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CLUSTERING BASED ON THE ARCHETYPAL ANALYSIS
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Abstract: 

Archetypal analysis is a dimensionality reduction technique, which is based 
on finding a small number of representative elements, called archetypes. 
The observations are then approximated by convex combinations of the 
archetypes. The coefficients of the convex combinations can be therefore 
interpreted as probabilities of discrete random variables. The values of 
the variables identify the classes, represented by the archetypes, to which 
the observation belongs. Based on this interpretation, we propose to use 
the Hellinger distance between probability distributions to measure the 
distance between the observations in the dataset and to use it as an input 
to clustering. We apply this procedure to monthly data of zero-coupon 
yield curves in 2003-2022. We identify the archetypal yield curves and 
cluster the observed curves into six clusters. Since the observations are 
measured in time, the resulting clustering also gives a segmentation of 
the time period under consideration.
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INTRODUCTION

In the data analysis setting proposed by Cutler and Breiman (1994), an archetype is a data point which 
is a typical example of a particular kind of observation based on its characteristics, i.e., the observed variables 
or features. All observations in the dataset are then written as convex combinations of the archetypes.

Different modifications of the original archetypal analysis have been proposed, they include 
archetypoid analysis where the role of archetypes is given to selected observed data points (Vinué, 
Epifanio & Alemany, 2015), extensions to functional data (Epifanio, 2016), integer, binary 
and probability data (Seth & Eugster, 2016), ordinal data (Fernández, Epifanio and McMillan, 2021), 
weighted and robust archetypal analysis (Eugster & Leish, 2011), hierarchical archetypal analysis (Canhasi 
& Kononenko, 2016), dealing with missing data (Epifanio, Ibánez & Simó, 2020). Application of archetypal 
analysis include sports analytics (Vinué & Epifanio, 2017), analysis of publications in the field of 
economics (Seiler & Wohlrabe, 2013), weather and climate extremes (Hannachi & Trendafilov, 2017), 
brain responses (Tsanousa, Laskaris & Angelis, 2015), influenza outbreaks (Mokhtari, Landguth, 
Anderson & Stone, 2021), returns and volatility of S&P 500 stocks (Moliner & Epifanio, 2019).
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Our paper aims to apply the Hellinger distance, known from the comparison of probability distributions 
to the results of the archetypal analysis. Since the observations can be characterized by weights obtained 
as an output of the archetypal analysis, which has a character of discrete probability distributions, the 
Hellinger distance will make it possible to cluster the observations. We use this methodology to analyse 
the data about zero-coupon yield curves in the USA in 2003-2022 (i.e., 20 years) with maturities ranging 
from 1 month to 30 years. Although the paper is meant primarily as an exploratory data analysis, an 
analysis of yield curves brings a natural question about its relation to well-known factors describing 
yield curves – level, slope and curvature (Litterman & Scheinkman, 1991). We expect the archetypes 
to have a certain relation to these factors and we will explore it on the dataset under study.

The paper is organized as follows. The methodology section reviews the archetypal analysis and 
Hellinger distance and then describes our proposed approach for their combination with illustrative 
examples. The application section describes the yielded data and provides the results of the archetypal 
analysis and the hierarchical clustering using the Hellinger distance. We show the yield curves for each 
of the clusters and present the segmentation of the time period considered.

METHODOLOGY

Archetypal analysis

Given n observations of m variables, the archetypes form a set of p elements (typically much smaller 
than the number of observations n), with each archetype being an m-dimensional vector (i.e., it has its 
value for each variable of the dataset). For the given archetypes, the observations are approximated by 
convex combinations of the archetypes by minimizing the norm of the matrix of the differences between 
them. At the same time, the archetypes are constructed as convex combinations of the observations. 
Therefore, the optimization problem consists of finding two matrices of optimal weights: one defines 
the archetypes as convex combinations of data, and the latter approximates the observations by convex 
combinations of the archetypes. The optimal solution is not given by a closed-form expression but needs 
to be found using numerical methods. The original paper introducing the archetypal analysis (Cutler 
& Breiman, 1994) addressed this question, a modification, focusing on selecting the initial candidates 
for archetypes, has been suggested (Bauckhage & Thurau, 2009). We use the implementation from the 
archetype package (Eugster & Leisch, 2009) of R software with the default parameters, i.e., the default 
value of the penalization in solving the convex least squares problem and using the QR decomposition 
when solving the system of linear equations.

There is no universal rule for selecting the number of archetypes. We use the elbow criterion, common 
in statistical analyses and suggested also in the presentation of the R package which we use (Eugster & 
Leisch, 2009): The algorithm is run for several possible values and the residual sum of squares is plotted 
against the number of archetypes. The final number of archetypes is selected by determining, where the 
curve starts to decrease more slowly. Additionally, since the initial archetypes are selected randomly, 
we run the algorithm several times for each number of archetypes under consideration. Furthermore, 
this helps to avoid the local minima in the optimization process (Eugster & Leisch, 2009).      
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Hellinger distance between probability distributions

In general, a statistical distance is a quantification of a “distance” (from a chosen point of view) 
between two probability distributions. Many statistical distances are not metrics, because they are not 
symmetric, typical examples are divergences such as Kullback–Leibler divergence (Kullback & Leibler, 
1951). They give the distance of a given distribution from one particular reference distribution. However, 
in applications without a reference distribution, this is not a desirable property, and it is preferred to 
use a statistical distance which is a metric. An example of such a statistical distance is Hellinger distance 
(Hellinger, 1909), which we use for our analysis. It has been successfully used in various applications 
in existing literature, such as approximation of correlation matrices (Ning et al., 2013), centrality 
measures in social networks (Taheri et al., 2019), distinguishing equilibrium and disordered states in 
time series (Vamvakaris et al., 2018) or multicriteria decision making (Lourenzutti & Krohling, 2014).

The Hellinger distance can be defined for a general random variable in terms of a measure theory 
and simplified for the discrete and continuous random variables. In particular, let us consider two 
discrete random variables with a finite number of possible values which occur with probabilities pi 
and qi respectively. If we denote H as the Hellinger distance between these two discrete probability 
distributions, then 1 - ∑(pi qi)

1/2  is equal to its second power H2.

Application of the Hellinger distance to the results of archetypal analysis

Recall that the output of the archetypal analysis consists of the archetypes and the coefficients which 
approximate the observations as convex combinations of the archetypes. It means that they are weighted 
averages of the archetypes with nonnegative weights, which have a sum equal to one, and therefore 
can be interpreted as probability distributions. They indicate probabilities for the given observation to 
belong to the classes represented by the archetypes (Cutler & Breiman, 1994). 

Our proposed methodology consists of identifying the observations with these probability distributions. 
Then, the distance matrix, needed as an input to hierarchical clustering algorithms, is the matrix of 
Hellinger distances between the probability distributions. In Figure 1 we show that this approach recovers 
clusters which are intuitively expected in several scenarios and compares it with a simple approach which 
assigns the observation to the archetype with the highest weight. For a better graphical representation 
of the examples, we use probability distributions with three possible values (corresponding to three 
archetypes). It allows us to plot them using ternary graphs, for which we use the vcd package (Zeileis, 
Meyer & Hornik, 2007) for the R software.
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Figure 1. Clustering of the simulated data of probability distributions with three possible values, visualized by 
a ternary plot
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Left: Clusters are determined by the highest weight among the archetype weights. Right: The 
proposed methodology with the number of clusters chosen by silhouette criterion (Rousseeuw, 1987) 
implemented in a cluster R package (Maechler, Rousseeuw, Struyf, Huber & Hornik, 2019) and 
hierarchical clustering with single, complete, average and Ward’s method. All the methods lead to the 
same clusters for these data.

APPLICATION TO YIELD CURVE DATA

Data

We use monthly observations for the zero-coupon yield curve in the USA during the period 2003-
2022, i.e., 20 years. For every month, the interest rates with 360 maturities are available from 1 month 
to 30 years: 1 month, 2 months, …, 360 months. The methodology of the yield curve construction is 
given in (Liu & Wu, 2022) and the data are available on the author's website (Liu & Wu, 2023). We 
show a selection of the dataset in Figure 2.
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Figure 2. Sample of the data. Left: selected yield curves, right: time evolution of the yields for selected maturities
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Archetypal analysis

The elbow criterion applied to residual sums of squares, as suggested by (Eugster & Leisch, 2009), 
determines the optimal number of archetypes to be 3, see Figure 3. Since the constrained optimization 
in the archetypal analysis uses a penalization approach, the equality constraint on the sum of the weights 
is not satisfied exactly. Instead of the required value 1, it ranges between 0.9905 and 0.9989. Before the 
subsequent analysis, we scale the weights for each of the observations by dividing them by their sum.

Figure 3. Selection of the number of archetypes
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We show the yield curves corresponding to the archetypes in Figure 4. We can see that two of the 
archetypes are yield curves that correspond to high and low values of the interest rates in the dataset. 
The third archetype is an increasing yield curve. In Figure 5 we show the time evolution of the weights, 
corresponding to each of the archetypes. Clearly, in the different time periods, different archetypes are 
dominant.
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Figure 4. Archetypes for the yield curves
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Figure 5. Time evolution of the weights: archetype 1: light grey, archetype 2: grey, archetype 3: dark grey
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Clustering based on the Hellinger distance

As described in the methodology section, we identify the yield curves in the given month with a triplet 
of weights, corresponding to the archetypes. We consider these triplets as probability distributions and 
compute a matrix of Hellinger distances between them. These distances are then input to hierarchical 
clustering. We consider single, average, Ward and complete linkage and for different choices for the 
number of clusters we evaluate the value of silhouette criterion (Rousseeuw, 1987), a simple measure 
of cluster separation which has become very popular, cf. (Wierzchoń & Kłopotek, 2018). We use the 
implementation by Maechleter et al. (2019). The results are shown in Figure 6. The plot for the single 
and average linkage methods does not show a clear maximum. The Ward linkage leads to a relatively 
high number of clusters. We therefore consider the complete linkage. Since the value of the silhouette 
criterion for 5 and 7 clusters is very close to the optimal, we will compare the corresponding clusters 
with the results obtained by the selected optimal 6 clusters.
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Figure 6. Selection of the number of archetypes. The silhouette criterion is applied to the results of hierarchical 
clustering using single (top left), average (top right), Ward (bottom left) and complete (bottom right) 
linkage
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As in the illustrative examples in the methodology section, we again have three archetypes and 
therefore we can plot the weights using ternary plots. In Figure 7 we show the weights, distinguishing 
them according to the clusters obtained for 6 clusters and Figure 8 shows all the yield curves from the 
dataset and the curves from the individual clusters. This allows us to see that the clusters indeed contain 
visually similar curves, as well as their difference from the remaining observations. Time periods, in 
which the yield curves fall into each of the clusters are presented in Table 1. As we can see, this 
segmentation of the 20 years of data is a reasonable trade-off, when trying to achieve two goals: changing 
the clusters when the yield curve changes its shape and avoiding too frequent changes which would 
prevent us from identifying time periods with a certain regime.

Figure 7. Clustering the weights into 6 clusters using Hellinger distance and complete linkage
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Figure 8. Grey: all yield curves in the dataset, black: yield curves from clusters 1-6 as defined by Table 1 (by rows)
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Table 1. Segmentation of the time period of the dataset (2003-2022)

Cluster Months

1
January 2003 - April 2003
July 2003 - December 2004
January 2008 - October 2008

2

May 2003 - June 2003
November 2008
January 2009 - August 2011
June 2013 - April 2014

3 January 2005 - December 2007
Septemer 2022 - December 2022

4

December 2008
September 2011 - May 2013
May 2014 - October 2017
January 2021 - December 2021

5 November 2017 - February 2020
January 2022 - August 2022

6 March 2020 - December 2020

Finally, we compare the selected clustering with 6 clusters with those obtained for 5 and 7 clusters. 
Recall that in hierarchical clustering, each step consists of joining the two most similar clusters. In the 
case of our data, when going from 6 to 5 clusters, the clusters 4 and 6 are joined. On the other hand, the 
selected clustering with 6 clusters is obtained by joining two clusters in the last step, which now together 
form the current cluster 3. One of these clusters contained subperiods of January 2005 - November 2005 
and August 2007 - December 2007, while the other one contained subperiods of December 2005 - July 
2007 and September 2022 - December 2022.
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CONCLUSION

We proposed a clustering technique which connects the archetypal analysis with the Hellinger 
distance between probability distributions. We applied this method to the data about zero-coupon yield 
curves in the USA during the 20-year period. Since the observations are ordered by time, the clustering 
also provides a time segmentation. The results were reasonable from both points of view – the similarity 
of yield curves in the clusters and the length of the time periods. Also, our hypothesis about the relation 
to classical yield curve factors – level, slope and curvature – was confirmed. The first archetype is a flat 
curve with almost zero slope and curvature and its level is close to the highest observed values. The 
second archetype has a positive slope, but not curvature. Its level is on the other side of the spectrum, 
corresponding to low-interest rates. Therefore, a combination of these two archetypes produces yield 
curves with different levels and slopes (we note that not in arbitrary combinations, but their possible 
values correspond to data, on which the archetypes were constructed), but low curvatures. Curvature 
is added by means of the third archetype.

The continuation of this research lies in several areas. Firstly, the results, coming from a statistical 
analysis of the data, need a financial interpretation and looking for factors that lead to similar yields in 
the obtained time periods. Secondly, it makes sense to look at the yields not as a set of discrete points, 
but as a curve. This suggests using functional archetypal analysis. However, we also note that the 
proposed clustering in the current form produces meaningful results and therefore it can be applied 
to different data sets of various kinds.
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KLASTERIZACIJA ZASNOVANA NA ARHETIPSKOJ ANALIZI

Rezime: 

Arhetipska analiza je tehnika redukcije dimenzionalnosti, koja se zasniva 
na pronalaženju malog broja reprezentativnih elemenata, nazvanih 
arhetipovi. Zapažanja se zatim aproksimiraju konveksnim kombi-
nacijama arhetipova. Stoga se koeficijenti konveksnih kombinacija 
mogu tumačiti kao verovatnoće diskretnih slučajnih promenljivih. 
Vrednosti varijabli identifikuju klase, predstavljene arhetipovima, 
kojima posmatranje pripada. Na osnovu ove interpretacije, predlažemo 
da se koristi Hellingerova udaljenost između distribucija verovatnoće 
za merenje udaljenosti između posmatranja u skupu podataka i da se 
koristi kao ulaz za grupisanje. Ovaj postupak je primenjen na mesečne 
podatke krive prinosa bez kupona u periodu 2003-2022. Identifikovane su 
arhetipske krive prinosa i posmatrane krive su grupisane u šest klastera. 
Pošto su opservacije date za određeni period vremena dobijeni klasteri 
su takođe omogućili segmentaciju za odgovarajući period posmatranja.

Ključne reči:

arhetipska analiza,  
raspodela verovatnoće,  
Hellingerova distanca,  
grupisanje,  
kriva prinosa 
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