalute ne mogu da se predvide, a na osnovu fundamen-
talnih, stvarnih informacija, relevantnih za ekonomiju (npr. značajne 
objave na makroekonomskom planu). Gomilanje zasnovano na infor-
macijama koje nisu fundamentalne učestalije je, kako je primećeno, 
tokom perioda rasta na tržištu, dok ovakve vrste gomilanja nema u 
drugačijim okolnostima na tržištu. Premda teorija sugeriše da gomilanje 
zasnovano na infomacijama koje nisu od fundamentalne vrednosti 
dovodi do efikasnijih ishoda, prethodno izloženo ne govori u prilog 
diversifikacije tradicionalnih sredstava kriptovalutom, na osnovu slabe 
korelacije. Budući da kriptovaluti nedostaje intrinzična vrednost, takva 
razmena dovodi do nastanka pseudo-efikasne platforme za trgovinu 
spekulativnih investitora. Na kraju rada, navode se implikacije u vezi 
sa budućim istraživanjem.

Ključne reči: 
ponašanje gomile,  
kriptovaluta, fundamentalne 
informacije,  
CASD,  
portfolio diversfikacija,  
pseudo-efikasnost,  
intrinzična vrednost.
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PONAŠANJE GOMILE NA TRŽIŠTU KRIPTOVALUTE: STVARNO VS LAŽNO 
GOMILANJE
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