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SAŽETAK

Današnja dostignuća u biologiji sistema i povezanim 

biološkim naukama omogućila su prelazak sa proučavanja 

pojedinačnog molekula i tkiva na holistički prikaz moleku-

la i ćelija. Ovde pokušavamo da objasnimo koherentan pri-

kaz koji integriše studije neurobiologije i adipobiologije, kao 

i one o dijabetesu i gojaznosti. Uopšteno, kardiometabolič-

ke bolesti (ateroskleroza, hipertenzija, dijabetes melitus tip 

2, gojaznost, diabesity (dijabetes melitus tip 2 udružen sa 

gojaznošću), i metabolički sindrom) predstavljaju najčešća 

oboljenja današnjice. 2000. godine Astrup i Finer (Obes Rev 

1: 57-59) su napisali : “Obzirom da dijabetes melitus tip 

2 zavisi od gojaznosti, a gojaznost je glavni etiološki uzrok 

dijabetesa tip 2, predlažemo da se termin ‘diabesity’ usvo-

ji.” Verovatno je polje istraživanja adipobiologije svedočilo 

o tri velike promene od otkrića leptina, hormona adipoznog 

porekla, 1994.godine. Različiti neuroendokrini i neurotro-

fični faktori su takođe bili uključeni u povećanje liste en-

dokrinih i parakrinih signalnih proteina sekretovanih od 

strane adipocita koji zajedno čine adipokine. Ovi nalazi 

otvaraju novu oblast istraživanja, neuroadipokrinologiju, 

deo neuroendokrinologije. Adipokini, uključujući faktor ra-

sta nerava (NGF) i neurotrofični faktor poreklom iz mozga 

(BDNF), posreduju u višestrukim biološkim procesima kao 

što su unos hrane, imunitet, inflamacija, pamćenje, ras-

položenje i metaboliza. Efekti na metabolizam uključuju 

održavanje glukoze, lipida i energetske homeostaze, kao i 

kardioprotekciju, neuroprotekciju i starenje. Ovde izdvaja-

mo ulogu metabotropnog faktora (MTF), biomolekula po-

reklom iz masti, kao i biomolekula koji ne vode poreklo iz 

masti, koji posreduju ove efekte. Nedavni rezultati pokazu-

ju da se cirkulišući i/ili tkivni nivoi nekog MTF, na primer 

adiponektin, NGF, BDNF, glukagonu sličan protein-1, sir-

tuin-1, interleukin- 10, akvaporin-7, menjaju u kardiome-

taboličkim bolestima, uključujući diabesity. Uopšteno, ovo 

može otvoriti nov pristup u razmišljanju o dijabetesu tip 2 

ABSTRACT

Today’s achievements in systems biology and -omics 

sciences have facilitated a shift from studying individual 

molecules and tissues to characterising molecules and cells 

holistically. In this article, we attempt to discuss the sta-

tus of a much-needed coherent view that integrates stud-

ies on neurobiology and adipobiology, as well as those on 

diabetes and obesity. Globally, cardiometabolic diseases 

(atherosclerosis, hypertension, type 2 diabetes mellitus, 

obesity, diabesity, and metabolic syndrome) are the most 

prevalent pathologies. In 2000, Astrup and Finer (Obes 

Rev 1: 57-59) wrote the following: “Since type 2 diabetes 

is obesity dependent, and obesity is the main aetiogical 

cause of type 2 diabetes, we propose the term ‘diabesity’ 

should be adopted.” Arguably, the research field of adipo-

biology has witnessed three major paradigm shifts since 

the discovery of leptin, an adipose-derived hormone, in 

1994. Various neuroendocrine and neurotrophic factors 

are included in the growing list of endocrine and paracrine 

adipose-secreted signaling proteins collectively designated 

adipokines. These findings open a novel field of research 

known as neuroadipocrinology, a component of neuroen-

docrinology. Adipokines, including nerve growth factor 

(NGF) and brain-derived neurotrophic factor (BDNF), 

mediate multiple biological processes, such as food intake, 

immunity, inflammation, memory, mood, and metabo-

lism. The effects on metabolism involve the maintenance 

of glucose, lipid and energy homeostasis as well as cardio-

protection, neuroprotection, and aging. In this article, we 

highlight the role of metabotrophic factors (MTF) and the 

adipose- and nonadipose-derived biomolecules that me-

diate these effects. Recent results demonstrate that circu-

lating and tissue levels of certain MTFs, e.g., adiponectin, 

NGF, BDNF, glucagon-like protein-1, sirtuin-1, interleu-

kin-10, and aquaporin-7, are altered in cardiometabolic 

diseases, including diabesity. Overall, this may cultivate 
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INTRODUCTION

In the second half of the 20th century, holism (from the 

Ancient Greek word holos, meaning whole, entire, or total) 

led to thinking in terms of systems and their derivatives, 

such as systems biology. Life at both the local and systemic 

levels requires nutritional, immune, neurotrophic and me-

tabotrophic support. Any dysfunction of or deficit in this 

support may result in a disease phenotype, such as type 2 

diabetes or obesity, or a combination of the two, diabesity.

 Type 2 diabetes mellitus is largely responsible for the 

prediction that the number of diabetics worldwide will 

double within a period of 30 years, increasing from 150 

million people in 1995 to over 300 million by 2025 (1). 

 At its core, obesity may be briefly classified as the ac-

cumulation and inflammation of adipose tissue (Fig. 1), 

and the adipose-derived pro-inflammatory signals are 

disseminated to many organs of the body, leading to the 

subsequent development of cardiometabolic and neurode-

generative diseases (the scope of the present short review), 

as well as non-alcoholic steatohepatitis, polycystic ovarian 

syndrome, obstructive sleep apnoea, inflammatory bowel 

disease, thyroid-associated ophthalmopathy, cancer and 

many other diseases outside the scope of present review. 

 Obesity is the most prevalent disease in the world. 

In 2005, 800 million people were overweight (BMI 

25.0–29.9 kg/m2), and 400 million were obese (BMI over 

30 kg/m2) (1). Although the pathogenesis of obesity is 

not yet completely understood, there is now solid evi-

dence that type 2 (non-insulin dependent) diabetes is 

strongly associated with the obese man (Homo obesus) 

(2). Therefore, diabesity (3) or Homo diabesus (4) has 

moved to centre stage as one of the most challenging 

biomedical and social threats, with its rising prevalence 

and impacts on both health and economics, in the pres-

ent century. The health impact of diabesity includes a 

reduction of both quality of life and life expectancy due 

to complications such as myocardial infarction, stroke 

and end-stage renal disease. The burden of diabetes on 

the world economy has been rising in the last decade, 

as costs reached 376 billion dollars in 2010 and are ex-

pected to reach 490 billion dollars by 2030 (3). These 

latter authors wrote: “This century is the unprecedented 

diabetogenic era in human history. It is thus urgent to 

take steps including screening, prevention and early 

management in an attempt to control this evolving epi-

demic of diabesity.” Furthermore, there is an “interac-

tion” between diabesity and Alzheimer’s disease, which 

will be highlighted below.

Adipobiology: a field marked by three

paradigm shifts

One of biggest recent advances in studying cardiovas-

cular diseases is associated with the ”rediscovery” of a ne-

glected tissue, adipose tissue.

 In 1962, Thomas S. Kuhn published his book The 

Structure of Scientific Revolutions (1st edition, Univer-

sity of Chicago Press, Chicago, USA). Its publication was 

udruženim sa gojaznošću, koji se takođe ovde označava kao 

i Homo diabesus.

Ključne reči: adipobiologija, adipokini, dijabetes, go-

jaznost, neurobiologija, NGF, BDNF, metabotrofini.

Thus, the task is not so much to see what no one has yet 

seen, but to think what nobody has yet thought about that 

which everybody sees.

Arthur Schopenhauer

a novel thinking for diabesity, herein also referred to as 

Homo diabesus. 

Key words: adipobiology, adipokines, diabetes, obesity, 

neurobiology, NGF, BDNF, metabotrophins

Figure 1. A drawing showing an oversimplifi ed view of the possible 

pathogenesis of and therapies for obesity.

ABBREVIATIONS

AD-Alzheimer’s disease

AQP-aquaporin

BAT-brown adipose tissue

BDNF-brain-derived neurotrophic factor

MTF-metabotrophic factor

NGF-nerve growth factor

NT-neurotrophin

PPAR-peroxisome proliferator-activated receptor

Trk-tropomyosin-related kinase/receptor tyrosine kinase

UCP-uncoupling protein WAT, white adipose tissue
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ery was based on the pioneering contributions of Douglas 

Coleman (1931-2014). His work established the first clues 

regarding a genetic component to obesity. In the 1970s, 

Coleman conducted a series of experiments that led him to 

propose the existence of a satiety factor that would account 

for the development of obesity and type 2 diabetes among 

laboratory mice. 

 The second paradigm shift derived from a study by Jef-

frey Bell and colleagues (5), who have scanned nearly 800 

people with magnetic resonance imaging (MRI) to obtain 

a map of white adipose tissue (WAT). The authors demon-

strated that as many as 45 percent of women and nearly 60 

percent of men have normal body mass index (BMI, 20-25 

kg/m2) scores and appear thin outside (TO), but actually 

have excessive levels of internal adipose tissue:, i.e., they 

are fat inside (FI). Therefore, they have the TOFI phe-

notype of body fat. The TOFI phenotype was also found 

among professional models. TOFI may therefore be con-

sidered an, “invisible” expression of both Homo obesus (2) 

and Homo diabesus (4).

 The third paradigm shift features the increasing sig-

nificance of brown adipose tissue (BAT) in both health and 

disease (see below).

 Accumulation of adipose tissue in visceral and subcuta-

neous abdominal tissue, as well as near internal organs (Fig. 

2), is a major risk factor for the development of numerous 

disorders, including diabesity and other related diseases. 

Metaflammation (metabolically induced inflammation) has 

emerged as a pivotal process in these disorders (6).

 Adipose tissue is very plastic tissue and is constantly 

remodelled with weight gain and weight loss. It is a dynam-

ic cellular and extracellular matrix assembly of adipocytes, 

fibroblasts, immune cells and matrix components and is 

also rich in sympathetic nerve fibres, blood vessels, and 

stem cells. There are two major subtypes of adipose tissue, 

WAT and BAT.

 By sending and receiving different types of protein and 

non-protein signals, adipose tissue communicates with 

a landmark event in both the history and philosophy of 

scientific knowledge (epistemology). Kuhn challenged the 

then prevailing view of “normal science,” which was viewed 

as “development-by-accumulation” of accepted facts and 

concepts leading often to epistemological paralysis, or neo-

phobia. Kuhn argued for a model in which a period of such 

conceptual continuity in normal science was interrupted by 

a period of revolutionary science, leading to a new para-

digm, an event he designated the paradigm shift.

 At an epistemological level, adipose tissue has under-

gone three major paradigm shifts in the last 20 years, and 

has risen above the horizon and taken centre stage in a 

number of syndromes and that astonishes most scientists 

and medical doctors. 

 The first paradigm shift says: while considered as pas-

sive storage-release of lipids by most cell biologists and 

pathologists for a long period of time, adipose tissue is 

now considered the biggest endocrine and paracrine or-

gan of the human body (Table 1). The discovery of leptin, 

an adipose-secreted hormone, published on 1 December 

1994 in Nature 1994, 372:425–432 by Jeffrey Friedman and 

colleagues, marked this revolutionary event. This discov-

Figure 2. As indicated above/right.

Figure 3. A drawing illustrating both the secretory and receptor nature 

of adipose tissue (AT) cells. At the secretory level, AT-derived signaling 

molecules communicate via multiple pathways, such as endocrine (ar-

rows 1, 4 and 5, from top to bottom), paracrine (arrow 2) and autocrine 

(arrow 3, curved) pathways. Also depicted is that AT cells express recep-

tors for various ligands. From (24).

Table 1. A paradigm shift: never before has adipose tissue been so active
__________________________________________________

 FROM

Adipose tissue is a lipid and energy

storage and is involved in obesity

TO

Adipose tissue is an endocrine and paracrine organ

 Adipose tissue is a neuroendocrine organ

 Adipose tissue is a steroidogenic organ

Adipose tissue is an immune organ 

Adipose tissue is a source of and target for

inflammatory mediators

Adipose tissue produces all components of

the rennin-angiotensin system

 Adipose tissue is therefore involved in

 numerous diseases beyond obesity

__________________________________________________

Visceral and 
subcutaneous
adipose tissue

Biomedical Reviews 2001; 12: 31-39

Organ-associated
adipose tissue
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many organs in the body (Fig. 3), therefore contributing 

to the control of energy, lipid and glucose homeostasis, 

as well as inflammation, immunity, learning and memory, 

among other biological functions.

 In the human body, WAT stores energy and BAT dis-

sipates energy by producing heat. BAT-mediated increases 

in energy expenditure are realised by uncoupling respira-

tion from ATP synthesis via uncoupling protein 1 (UCP1), 

which is expressed in brown adipocytes, subsequently 

generating heat, a process known as adaptive thermogen-

esis. Animal studies have shown that the activation of BAT 

counteracts the effects of diet-induced weight gain and 

related disorders such as type 2 diabetes and metabolic 

syndrome: this may also be the case in humans (7). Recent-

ly, knowledge regarding WAT and BAT was enriched by 

information about their relatives, namely brite (brown in 

white) and bruscle (brown in skeletal muscle) adipocytes 

(8). Hence, brown adipobiology is emerging as a new focus 

in biomedicine.

 In effect, such an adipocentric approach has revealed 

that although BAT is major thermogenic organ, whereas 

WAT is the body’s largest endocrine and paracrine organ 

and produces multiple signaling proteins, which are col-

lectively termed adipokines (9-12). Nerve growth factor 

(NGF) and brain-derived neurotrophic factor (BDNF) are 

also produced by both WAT and BAT (13). 

Multifunctionality of neurotrophins

and adipokines

At the end of the 19th century it was envisaged by Santi-

ago Ramon y Cajal but has not been proved that the nerves 

require trophic support, an idea that has never been prov-

en. The proof was obtained through a rare combination of 

scientific reasoning and intuition by Rita Levi-Montalcini 

(1909-2012) in the early 1950s, in Saint Louis, MO, USA, 

when the first cell growth factor, NGF, was discovered. Le-

vi-Montalcini was awarded the Nobel Prize in Medicine or 

Physiology 1986. The discovery of NGF has been embod-

ied in a conceptual framework known as the neurotrophic 

theory. It reveals a pivotal role of effector (target) cells in 

the control of neuronal differentiation, survival and func-

tion via the production of NGF and other neurotrophic 

factors (14).

 The neurotrophin family of proteins consists of NGF, 

BDNF, neurotrophin-3 (NT-3), NT-4/5, NT-6, and NT-7. 

Neurotrophins mediate their effects via ligation of (i) the 

panneurotrophin receptor, p75NTR, and (ii) the receptor 

tyrosine kinases (tropomyosin-related kinase) (Trk), TrkA 

(for NGF), TrkB (for BDNF and NT-4), and TrkC (for 

NT-3) (reviewed in 12,14,15). 

 The past three decades have witnessed a number of 

breakthroughs regarding Rita Levi-Montalcini’s NGF. 

Studies have revealed that NGF and BDNF not only are 

stimulators of nerve growth and survival but they also exert 

trophic effects on (i) immune cells, acting as immunotro-

phins; (ii) keratinocytes, enterocytes, and prostate and 

breast epithelial cells, acting as epitheliotrophins; and (iii) 

endothelial cells, acting as angiogenic factors (reviewed in 

12,14-15). 

From neurotrophins to metabotrophins 

In 2003, additional phenotypic expressions of NGF were 

revealed, including metabotrophic actions on glucose, lipids, 

energy, pancreatic beta cells and cardiovascular homeosta-

sis, and subsequently designated (analogous to neurotrophic 

factors and neurotrophins) as metabotrophic factors (MTF) 

or metabotrophins (from the Greek words metabole and 

trophe, meaning “nutritious for metabolism”) (12,15-18), a 

family to which BDNF also belongs. The proof-of-hypothe-

sis was based on results demonstrating that circulating and 

tissue levels of both NGF and BDNF are (commonly) de-

creased in atherosclerosis, metabolic syndrome (19), type 2 

diabetes (20) and Alzheimer’s disease (15), which currently 

is considered type 3 diabetes (21). 

Neuroadipocrinology 

As a multiplex of biological systems, life requires an in-

teraction between its molecular and cellular components. 

One of the biggest recent achievements of neurobiology 

and adipobiology is the studies on neurotrophic factors 

(e.g., NGF and BDNF) and adipokines (e.g., leptin and adi-

ponectin). 

As often occurs, the framework of an initial concept 

of the physiological role of a newly discovered molecules 

extends in the light of emerging findings. This was the 

case with neurotrophic factors and adipokines. For in-

stance, in the more than 30 years following the discovery 

of NGF, there have been few indications that it acts on 

non-neuronal cells. Therefore, it was remarkable when 

Aloe and Levi-Montalcini discovered that treatment of 

newborn rats with NGF caused a systemic increase in 

mast cells, in 1977. This seminal finding paved the way 

for a novel research field, neuroimmunology (22, 23 and 

references therein). 

 As indicated above (9-13), WAT is a dynamic en-

docrine and paracrine organ, producing a large num-

ber of adipokines. Some of them, e.g., leptin, mediate 

cross-talk between adipose tissue and the hypothala-

mus in regulating food intake and energy expenditure. 

However, the hypothalamus is not the only brain target 

for leptin, and the regulation of food intake is not this 

adipokine’s only biological action. Rather, some adi-

pokines support various cognitive functions and have 

neurotrophic activity. Current data regarding adipose-

derived neuroendocrine and neurotrophic factors are 

summarised in Tables 2 and 3. This finding raises an 

intriguing question as to whether WAT may be a pe-

ripheral counterpart of the hypothalamus-hypophysis 

axis. Cumulatively, linking neurobiology and adipobi-

ology resulted in neuroadipology (24), herein renamed 

neuroadipocrinology.  
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 In an attempt to “close” the metabotrophic “loop” in 

cardiometabolic disease, we have measured circulating 

levels of NGF and BDNF in patients with acute coronary 

syndrome, and found that they are significantly reduced 

(25, cf. 26). Another study revealed altered levels of NGF 

in the pancreas and brain in streptozotocin-induced dia-

betes (27). Recently, it was demonstrated that in response 

to experimental stress or diabetes, the amount of NGF and 

BDNF was altered both in WAT and BAT (Fig. 4,5); for 

mast cells see Figure 6.

Table 2. Selected list of adipose-derived neuroendocrine factors
__________________________________________________

Neuropeptides

Neuropeptide tyrosine (NPY)

Substance P

Calcitonin gene-related peptide 

Agouti-related protein

Adrenomedullin 

Somatostatin 

Kisspeptin 

Neuromedin B  

Neurotensin 

Apelin 

Nesfatin-1

Hypothalamic factors 

Mineralocorticoid-releasing factors

Corticotropin-releasing hormone (CRH)

Stresscopin, urocortin (CRH-like peptides)

__________________________________________________

Figure 4. Changes in the amount of nerve growth factor (NGF) in white 

adipose tissue (WAT) and brown adipose tissue (BAT) of controls (CTRL) 

compared to the concentration of NGF in stressed mice (Stress) and 

streptozotocin-induced diabetic rats (STZ), expressed as a percentage of 

the controls. Note the enhanced presence of NGF in WAT and BAT in 

stressed mice, as well as in diabetic rats. Th e vertical lines in the fi gure indi-

cate pooled S.E.M. derived from the appropriate error mean square in the 

ANOVA. * Signifi cant diff erences between groups (p < 0.05). From (13).

Figure 5. Changes in the amount of brain-derived neurotrophic factor 

(BDNF) in epicardial white adipose tissue (WAT) and brown adipose tis-

sue (BAT) of controls (CTRL) compared to the concentration of BDNF in 

stressed mice (Stress) and in streptozotocin-induced diabetic rats (STZ), 

expressed as a percentage of the controls. Th e vertical lines in the fi gure 

indicate pooled S.E.M. derived from the appropriate error mean square in 

the ANOVA. From (13).

Figure 6. Changes in the number of mast cells in brown adipose tissue 

(BAT) and epicardial white adipose tissue (WAT) of controls (CTRL) com-

pared to streptozotocin-induced diabetic rats (STZ) and stressed mice 

(Stress), expressed as a percentage of the controls. Th e vertical lines in the 

fi gure indicate pooled S.E.M. derived from the appropriate error mean 

square in the ANOVA.

PERSPECTIVE 

Examples of proof-of-metabotrophic hypothesis de-

rived from other laboratories include the following: (i) 

pancreatic beta cells secrete NGF and express its receptor 

TrkA, findings implicated in the pathogenesis of diabetes 

mellitus (28), and (ii) mutations affecting the Bdnf gene 
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Table 3. Selected list of adipose-derived neurotrophic factors
__________________________________________________

Leptin 

Nerve growth factor

Brain-derived neurotrophic factor 

Angiopoietin-1 

Vascular endothelial growth factor 

Ciliary neurotrophic factor 

Glial cell line-derived neurotrophic factor 

Steroids 

Metallothioneins 

__________________________________________________

Table 4. Selected list of endogenous metabotrophic factors*
__________________________________________________

Secretory proteins

Nerve growth factor, Brain-derived neurotrophic factor 

Ciliary neurotrophic factor, Neuron-derived neurotrophic 

factor

Adiponectin, Irisin, Humanin, Omentin, Chemerin, Ape-

lin, Otopetrin 1 

Interleukin-10, Interleukin-1 receptor antagonist, Metalo-

thioneins

Glucagon-like peptide-1

Intracellular proteins

Sirtuin-1, PPAR-gamma, Uncoupling protein-1 (UCP-1)

Aquaporin-7** 

__________________________________________________
* Modifi ed from (12). For references, see the text, and also (43-55).

** Discovered in 1986 by Gheorghe Benga (56) as the water channel inte-

gral membrane protein, in erythrocytes, the family of proteins designated 

the aquaporins (AQP) was appreciated when the Nobel Prize in Chem-

istry was awarded in 2003 to Peter Egre, whereas its original discovery 

by Gheorghe Benga has been ignored. Today, the AQP family consists of 

more than 10 members, AQP7 being expressed in adipocytes and related 

to obesity (57,58). 

Table 5. Metabotrophic eff ects of NGF and BDNF* 
__________________________________________________

NGF shares homology with proinsulin 

NGF and BDNF are produced by pancreatic beta cells and 

exert insulinotropic effects

NGF and BDNF are trophic factors for pancreatic beta 

cells, and also improve beta cell transplantation

NGF up-regulates the expression of LDL receptor-related 

protein

NGF up-regulates the expression of PPARgamma

NGF inhibits glucose-induced down-regulation of caveo-

lin-1

NGF improves skin and corneal wound healing

NGF may improve vascular (atheroma) wound healing

NGF rescues silent myocardial ischemia in diabetes mel-

litus

NGF improves diabetic erectile dysfunction

NGF and BDNF suppress food intake 

Healthy lifestyle increases brain and circulating levels of 

NGF and BDNF

An atherogenic diet decreases brain BDNF levels

BDNF-deficient mice develop abnormalities similar to 

metabolic syndrome 

BDNF improves cognitive processes

__________________________________________________
Modifi ed from (15). For references, see the text, and also 36, 39, 47, 48, 

50-53, 66, 67.

(encoding BDNF) in mice or the Ntr2k2 gene (encoding 

the high-affinity BDNF receptor TrkB) in humans are asso-

ciated with hyperphagia and severe obesity (15 and refer-

ences therein). Lists of selected metabotrophins (Table 4) 

and the metabotrophic effects of NGF and BDNF (Table 5) 

are provided in the aforementioned tables. 

 In this context, the recent discovery of (i) humanin, 

a mitochondria-derived peptide expressing neuro-me-

tabotrophic effects (29,30), and (ii) irisin, a myokine/

adipokine involved in the browning of WAT (31,32), may 

lead to the development of a novel approach in therapy 

for Homo diabesus. It may open new paths in the search 

for exogenous MTF, such as (i) small molecules that boost 

the secretory or signaling pathways of MTF (15) and (ii) 

incretin mimetics and receptor agonists, because the in-

sulinotropic hormone, glucagon-like peptide-1 (GLP-1), 

and exendin-4, a GLP-1 receptor agonist, exert neuro-

metabotrophic effects (33,34). Furthermore, (i) transgenic 

mice with Alzheimer’s disease fed J147, a new compound, 

demonstrate improved memory, a finding correlated with 

reduced soluble levels of beta-amyloid and increased hip-

pocampal levels of NGF and BDNF, in addition to the 

Figure 7. A drawing presenting a possible therapeutic pathway for di-

abesity.

BDNF-responsive synaptotrophic proteins Homer-1 and 

Egr3 (35): (ii) an ATP-NGF complex, but not NGF itself, 

appears to be the active neuroprotective mediator (36): (iii) 

NGF is related to enhanced expression of the purinergic 

P2X(3) receptor (37): (iv) metformin, a widely prescribed 

drug for type 2 diabetes, may exert neuroprotective effects 

by increasing BDNF levels (38), and (v) vitamin A may ex-

ert antidiabetic effects via NGF expression (39). Likewise, 

the role of microRNA in diabetes development has been 

recognised (40, also see 41 and 42 for sirtuin-1). A pos-

sible therapeutic pathway for the management of diabesity 

is shown in Figure 7.

 The present integrated view also suggests that under-

standing the precise role of MTF in the origin of Homo 

diabesus may lead to new therapies for diabesity and re-

lated diseases, including Alzheimer’s disease (AD). The 

use of transcript clustering to identify molecular mecha-
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nisms contributing to the early stages of AD in mice has 

identified changes in the insulin signaling pathway, in-

cluding the down-regulation of insulin receptor substrate 

4 (Irs4), an early event in AD (59). Insulin and MTF sig-

naling are strongly associated with diabesity, which has 

recently been identified as a potential risk factor for AD 

(60-66; also see 67).

CONCLUSION 

In 1999, Albee Messing published in an editorial entitled 

“Nestin in the liver - lessons from the brain” in Hepatology 

(29: 602-603). He wrote the following: “Most neuroscientists 

manage to get through each day without thinking of the liver 

even once… but I think that is about to change.” This may 

also be the case for adipose tissue. Future new thinking in 

neuroadipocrinology of diabesity may lead to a deeper in-

sight about how we can make MTF secretion and signaling 

work for the improvement of physical and mental quality of 

life of Homo diabesus who is expressing now in more than a 

trillion earthians.
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