
52

Abstract:
This paper is a survey of approximate search techniques in very large data
sets (so-called Big Data). After a short introduction, some techniques for
speeding up approximate search in such data sets based on exploitation
of inherent bit-parallelism in computers are described. It then reviews the
applications in search related to information security problems (digital
forensics, malware detection, intrusion detection) are reviewed. Finally,
the need for constraints in approximate search regarding the number
of so-called elementary edit operations and the run lengths of particu-
lar elementary edit operations is explained and the status of on-going
research on efficient implementation of approximate search algorithms
with various constraints is given.

Key words:
Big Data,
approximate search,
bit-parallelism,
information security,
constraints.

* E-mail: slobodanp@hig.no

APPROXIMATE SEARCH FOR BIG DATA
WITH APPLICATIONS IN INFORMATION
SECURITY – A SURVEY

Slobodan Petrović*
Gjøvik University College,
p.o. box 191, N-2802 Gjøvik, Norway

INTRODUCTION

Big Data is a common name for the advanced
techniques capable of analyzing very large data sets
consisting of items diff erent in form, stability, reli-
ability etc. Th e data sources can be so large that even
the theoretically effi cient (sub-linear time complexity)
algorithms cannot produce search results within a
reasonable time period (exabytes of data). Th e form
of the data can vary – it can be text, video, image,
sound etc., and the relations among data items have
to be found in such heterogeneous data sets. Th e ve-
locity of data can be extreme (hundreds of gigabytes
per second) and some measurements producing data
can give unreliable results, thus reducing the quality
of decision-making based on them. Such data must
be discovered, replaced and/or approximated. In the
area of business, data have been treated as asset for
a long time already (Pries et al., 2015). When con-
sidering big data analytics, we usually talk about the
so-called 5 Vs: Volume (up to exabytes of stable data
to process), Velocity (huge quantities of data per unit

of time and the response to them has to be given in an
extremely short period of time), Variety (text, video,
image, sound, structured, unstructured), Veracity
(incomplete, inaccurate measurements, deception),
and Value (business models can be related to data –
possession or analysis of data) (Berre, 2015; Pries et
al., 2015). Big Data has as a task to develop effi cient
algorithms for the analysis of such data.

As regards the static data volume, and in accord-
ance with (IBM, 2013) 2.5 quintillion (i.e. 2.5×1018)
bytes of data are produced every day and 90% of all
data has been produced in the last two years. Th e static
volume by itself is no longer considered a problem
even for such quantities of data. However, this is too
optimistic, since static data in such analysis are treated
as error-free, which is highly unrealistic. In order to
analyze huge quantities of data (or queries) possibly
containing errors, we need to employ the techniques
of approximate search, which are much less effi cient
than those used in exact search. In such a situation,
the static high-volume data processing becomes a
problem again. When it comes to the implications

EJAE 2015, 12(1): 52-57
ISSN 2406-2588
UDK: 004.424.4.056
DOI: 10.5937/EJAE12-8153
Original paper/Originalni naučni rad

53

of this fact to information security in digital foren-
sics, we have to use approximate search techniques to
cope with random or deliberately introduced errors
in captured data and queries. Even though the time
limits in digital forensic investigations are expressed
in days and not in milliseconds, the amounts of cap-
tured static data are so large that using the existing
approximate search techniques for forensic analysis
becomes a problem.

As regards velocity, we usually consider analytics
on streaming data (sound, video) (Berre, 2015), but
in other applications, such as malware detection or
intrusion detection, velocity matters as well. For in-
stance, regarding network intrusion detection, even
ordinary home networks deal with velocities of sev-
eral gigabytes per second and very oft en the intrusion
analysis has to be performed on group links, whose
velocities reach hundreds of gigabytes per second (Ey-
rich, 2011; Sommer, 2011). In addition, new attacks
and malware are derived from the existing ones and
to avoid frequent change of signatures to detect them,
we can use approximate search techniques to detect
new attacks obtained by modifying the old ones. How-
ever, in order for the detection system to operate in
real time, the approximate signature search algorithm
must cope with huge data traffi c velocities.

Variety of data has attracted much attention in big
data analytics, since it is very interesting in business
applications where we have to fi nd relations among
data from many heterogeneous sources (Berre, 2015;
Pries, 2015). Variety of data matters in information
security as well, especially in digital forensic inves-
tigations, where the analysts have to effi ciently fi nd
relations among data in diff erent forms captured from
many sources. Based on such analysis, it is necessary
to make the decision on whether or not to present the
data as evidence in the court of law. Information is
oft en deliberately changed by the suspect at the time
of recording in the memory of the computer in order
to make the eventual criminal investigation more dif-
fi cult. Th en, the approximate search techniques come
again to the scene to deal with such deliberate data
alterations, whose form can range from ordinary text
to images and videos.

Veracity of data has to be taken into account in
many applications, especially when we analyze sensor
data. Nowadays, sensors are cheap and are deployed
massively almost everywhere. With large machin-
ery and transport facilities, sensors are used not only
to estimate the current state of the equipment, but
also to predict the future events. Th is phenomenon
is called surprise detection (Frigessi, 2015). Similar

approach can be used in information security in order
for the security analyst to get a general idea about the
monitored system, where some data can be missing
or inaccurate (Gorodetsky et al., 2004). Aft erwards,
we need to compare data vectors where some features
may be missing, which calls for approximate search
in order to cope with such errors. Th e search must be
very effi cient since we need fi ne granularity of situa-
tion assessment in time.

In order to increase the effi ciency of approximate
search techniques, interdisciplinary approach is need-
ed. Not only the new sophisticated search algorithms
are invented for this purpose, but also advances in
hardware technologies are combined with new soft -
ware techniques (parallel approximate search algo-
rithms and their simulations on conventional hard-
ware (Layer, 2007; Navarro et al., 2002), multi-level
logic, etc.), see Section 2. In addition, we oft en have
to introduce constraints in the approximate search
algorithm. As a result, new practically useful systems
for big data analytics are designed. Th is also includes
new effi cient systems for forensic analysis and mal-
ware detection.

BIT PARALLELISM AND APPROXIMATE SEARCH

In this section, we shall concentrate on the so-
called bit-parallelism phenomenon that has been
extensively used in speeding up search algorithms
in the past 20 years or so (Faro et al., 2012). We fi rst
present the defi nitions of Deterministic and Non-
Deterministic Finite Automaton and then explain
the bit-parallelism and its application in exact and
approximate search.

A Deterministic Finite Automaton (DFA) is a Fi-
nite State Machine (FSM) with a property that from
each state, given the same input symbol, there is only
one transition to the next state. On the other hand, a
Nondeterministic Finite Automaton (NFA) is a fi nite
state machine capable of making transitions to more
than one state for the same input symbol. One possi-
ble interpretation of such behavior is that the machine
makes copies of itself in such a situation, which is then
parallel processing. Each copy of the NFA processes
the subsequent input symbols independently. If aft er
performing such copy making and following one of
the paths, an input symbol arrives, which does not ap-
pear as a label of any edge going out from the reached
state on one of the machine copies, that machine-copy
is stopped. It becomes inactive. If any of the copies of
the machine reaches the fi nal state, the input string is
accepted, i.e. recognized.

EJAE 2015  12 (1)  52-57
Petrović, S.  Approximate search for big data

54

Any NFA can be transformed to a DFA. Th e gener-
al transformation algorithm has exponential complex-
ity with respect to the length of the string determining
the NFA. However, we consider a simple special case,
where this transformation can be performed in poly-
nomial time. In this paper, we assign NFA and DFA
to the search pattern, which is common in search
applications. Th en, the input sequence comes from
the search string.

An NFA can be represented in two ways: with
ε-transitions and without ε-transitions, where ε-transitions
are transitions that do not consume any input. In both
cases (with or without ε-transitions), such an NFA
recognizes all the suffi xes of the corresponding search
pattern. Without ε-transitions, the NFA starts at the
state 0 and remains active at least until the next sym-
bol of the search string appears at the input (Fig. 1).
Because of that, 0 is always an active state. If there is a
path from the initial state to some state of the machine
for a given input sequence of symbols, the fi nal state
of that path is called an inactive state. A state that is
not active is called inactive state. A DFA can have only
one active state at a time, whereas an NFA can have
many such states concurrently.

Figure 1. The NFA without e-transiti ons corresponding to
the search patt ern w=aabcc.

Each input symbol (i.e. the next symbol from the
search string) drives creation of a new copy of the
NFA, which starts at the state 0.

With ε-transitions, the active states of such a ma-
chine are those that correspond to ending symbols
of input sequences. For example, consider the search
pattern from Fig. 1, w=aabcc. Th e corresponding NFA
with ε-transitions is given in Fig. 2. If the input se-
quence is ''aa'', then the state 2 of the machine will
be active aft er receiving this sequence. If the input
sequence is ''c'', the states 4 and 5 will be active. If
the input sequence is ''aba'', no state is active and the
whole machine is considered inactive.

Figure 2. The NFA with e-transiti ons corresponding to the
search patt ern w=aabcc.

Since an NFA of this kind (with or without
ε-transitions) recognizes all the suffi xes of the search
pattern w, the corresponding DFA is so-called Direct-
ed Acyclic Word Graph (DAWG) or suffi x automaton
of w (Fig. 3) and can be obtained by means of an al-
gorithm with polynomial time complexity (Navarro
et al., 2002).

Figure 3. A Directed Acyclic Word Graph (DAWG) corres-
ponding to the patt ern w=aabcc.

We explain the bit-parallelism phenomenon on
an example. Suppose that we are given the search
string S=aaabcaabcc and we are searching for the
pattern w=aabcc in it by means of the NFA without
ε-transitions. Each time a symbol from S arrives, the
machine makes a copy of itself and starts from the 0
state. Suppose the maximum number of machines
running in parallel is m=|w|, in our example m=5.
Th is means that we simulate parallel processing on a
real computer instead of theoretical consideration of
unlimited parallelism. We denote by j the number of
processed symbols from S. Th en, we have min (j,m)
machines running in parallel, for each j. Aft er pro-
cessing j symbols from S, some of these machines are
active and some are inactive.

Defi ne search status in a computer word D of m
bits. In our case, D=d5d4d3d2d1. We set di=1 if the cor-
responding machine is active aft er processing j bits
of S. Before processing any symbol, all the machines
are active (since they are all in the state 0) and con-
sequently D=1m (all ones). Th e operation of such an
NFA is illustrated in Fig. 4.

EJAE 2015  12 (1)  52-57
Petrović, S.  Approximate search for big data

55

Figure 4. Operati on of an NFA (see text).

As can be seen in Fig. 4, when passing from j=5
to j=6, the bit d5 disappears, since we can have maxi-
mum m machines at a time. Th is fact is expressed by
shift ing the search status word D one position to the
left (d4 becomes d5, d3 becomes d4, etc.) At the same
time, a new machine is created corresponding to the
bit d1, which starts from the state 0 (which is always
active). Th is fact is expressed by OR-ing the shift ed
word D to the left with 0m-11 (in our case m=5 so we
OR with 00001).

In our example, when passing from j=5 to j=6,
the next symbol from S to be processed is a. If we
ask ourselves which input symbol will keep which
machine active, if it was active before processing that
symbol, the answer in this particular case is that an a
will always keep the machine d1 active, an a will keep
the machine d2 active, a b will keep the machine d3
active, a c will keep the machine d4 active, and a c
will keep the machine d5 active. We can use this fact
for updating the search status word D automatically,
aft er each shift and OR-ing with 1, by introducing
the bit masks.

Th e bit mask for any symbol depends only on the
search pattern, not on the search string. Because of
that, we can pre-compute the bit masks for all the
symbols from the pattern w. Given the search pattern
w=w1w2…wm, for the bit mask B[s]=b1b2…bm the fol-
lowing holds: if s=wi then bm+1-i=1, otherwise bm+1-i=0.

In our example, since w=aabcc, it is easy to see
that B[a]=00011, B[b]=00100, and B[c]=11000. We
can now update the search status word D for each
new input symbol Sj in the following way

 Dj=((Dj-1<<1) OR 1) AND B[Sj] (1)

In our example, for j=6, we have
 D6=((D5<<1) OR 1) AND B[S6]=
 = ((01000<<1) OR 00001) AND B[a] =
 = 10001 AND 00011 = 00001.

Th e corresponding exact search algorithm is called
Shift -AND and was the fi rst to appear back in 1989
(Baeza-Yates et al., 1989). By complementing the bit
masks and the search status word D, we obtain a bit
more effi cient implementation of that algorithm called
Shift -OR. In that algorithm, the status word update
formula is

 Dj=(Dj-1<<1) OR B[Sj] (2)

Following the above-explained bit-parallelism im-
plementation principle, the fastest known exact search
algorithms on average, Backward Non-deterministic
DAWG Matching (BNDM) (Navarro et al., 2002)
and BNDMq (Durian et al., 2009) have been devised.

We now show how bit-parallelism techniques can
be used in approximate search. Th e main idea is to de-
sign an NFA capable of encompassing error process-
ing and then construction of a bit-parallel simulation
of such an automaton is straightforward.

Th e NFA assigned to a search pattern with errors
is presented in Fig. 5 (Navarro et al., 2002). In Fig. 5,
where a match is represented with a horizontal solid
line (we advance 1 character in the search pattern and
in the search text), an insertion with a vertical solid
line (we advance 1 character in the search text but
we do not advance in the search pattern), a substitu-
tion that is not a match with a diagonal solid line (we
advance 1 character in the search pattern and in the
search text) and a deletion with a diagonal dashed
line (we advance 1 character in the search pattern
but we do not advance in the search text) - this is an
ε-transition. A loop in the state 0 of the NFA is used to
represent waiting for the fi rst character of the search
pattern in the search string. If the NFA manages to
fi nd itself in one of the right-most states (double cir-
cled), the input string is accepted, which means that
we have found the search pattern in the search string.

Figure 5. An NFA assigned to the search patt ern
w=annual with up to 2 errors.

EJAE 2015  12 (1)  52-57
Petrović, S.  Approximate search for big data

56

Th e NFA simulation approach to approximate
search introduced in Section 2 proved itself effi cient.
Th ere are several ways to apply bit-parallelism in this
simulation, of which the most important ones are
Row-wise bit parallelism (RBP) and Diagonal-wise
bit parallelism (DBP) (Navarro et al., 2002). Th e idea
of RBP is to treat each row of the NFA given in the
matrix form (see Fig. 5) as a separate NFA and for
each of these NFAs we maintain a separate search
status word. With the DBP approach we obtain a
more complicated algorithm for implementation,
but the worst-case complexity of the DBP approach
is k times better than with the RBP approach, where
k is the number of allowed errors in search. A k-error
tolerant BNDM algorithm also exists (Navarro et al.,
2002). Special modifi cations of all these algorithms are
needed if wildcard search, regular expression match-
ing or multi-pattern search is needed.

APPLICATIONS IN INFORMATION SECURITY

In information security, search is used for:
 ◆ Finding malware (known-to-be-malicious

fi les).
 ◆ Finding evidence in criminal cases:

- documents,
- images,
- sound, etc.

 ◆ Intrusion detection in real time, etc.
Search in digital forensics must be effi cient since

there is short time available to collect evidence and
the captured data sets can be huge and heterogene-
ous. For real time systems, such as malware detectors
and Intrusion Detection Systems (IDS), effi ciency is
essential since otherwise the attacks/malware would
pass unnoticed, which produces the so-called false
negatives in detection.

Th e search problem has been extensively studied in
the last 50 years and several hundreds of (good) search
algorithms are known. Th e effi ciency of approximate
search is a big challenge since it turns out that it is
much more diffi cult to achieve than the effi ciency of
exact search. In addition, approximate search must
quite oft en include various constraints (for example,
on the total number of so-called edit operations that
transform one string into another), which enables a
more fl exible approximate search, but it makes the
search algorithms less effi cient if not implemented
carefully.

Multi-pattern approximate search is especially in-
teresting in intrusion detection since we rarely have to
search for just one pattern in the traffi c – most attack
signatures consist of several patterns.

In order to explain approximate search with con-
straints, we need the defi nition of the so-called edit
distance. Let w be a search pattern and let S be a search
string. Approximate search for w in S with k-error toler-
ance can be considered as search for a substring of S at
the distance to w less than or equal to k. Th e distance
measure used most oft en is edit distance (Levenshtein,
1966), which is defi ned as the minimum number of
so-called elementary edit operations (deletions, inser-
tions and substitutions) necessary for transforming one
string into another. Edit distance is widely used since it
can be computed in an iterative way, by fi lling a matrix
of partial edit distances. Each entry in this matrix con-
tains the edit distance of the corresponding prefi x of
one string to the corresponding prefi x of another string.
If we initialize this matrix in a special way (the fi rst row
is zeroed), we can run the algorithm for computation of
edit distance to fi nd w in S at the distance less than or
equal to k (Navarro, 2002). It turns out that this kind of
computation is equivalent to simulation of NFA in the
matrix form described in the previous section.

In some applications (cryptanalysis of irregularly
clocked Linear Feedback Shift Registers (LFSR) (Petro-
vic et al., 2007), matching of DNA sequences (Naor et
al., 1993)), it is necessary to introduce constraints in
the defi nition of edit distance. Th e constraints can be
on the total number of elementary edit operations or
on the run lengths of certain elementary edit opera-
tions (deletions and/or insertions) (Sankoff et al., 2000).
In addition, it is sometimes necessary to reconstruct
the edit sequences (the optimal sequences of edit op-
erations that transform one string into another) in an
effi cient way. Other applications of constrained edit
distance in information security are possible as well.
Error-tolerant digital forensic search should also be
considered. By introducing various constraints, we can
recognize the human and/or the device that produced
deliberate alteration of incriminating content of the
captured device(s).

Since the time complexity of computation of both
constrained and unconstrained edit distance and the
reconstruction of the edit sequence is quadratic in the
length of the search string, it would be of interest to
speed up this by simulating NFA. It has been done for
unconstrained edit distance (see Section 2), but for con-
strained edit distance it still needs to be accomplished.
Th ere are certain diffi culties related to the simulation
of the operation of the NFA in the constrained context.
Namely, it is necessary to track the lengths of the paths
leading to every active state of the NFA, which calls for
introduction of additional memory into the device. In
spite of this additional memory cost, the overall ef-
fi ciency of the constrained edit distance computation
will be improved.

EJAE 2015  12 (1)  52-57
Petrović, S.  Approximate search for big data

57

SUMMARY

In this paper, a survey of techniques used to speed
up search in large data sets by means of simulating
Nondeterministic Finite Automata (NFA) is given.
It shows how these techniques can be applied in in-
formation security, as well as how introducing vari-
ous constraints in the defi nition of the distance used
in error tolerant search infl uences the effi ciency of
the search algorithms of this kind, and information
is provided on the current status of the research in
compensating this infl uence.

REFERENCES

Baeza-Yates, R., & Gonnet, G.H. (1992). A New Approach
to Text Searching. Communications of the ACM. 35(10),
74-82. DOI: 10.1145/135239.135243

Berre, A.J. (2015). BigData Value PPP in Horizon 2020.
Retrieved March 30, 2015, from http://www.sintef.no/
globalassets/sintef-ikt/arrangementer/2015-02-23_work-
shop_big_data/2---bdva-ppp-2402-berre.pdf

Durian, B., Holub, J., Peltola, H., & Tarhio, J. (2009). Tuning
BNDM with q-Grams. In J. Hershberger & I. Finocchi
(Ed.) 2009 Proceedings of the Eleventh Workshop on Al-
gorithm Engineering and Experiments (ALENEX). DOI:
10.1137/1.9781611972894.3

Eyrich, J. (2011). Drinking from a Firehose: How to get traf-
� c to your Bro cluster? Retrieved March 30, 2015, from
https://www.bro.org/bro-workshop-2011/slides/drink-
ing-from-fi re-hose.pdf

Faro, S., & Lecroq, T. (2012). Twenty Years of Bit-Parallel-
ism in String Matching. In J. Holub, B.W. Watson & J.
Zdarek (Ed.) Festschrift for Borivoj Melichar (pp. 72-
101). Prague: Czech Technical University.

Frigessi, A. (2015). Big Insight. Retrieved March 30, 2015,
from http://www.sintef.no/globalassets/sintef-ikt/ar-
rangementer/2015-02-23_workshop_big_data/4---bi-
ginsight_frigessi.pdf

Gorodetsky, V., Karsaev, O., & Samoilov, V. (2004). On-Line
Update of Situation Assessment Based on Asynchronous
Data Streams. In Knowledge-Based Intelligent Informa-
tion and Engineering Systems: 8th International Confer-
ence, KES 2004 (pp. 1136-1142). Berlin: Springer Verlag.
DOI: 10.1007/978-3-540-30132-5_154

IBM. (2015). What is big data? Retrieved March 30, 2015,
from http://www-01.ibm.com/soft ware/data/bigdata/
what-is-big-data.html

Layer, C. (2007). A Coprocessor for Fast Searching in Large
Databases: Associative Computing Engine. PhD thesis,
University of Ulm.

Levenshtein, V. (1966). Binary Codes Capable of Correct-
ing Deletions, Insertions and Reversals. Soviet Physical
Doklady, 10(8), 707-710.

Naor, D., & Brutlag, D. (1993). On Suboptimal Alignments in
Biological Sequences. In A. Apostolico et al. (Ed.) Com-
binatorial pattern matching: 4th annual symposium,
CPM 93, Padova, Italy, June 2-4, 1993 : Proceedings (pp.
179-196). Berlin: Springer Verlag.

Navarro, G., & Raffi not, M. (2002). Flexible Pattern Matching
in Strings: Practical on-line search algorithms for texts and
biological sequences. Cambridge: Cambridge University
Press.

Petrovic, S., & Fuster-Sabater, A. (2007). Reconstruction of
Suboptimal Paths in the Constrained Edit Distance Ar-
ray with Application in Cryptanalysis. In O. Gervasi &
M. L. Gavrilova (Ed.) Computational Science and Its
Applications - ICCSA 2007: International Conference,
Kuala Lumpur, Malaysia, August 26-29, 2007: Proceed-
ings, Part III (pp. 597-610). Berlin: Springer Verlag. DOI:
10.1007/978-3-540-74484-9_52

Pries, K.H., & Dunnigan, R. (2015). Big Data Analytics: A
practical guide for managers. Boca Raton: CRC Press.

Sankoff , D., & Kruskal, J. (2000). Time Warps, String Edits
and Macromolecules: � e � eory and Practice of Sequence
Comparison. Cambridge: Cambridge University Press.

Sommer, R. (2011). Broverview. Retrieved March 30, 2015,
from https://www.bro.org/bro-workshop-2011/slides/
broverview.pdf

EJAE 2015  12 (1)  52-57
Petrović, S.  Approximate search for big data

Received: February 22, 2015.
Correcti on: March 16, 2015.
Accepted: April 5, 2015.

APROKSIMATIVNE PRETRAGE U VELIKIM SKUPOVIMA PODATAKA
SA PRIMENAMA U BEZBEDNOSTI INFORMACIONIH SISTEMA - PREGLED

Rezime:
Ovaj rad nudi pregled tehnika aproksimativne pretrage u velikim skupovima poda-
taka (''Big Data''). Nakon kratkog uvoda, prikazane su neke od tehnika za ubrzanu
aproksimativnu pretragu u takvim skupovima podataka zasnovanih na ispitivanju
inherentnog bit-paralelizma u računarima. Razmatraju se i njihove primene vezano
za probleme bezbednosti informacionih sistema (digitalna forenzika, detekcija
malvera, detekcija upada). Na kraju se objašnjava potreba za ograničenjima u
aproksimativnim pretragama vezano za broj takozvanih osnovnih operacija za
editovanje i dužinu trajanja istih, kao i trenutno stanje istraživanja o efikasnom
sprovođenju algoritama aproksimativne pretrage sa različitim organičenjima.

Ključne reči:
veliki skupovi podataka,
aproksimativne pretrage,
bit-paralelizam,
bezbednost informacionih
sistema,
ograničenja.

