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Abstract: 
This paper is a survey of approximate search techniques in very large data 
sets (so-called Big Data). After a short introduction, some techniques for 
speeding up approximate search in such data sets based on exploitation 
of inherent bit-parallelism in computers are described. It then reviews the 
applications in search related to information security problems (digital 
forensics, malware detection, intrusion detection) are reviewed. Finally, 
the need for constraints in approximate search regarding the number 
of so-called elementary edit operations and the run lengths of particu-
lar elementary edit operations is explained and the status of on-going 
research on efficient implementation of approximate search algorithms 
with various constraints is given.
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INTRODUCTION 

Big Data is a common name for the advanced 
techniques capable of analyzing very large data sets 
consisting of items diff erent in form, stability, reli-
ability etc. Th e data sources can be so large that even 
the theoretically effi  cient (sub-linear time complexity) 
algorithms cannot produce search results within a 
reasonable time period (exabytes of data). Th e form 
of the data can vary – it can be text, video, image, 
sound etc., and the relations among data items have 
to be found in such heterogeneous data sets. Th e ve-
locity of data can be extreme (hundreds of gigabytes 
per second) and some measurements producing data 
can give unreliable results, thus reducing the quality 
of decision-making based on them. Such data must 
be discovered, replaced and/or approximated. In the 
area of business, data have been treated as asset for 
a long time already (Pries et al., 2015). When con-
sidering big data analytics, we usually talk about the 
so-called 5 Vs: Volume (up to exabytes of stable data 
to process), Velocity (huge quantities of data per unit 

of time and the response to them has to be given in an 
extremely short period of time), Variety (text, video, 
image, sound, structured, unstructured), Veracity 
(incomplete, inaccurate measurements, deception), 
and Value (business models can be related to data – 
possession or analysis of data) (Berre, 2015; Pries et 
al., 2015). Big Data has as a task to develop effi  cient 
algorithms for the analysis of such data. 

As regards the static data volume, and in accord-
ance with (IBM, 2013) 2.5 quintillion (i.e. 2.5×1018) 
bytes of data are produced every day and 90% of all 
data has been produced in the last two years. Th e static 
volume by itself is no longer considered a problem 
even for such quantities of data. However, this is too 
optimistic, since static data in such analysis are treated 
as error-free, which is highly unrealistic. In order to 
analyze huge quantities of data (or queries) possibly 
containing errors, we need to employ the techniques 
of approximate search, which are much less effi  cient 
than those used in exact search. In such a situation, 
the static high-volume data processing becomes a 
problem again. When it comes to the implications 
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of this fact to information security in digital foren-
sics, we have to use approximate search techniques to 
cope with random or deliberately introduced errors 
in captured data and queries. Even though the time 
limits in digital forensic investigations are expressed 
in days and not in milliseconds, the amounts of cap-
tured static data are so large that using the existing 
approximate search techniques for forensic analysis 
becomes a problem.

As regards velocity, we usually consider analytics 
on streaming data (sound, video) (Berre, 2015), but 
in other applications, such as malware detection or 
intrusion detection, velocity matters as well. For in-
stance, regarding network intrusion detection, even 
ordinary home networks deal with velocities of sev-
eral gigabytes per second and very oft en the intrusion 
analysis has to be performed on group links, whose 
velocities reach hundreds of gigabytes per second (Ey-
rich, 2011; Sommer, 2011). In addition, new attacks 
and malware are derived from the existing ones and 
to avoid frequent change of signatures to detect them, 
we can use approximate search techniques to detect 
new attacks obtained by modifying the old ones. How-
ever, in order for the detection system to operate in 
real time, the approximate signature search algorithm 
must cope with huge data traffi  c velocities.

Variety of data has attracted much attention in big 
data analytics, since it is very interesting in business 
applications where we have to fi nd relations among 
data from many heterogeneous sources (Berre, 2015; 
Pries, 2015). Variety of data matters in information 
security as well, especially in digital forensic inves-
tigations, where the analysts have to effi  ciently fi nd 
relations among data in diff erent forms captured from 
many sources. Based on such analysis, it is necessary 
to make the decision on whether or not to present the 
data as evidence in the court of law. Information is 
oft en deliberately changed by the suspect at the time 
of recording in the memory of the computer in order 
to make the eventual criminal investigation more dif-
fi cult. Th en, the approximate search techniques come 
again to the scene to deal with such deliberate data 
alterations, whose form can range from ordinary text 
to images and videos. 

Veracity of data has to be taken into account in 
many applications, especially when we analyze sensor 
data. Nowadays, sensors are cheap and are deployed 
massively almost everywhere. With large machin-
ery and transport facilities, sensors are used not only 
to estimate the current state of the equipment, but 
also to predict the future events. Th is phenomenon 
is called surprise detection (Frigessi, 2015). Similar 

approach can be used in information security in order 
for the security analyst to get a general idea about the 
monitored system, where some data can be missing 
or inaccurate (Gorodetsky et al., 2004). Aft erwards, 
we need to compare data vectors where some features 
may be missing, which calls for approximate search 
in order to cope with such errors. Th e search must be 
very effi  cient since we need fi ne granularity of situa-
tion assessment in time.

In order to increase the effi  ciency of approximate 
search techniques, interdisciplinary approach is need-
ed. Not only the new sophisticated search algorithms 
are invented for this purpose, but also advances in 
hardware technologies are combined with new soft -
ware techniques (parallel approximate search algo-
rithms and their simulations on conventional hard-
ware (Layer, 2007; Navarro et al., 2002), multi-level 
logic, etc.), see Section 2. In addition, we oft en have 
to introduce constraints in the approximate search 
algorithm. As a result, new practically useful systems 
for big data analytics are designed. Th is also includes 
new effi  cient systems for forensic analysis and mal-
ware detection.

BIT PARALLELISM AND APPROXIMATE SEARCH

In this section, we shall concentrate on the so-
called bit-parallelism phenomenon that has been 
extensively used in speeding up search algorithms 
in the past 20 years or so (Faro et al., 2012). We fi rst 
present the defi nitions of Deterministic and Non-
Deterministic Finite Automaton and then explain 
the bit-parallelism and its application in exact and 
approximate search. 

A Deterministic Finite Automaton (DFA) is a Fi-
nite State Machine (FSM) with a property that from 
each state, given the same input symbol, there is only 
one transition to the next state. On the other hand, a 
Nondeterministic Finite Automaton (NFA) is a fi nite 
state machine capable of making transitions to more 
than one state for the same input symbol. One possi-
ble interpretation of such behavior is that the machine 
makes copies of itself in such a situation, which is then 
parallel processing. Each copy of the NFA processes 
the subsequent input symbols independently. If aft er 
performing such copy making and following one of 
the paths, an input symbol arrives, which does not ap-
pear as a label of any edge going out from the reached 
state on one of the machine copies, that machine-copy 
is stopped. It becomes inactive. If any of the copies of 
the machine reaches the fi nal state, the input string is 
accepted, i.e. recognized. 
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Any NFA can be transformed to a DFA. Th e gener-
al transformation algorithm has exponential complex-
ity with respect to the length of the string determining 
the NFA. However, we consider a simple special case, 
where this transformation can be performed in poly-
nomial time. In this paper, we assign NFA and DFA 
to the search pattern, which is common in search 
applications. Th en, the input sequence comes from 
the search string.

An NFA can be represented in two ways: with 
ε-transitions and without ε-transitions, where ε-transitions 
are transitions that do not consume any input. In both 
cases (with or without ε-transitions), such an NFA 
recognizes all the suffi  xes of the corresponding search 
pattern. Without ε-transitions, the NFA starts at the 
state 0 and remains active at least until the next sym-
bol of the search string appears at the input (Fig. 1). 
Because of that, 0 is always an active state. If there is a 
path from the initial state to some state of the machine 
for a given input sequence of symbols, the fi nal state 
of that path is called an inactive state. A state that is 
not active is called inactive state. A DFA can have only 
one active state at a time, whereas an NFA can have 
many such states concurrently. 

Figure 1. The NFA without e-transiti ons corresponding to 
the search patt ern w=aabcc.

Each input symbol (i.e. the next symbol from the 
search string) drives creation of a new copy of the 
NFA, which starts at the state 0.

With ε-transitions, the active states of such a ma-
chine are those that correspond to ending symbols 
of input sequences. For example, consider the search 
pattern from Fig. 1, w=aabcc. Th e corresponding NFA 
with ε-transitions is given in Fig. 2. If the input se-
quence is ''aa'', then the state 2 of the machine will 
be active aft er receiving this sequence. If the input 
sequence is ''c'', the states 4 and 5 will be active. If 
the input sequence is ''aba'', no state is active and the 
whole machine is considered inactive.

Figure 2. The NFA with e-transiti ons corresponding to the 
search patt ern w=aabcc.

Since an NFA of this kind (with or without 
ε-transitions) recognizes all the suffi  xes of the search 
pattern w, the corresponding DFA is so-called Direct-
ed Acyclic Word Graph (DAWG) or suffi  x automaton 
of w (Fig. 3) and can be obtained by means of an al-
gorithm with polynomial time complexity (Navarro 
et al., 2002).

 

Figure 3. A Directed Acyclic Word Graph (DAWG) corres-
ponding to the patt ern w=aabcc.

We explain the bit-parallelism phenomenon on 
an example. Suppose that we are given the search 
string S=aaabcaabcc and we are searching for the 
pattern w=aabcc in it by means of the NFA without 
ε-transitions. Each time a symbol from S arrives, the 
machine makes a copy of itself and starts from the 0 
state. Suppose the maximum number of machines 
running in parallel is m=|w|, in our example m=5. 
Th is means that we simulate parallel processing on a 
real computer instead of theoretical consideration of 
unlimited parallelism. We denote by j the number of 
processed symbols from S. Th en, we have min (j,m) 
machines running in parallel, for each j. Aft er pro-
cessing j symbols from S, some of these machines are 
active and some are inactive.

Defi ne search status in a computer word D of m 
bits. In our case, D=d5d4d3d2d1. We set di=1 if the cor-
responding machine is active aft er processing j bits 
of S. Before processing any symbol, all the machines 
are active (since they are all in the state 0) and con-
sequently D=1m (all ones). Th e operation of such an 
NFA is illustrated in Fig. 4.
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Figure 4. Operati on of an NFA (see text).

As can be seen in Fig. 4, when passing from j=5 
to j=6, the bit d5 disappears, since we can have maxi-
mum m machines at a time. Th is fact is expressed by 
shift ing the search status word D one position to the 
left  (d4 becomes d5, d3 becomes d4, etc.) At the same 
time, a new machine is created corresponding to the 
bit d1, which starts from the state 0 (which is always 
active). Th is fact is expressed by OR-ing the shift ed 
word D to the left  with 0m-11 (in our case m=5 so we 
OR with 00001).

In our example, when passing from j=5 to j=6, 
the next symbol from S to be processed is a. If we 
ask ourselves which input symbol will keep which 
machine active, if it was active before processing that 
symbol, the answer in this particular case is that an a 
will always keep the machine d1 active, an a will keep 
the machine d2 active, a b will keep the machine d3 
active, a c will keep the machine d4 active, and a c 
will keep the machine d5 active. We can use this fact 
for updating the search status word D automatically, 
aft er each shift  and OR-ing with 1, by introducing 
the bit masks.

Th e bit mask for any symbol depends only on the 
search pattern, not on the search string. Because of 
that, we can pre-compute the bit masks for all the 
symbols from the pattern w. Given the search pattern 
w=w1w2…wm, for the bit mask B[s]=b1b2…bm the fol-
lowing holds: if s=wi then bm+1-i=1, otherwise bm+1-i=0.

In our example, since w=aabcc, it is easy to see 
that B[a]=00011, B[b]=00100, and B[c]=11000. We 
can now update the search status word D for each 
new input symbol Sj in the following way

 Dj=((Dj-1<<1) OR 1) AND B[Sj] (1)

In our example, for j=6, we have
     D6=((D5<<1) OR 1) AND B[S6]=
 = ((01000<<1) OR 00001) AND B[a] = 
 = 10001 AND 00011 = 00001.

Th e corresponding exact search algorithm is called 
Shift -AND and was the fi rst to appear back in 1989 
(Baeza-Yates et al., 1989). By complementing the bit 
masks and the search status word D, we obtain a bit 
more effi  cient implementation of that algorithm called 
Shift -OR. In that algorithm, the status word update 
formula is

 Dj=(Dj-1<<1) OR B[Sj] (2)

Following the above-explained bit-parallelism im-
plementation principle, the fastest known exact search 
algorithms on average, Backward Non-deterministic 
DAWG Matching (BNDM) (Navarro et al., 2002) 
and BNDMq (Durian et al., 2009) have been devised. 

We now show how bit-parallelism techniques can 
be used in approximate search. Th e main idea is to de-
sign an NFA capable of encompassing error process-
ing and then construction of a bit-parallel simulation 
of such an automaton is straightforward.

Th e NFA assigned to a search pattern with errors 
is presented in Fig. 5 (Navarro et al., 2002). In Fig. 5, 
where a match is represented with a horizontal solid 
line (we advance 1 character in the search pattern and 
in the search text), an insertion with a vertical solid 
line (we advance 1 character in the search text but 
we do not advance in the search pattern), a substitu-
tion that is not a match with a diagonal solid line (we 
advance 1 character in the search pattern and in the 
search text) and a deletion with a diagonal dashed 
line (we advance 1 character in the search pattern 
but we do not advance in the search text) - this is an 
ε-transition. A loop in the state 0 of the NFA is used to 
represent waiting for the fi rst character of the search 
pattern in the search string. If the NFA manages to 
fi nd itself in one of the right-most states (double cir-
cled), the input string is accepted, which means that 
we have found the search pattern in the search string.

Figure 5. An NFA assigned to the search patt ern 
w=annual with up to 2 errors.
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Th e NFA simulation approach to approximate 
search introduced in Section 2 proved itself effi  cient. 
Th ere are several ways to apply bit-parallelism in this 
simulation, of which the most important ones are 
Row-wise bit parallelism (RBP) and Diagonal-wise 
bit parallelism (DBP) (Navarro et al., 2002). Th e idea 
of RBP is to treat each row of the NFA given in the 
matrix form (see Fig. 5) as a separate NFA and for 
each of these NFAs we maintain a separate search 
status word. With the DBP approach we obtain a 
more complicated algorithm for implementation, 
but the worst-case complexity of the DBP approach 
is k times better than with the RBP approach, where 
k is the number of allowed errors in search. A k-error 
tolerant BNDM algorithm also exists (Navarro et al., 
2002). Special modifi cations of all these algorithms are 
needed if wildcard search, regular expression match-
ing or multi-pattern search is needed.

APPLICATIONS IN INFORMATION SECURITY

In information security, search is used for: 
 ◆ Finding malware (known-to-be-malicious 

fi les).
 ◆ Finding evidence in criminal cases:

- documents,
- images,
- sound, etc.

 ◆ Intrusion detection in real time, etc. 
Search in digital forensics must be effi  cient since 

there is short time available to collect evidence and 
the captured data sets can be huge and heterogene-
ous. For real time systems, such as malware detectors 
and Intrusion Detection Systems (IDS), effi  ciency is 
essential since otherwise the attacks/malware would 
pass unnoticed, which produces the so-called false 
negatives in detection.

Th e search problem has been extensively studied in 
the last 50 years and several hundreds of (good) search 
algorithms are known. Th e effi  ciency of approximate 
search is a big challenge since it turns out that it is 
much more diffi  cult to achieve than the effi  ciency of 
exact search. In addition, approximate search must 
quite oft en include various constraints (for example, 
on the total number of so-called edit operations that 
transform one string into another), which enables a 
more fl exible approximate search, but it makes the 
search algorithms less effi  cient if not implemented 
carefully.

Multi-pattern approximate search is especially in-
teresting in intrusion detection since we rarely have to 
search for just one pattern in the traffi  c – most attack 
signatures consist of several patterns.

In order to explain approximate search with con-
straints, we need the defi nition of the so-called edit 
distance. Let w be a search pattern and let S be a search 
string. Approximate search for w in S with k-error toler-
ance can be considered as search for a substring of S at 
the distance to w less than or equal to k. Th e distance 
measure used most oft en is edit distance (Levenshtein, 
1966), which is defi ned as the minimum number of 
so-called elementary edit operations (deletions, inser-
tions and substitutions) necessary for transforming one 
string into another. Edit distance is widely used since it 
can be computed in an iterative way, by fi lling a matrix 
of partial edit distances. Each entry in this matrix con-
tains the edit distance of the corresponding prefi x of 
one string to the corresponding prefi x of another string. 
If we initialize this matrix in a special way (the fi rst row 
is zeroed), we can run the algorithm for computation of 
edit distance to fi nd w in S at the distance less than or 
equal to k (Navarro, 2002). It turns out that this kind of 
computation is equivalent to simulation of NFA in the 
matrix form described in the previous section. 

In some applications (cryptanalysis of irregularly 
clocked Linear Feedback Shift  Registers (LFSR) (Petro-
vic et al., 2007), matching of DNA sequences (Naor et 
al., 1993)), it is necessary to introduce constraints in 
the defi nition of edit distance. Th e constraints can be 
on the total number of elementary edit operations or 
on the run lengths of certain elementary edit opera-
tions (deletions and/or insertions) (Sankoff  et al., 2000). 
In addition, it is sometimes necessary to reconstruct 
the edit sequences (the optimal sequences of edit op-
erations that transform one string into another) in an 
effi  cient way. Other applications of constrained edit 
distance in information security are possible as well. 
Error-tolerant digital forensic search should also be 
considered. By introducing various constraints, we can 
recognize the human and/or the device that produced 
deliberate alteration of incriminating content of the 
captured device(s).

Since the time complexity of computation of both 
constrained and unconstrained edit distance and the 
reconstruction of the edit sequence is quadratic in the 
length of the search string, it would be of interest to 
speed up this by simulating NFA. It has been done for 
unconstrained edit distance (see Section 2), but for con-
strained edit distance it still needs to be accomplished. 
Th ere are certain diffi  culties related to the simulation 
of the operation of the NFA in the constrained context. 
Namely, it is necessary to track the lengths of the paths 
leading to every active state of the NFA, which calls for 
introduction of additional memory into the device. In 
spite of this additional memory cost, the overall ef-
fi ciency of the constrained edit distance computation 
will be improved.

EJAE 2015  12 (1)  52-57
Petrović, S.  Approximate search for big data



57

SUMMARY

In this paper, a survey of techniques used to speed 
up search in large data sets by means of simulating 
Nondeterministic Finite Automata (NFA) is given. 
It shows how these techniques can be applied in in-
formation security, as well as how introducing vari-
ous constraints in the defi nition of the distance used 
in error tolerant search infl uences the effi  ciency of 
the search algorithms of this kind, and information 
is provided on the current status of the research in 
compensating this infl uence.
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APROKSIMATIVNE PRETRAGE U VELIKIM SKUPOVIMA PODATAKA 
SA PRIMENAMA U BEZBEDNOSTI INFORMACIONIH SISTEMA - PREGLED

Rezime: 
Ovaj rad nudi pregled tehnika aproksimativne pretrage u velikim skupovima poda-
taka (''Big Data''). Nakon kratkog uvoda, prikazane su neke od tehnika za ubrzanu 
aproksimativnu pretragu u takvim skupovima podataka zasnovanih na ispitivanju 
inherentnog bit-paralelizma u računarima. Razmatraju se i njihove primene vezano 
za probleme bezbednosti informacionih sistema (digitalna forenzika, detekcija 
malvera, detekcija upada). Na kraju se objašnjava potreba za ograničenjima u 
aproksimativnim pretragama vezano za broj takozvanih osnovnih operacija za 
editovanje i dužinu trajanja istih, kao i trenutno stanje istraživanja o efikasnom 
sprovođenju algoritama aproksimativne pretrage sa različitim organičenjima. 

Ključne reči: 
veliki skupovi podataka, 
aproksimativne pretrage, 
bit-paralelizam, 
bezbednost informacionih 
sistema, 
ograničenja.




