
1. iNtroduCtioN

The analysis and forecasting of the time
series data plays an important role in several
scientific and engineering practices. The
development of accurate forecasting

methods constitutes the main subject of
concern of the researchers. For this purpose,
several linear and non-linear forecasting
models have been devised in the literature as
a result of numerous studies in this field
(Box & Jenkins, 1970; Franses et al., 2014).
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It is also a well-known fact that no single
forecasting method have given the best
results for modeling all features of the data
generating-process of a time series
(Makridakis et al., 1982). Therefore, it is
quite risky and irrational to resort to only one
of the existing forecasting methods. After the
first seminal works (Reid, 1968; Bates &
Granger, 1969), which effectively combined
multiple forecasts to improve forecasting
accuracy, combining forecasting methods
has become the most popular topic among
researchers from across every field of
forecasting. Several researchers have
claimed that combining forecasts would have
lower error measures than forecasting by a
single method (Clemen, 1989; Rapach et al.,
2010). The expectations from combining
single models are to obtain better forecasts
than from single models by applying
distinctive modeling abilities of each model
in approximating different patterns in the
data and reducing the risk of selecting the
wrong forecasting method.

Some researchers oppose forecast
combinations. Statisticians oppose this
because it harms the traditional statistical
procedures such as the use of statistical
significance, while others believe that a
comprehensive single method, comprising of
the complete relevant information on the
matter, can be more effective for forecasting
(Hibon & Evgeniou, 2005; Larrick & Soll,
2003). Despite all these reservations, the
combination of forecasting methods remains
an interesting approach to achieve more
accurate forecasts, with numerous
applications (Clemen, 1989; Armstrong,
2001; Zou et al., 2007). Selecting the
constituent forecasting models that can be
used in combination and the manner of
combining them to produce the final
combined forecasts for determining the

method of combination are the two most
important problems that affect the results
obtained. With regard to the first problem,
several papers have reported that selecting
single models as dissimilar models or
methods based on different information as
possible can make the combination method
superior for forecasting (Armstrong, 2001;
Newbold & Granger, 1974; Zhang, 2003).

Among the combination methods, a
simple average method that weights all the
forecasts equally is the easiest and the most
common one. In addition, it can be easily
understood, applied, and interpreted, with no
need of calculation of any parameters.
Moreover, some researchers have indicated
that the simple average produces
considerably better forecasting results than
other complicated combination techniques in
most cases (Clemen, 1989; De Gooijer &
Hyndman, 2006; Jose & Winkler, 2008;
Genre et al., 2013). Nevertheless, simple
average is quite susceptible to extreme
values and, therefore, the variation in the
forecast errors can be high (Armstrong,
2001; Jose & Winkler, 2008). Therefore,
some studies use the median, which is less
susceptible to extreme values. However,
there is no precise result for forecasting
superiority between simple average and
median. The simple average method
produced better results in one study (Stock &
Watson, 2004), the worse results in others
(Larreche & Moinpour, 1983; Agnew, 1985),
and the same result in another study
(McNees, 1992). Thus, it is almost
impossible to detect any superiority between
these two methods, both of which are quite
easy in computation.

The motivation for the paper is to show
that an individual model may not identify the
true process, but combining forecasts from
several models may play an important role in
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achieving better predictive performance
(Terui & Van Dijk, 2002). We leveraged this
idea to achieve better predictive performance
and studied several different time series
models for analyzing the data sets. The
special focus of this study was the
development of the proposal by Adhikari and
Agrawal (2013) regarding the combination
of simple average and median. The forecasts
of median and simple average were linearly
combined in a previous study (Adhikari &
Agrawal, 2013), while their weights were
fixed at the whole test data point and,
additionally, noise was added to each
combined forecast. In this study, the weights
of simple average and median at all test data
points were found one by one in accordance
with the forecast values of the single
forecasting methods instead of fixing them;
moreover, the addition of noise was not
needed. Considering the difference between
the average and median of the forecasts
produced by constituent forecasting models,
if the difference was high, the weight of the
median was increased; otherwise, the mean
was increased. Thus, by establishing a
balance between the two combination
methods, the variation in the forecasts could
be reduced and the risk caused by selection
of the wrong combination methods could be
minimized.

The rest of the paper is organized as
follows. The subsequent section provides a
literature review concerning combination
techniques. The proposed combination
method is presented in detail in Section 3.
Section 4 deals with the single forecasting
methods used in combination. Section 5
provides datasets and model parameters of
the methods used. The results obtained are
reported in Section 6. Finally, conclusions
and further discussions are given in Section
7.

2. LiterAture review

In the wake of the pioneering studies by
Reid (1968) and Bates and Granger (1969),
there was a great rise in the number of
studies for increasing the forecasting
accuracy and decreasing the error variance
by combining different forecasting methods.
The articles by Clemen (1989) and De
Menezes et al. (2000) summarize the studies
performed on this topic across the literature.
The reason for combining forecasts from
different models arises from the assumption
that a single model may not be sufficient to
capture all patterns in a dataset. Hence, some
studies related to combination of forecasts of
various single models were performed.
Makridakis and Winkler (1983) showed the
effects of combining several forecasting
methodologies covering a large number of
time series. Armstrong (1989) indicated that
combining forecasts provides consistent, but
small gains in forecasting accuracy. Diebold
and Pauly (1990), Stock and Watson (1999),
Chan et al. (1999), and Marcellino (2004)
indicated that the combination of forecasts of
several different models can improve the
forecasting performance. Avoiding
difficulties and risks by selecting the right
model is another compelling factor for
combining forecasts. To this, Zhang (2003)
indicated that, “the final selected model is
not necessarily the best for future uses due to
many potential influencing factors such as
sampling variation, model uncertainty and
structure change. By combining different
methods, the problem of model selection can
be eased with little extra effort” (p.160). Zou
and Yang (2004) proposed an algorithm to
convexly combine the models for obtaining
better performance of prediction, although
they mentioned that combining all models
may not be a good idea. Stock and Watson
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(2004), who used linear and non-linear
forecasting models, demonstrated that
pooled forecasts are superior to the single
best model. Hibon and Evgeniou (2005)
proposed a simple model criterion based on
selecting forecasts and stated that the
accuracy of the selection of combination is
much better that that of selected individual
forecasts.

Several linear combination methods
have been proposed on how to combine
forecasts (De Gooijer & Hyndman 2006;
Newbold & Granger, 1974; Zhang, 2003;
Bunn, 1975; Lemke & Gamrys, 2010).
Although forecast combinations were
performed with non-linear techniques
(Timmermann, 2006; Deutsch et al., 1994;
Fiordaliso, 1998), these studies are limited.
The main problem of the non-linear
combination techniques is the dearth of the
number of effective studies that can be
documented to make a design successful
(Timmermann, 2006). In addition, the
extensive combination literature reveals that
simple methods produce better forecasting
results than complicated ones (Clemen,
1989, Timmermann, 2006, Miller et al.,
1992; Graefe et al., 2014).

Despite a large body of research
concerning combination techniques, the
efficiency and robustness of the main
statistical combination methods have been
emphasized in numerous studies (De
Menezes et al., 2000; Timmermann, 2006;
De Gooijer & Hyndman, 2006; Schauberger
& Tutz, 2014). The simplest method is to use
the arithmetical average of single model
forecasts to obtain a combined forecast. It
was often found in most studies that detailed
combination methods, which require
estimation of many parameters, perform
worse than the combination method using
equal weights (Clemen, 1989; Stock &

Watson, 2004; Jose & Winkler, 2008;
Winkler & Clemen, 1992; Smith & Wallis,
2009). Armstrong stated (2001) that when
there is an uncertainty about a problem at
hand, using simple methods is a good
strategy. A robust alternative to the simple
average is trimmed mean, which is an
average value calculated by excluding the
highest and the lowest forecasts with equal
percent (Armstrong, 2001; Jose & Winkler,
2008; Lemke & Gabrys, 2010; Hassan et al.,
2012). Stock and Watson (2004) utilized
trimmed mean, with symmetric 5%
trimming, and showed that it resulted in the
same performance as that by using simple
average. In a recent study, Jose and Winkler
(2008) showed that trimmed mean can
produce slightly more accurate results than
simple average, as well as reduce the risk of
high error. However, until date, there is no
method available to determine the trimming
amount. Moreover, median was studied as an
alternative to the simple average, with mixed
results (Armstrong, 2001; Stock & Watson,
2004; Jose & Winkler, 2008; Larreche &
Moinpour, 1983; Agnew, 1985). Therefore,
combining the simple average and median
correctly can offer an advantage when high
forecasting accuracy is required. The
combination approach implemented in this
study attempts to combine the beneficial
properties of simple average and median
combination techniques. The detailed
formulization of the proposed combination is
presented in the Section 3.

3. the proposed CoMbiNiNg
Method

Let the actual testing dataset of a time
series forecasted using n different models be
Y=[y1,y2,…,yN ]T and let the ith model
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forecast  of  Y be                             ,
(i=1,2,…,n), where superscripts represent
different single models and subscripts
correspond to data points in a test set. Let us
assume that �� and �� represent the mean and
median of , j=1,2,…,N,
respectively. Then the combined forecast of
Y will be found as follows:

(1)

The determination of αj forms the focus
point of this study. In a similar study,
Adhikari and Agrawal (2013) fixed this α
value for all data points in a test set. They
defined the formula in two ways as median
dominating (0≤α<0.5) and mean dominating
(0.5<α≤1) and added noise to the forecasts.
Noise addition to real data set, which already
includes noises, seemed unnecessary in the
present study. In addition, instead of fixing α
at each point in a test set, it is preferred to
adjust α considering the mean and median
values at that point. As known from basic
statistics, the simple mean is influenced
more by outliers than by median. Therefore,
if there is an outlier forecast at a data point of
the test set, it is logical not to rely on the
simple mean. Utilizing that basic knowledge,
the following procedure considers the
difference between the mean and median at
each data point, and, when the difference is
high, it reduces the weight of the mean.
When the difference is less, it increases the
effect of mean on the combination. First,
scaling is required to search for the possible
maximum difference between the mean and
median. For this purpose, the used scaling is
given as follows:

(2)

Now, the forecasts of different models at
each data point are scaled, such that the
smallest is 0 and the biggest is 1. From now
on, mj values to evaluate the difference
between median and mean can be calculated
with the help of Equation 3, as given below:

(3)

Where, uj' and vj' are respectively the
mean and median of the scaled values.
.                              Owing to the  fact  that
five different single models were employed
in this study, 0.4 represents the maximum
difference between mean and median
occurring in the scaled data. For example,
there are two extreme cases that can arise in
the scaled data: 0,0,0,1,1 and 0,0,1,1,1. In
these two situations, the absolute difference
between the mean and median is 0.4.

After mj values are found, αj, which
determines the mean and median weights at
each data point, can be calculated with the
help of Equation 4, as given below:

(4)

With the help of the above equation, αj
remains between 0 and 1, and as the
difference between the mean and median
becomes closer to 0, the weight of the mean
increases, while, in the opposite situation,
the weight of the median increases.
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4. the siNgLe ForeCAstiNg
ModeLs

As is known to all, in forecasting
literature, the combination of forecasts from
dissimilar and competent models can lead to
much better forecasting performance
(Armstrong, 2001; Newbold & Granger,
1974; Zhang, 2003). With regard to the
number of individual models that will be
used in combination, Armstrong (2001)
suggested that using at least five forecasts
would be a good choice. He also stated that
adding more forecasts might improve the
forecasting performance of the combination
method, but with a decreasing rate of
improvement. Jose and Winkler (2008)
recommended using five, seven or nine
forecasts in combination, in parallel with
Armstrong (2001). Hence, following these
studies, we use the following single models
in our proposed combination method:

• Self-Exciting Threshold
Autoregressive (SETAR)

• Logistic Smooth Transition
Autoregressive (LSTAR)

• Autoregressive Integrated Moving
Average (ARIMA)

• Artificial Neural Network (ANN)
• Least Square Support Vector

Machines (LSVM)

4.1. setAr Model

The first idea on forecasting models of
multi-regimes dates back to Bacon and Watts
(1971). Tong (1978) proposed the Threshold
Autoregressive Model (TAR). In the TAR
model, a regime that happened at time t can
be determined by observable qt variable
about a threshold value. SETAR model, on
the other hand, assumes the time series of the

threshold value variable qt to be selected by
its delay values. For instance, when yt
variable needs to be modeled, qt = yt-d (d is
an integer > 0) (Feng & Liu, 2003).

A SETAR model with k regime
(d; p1,p2,…,pk) can be defined as follows
(Chan et al., 2004):

(5)

Here, k is the number of regimes, d is the
delay parameter, and pi is the degree of
autoregressive model in the ith regime model.
Threshold parameters must provide the
following restrictions.

(6)

In each ith regime,     are independently
and identically distributed normal random
variables having 0 mean and constant
variance             .   In   these   models,
superscripts show the regimes. Dynamic
behavior of the times series variable in each
regime is assumed to follow a linear
autoregressive process; and parameter
estimations can be easily performed by the
least square method.

4.2. stAr Model

Economic theory most often asserts that
the economy behaves differently when the
values of certain variables follow different
regimes. This very common situation is the
assumption that variable changes between
two regimes and a smooth transition from
one regime to another is estimated from the
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dataset. The dependent variable is given with
the linear combination of the predetermined
variables and random error term, in which
each coefficient is a function of the state
variable. The single variable version of
smooth transition models is the smooth
transition autoregressive model (STAR). All
of the predetermined variables are due to the
delays in the dependent variable. Regimes
are endogenously produced. For the
stationary and ergodic yt process, STAR
model of the pth degree is defined as follows
(Cancelo & Mourelle, 2005):

(7)

Here, F(yt-d) is a transition function and is
0≤F≤1 while d shows the delay of the
transition parameter.

The transition function is defined as
G(yt-d;λ,c). The regime that occurs at t-time
may be determined by the value relative to
the observable variables yt-d and G(yt-d;λ,c).
The different options for transition function
G(yt-d;λ,c) lead to the different kinds of
change in the behavior of regime change.
The most popular option for transition
function G(yt-d;λ,c) is the logistic function, as
given below:

(8)

The resultant model is termed logistic
STAR or LSTAR. The parameter c can be
interpreted as the threshold value between
the two regimes. The parameter λ determines
the smoothness of the change in the value of
the logistic function (Dijk et al., 2002).

There exists two different transition
functions in the STAR models. On one hand,
STAR models with logistic transition

functions are identified as LSTAR models.
On the other hand, STAR models with
exponential transition functions are
identified as ESTAR models. Before
determining the model that can be used in the
study, there occurs a decision rule for
choosing between LSTAR and ESTAR
models. For a thorough overview of the
decision rule on selection models, the
readers are encouraged to refer to the study
of Terasvirta and Anderson (1992). After
applying this decision rule, we decided to use
LSTAR model for all data sets.

4.3. AriMA Model

In some cases, the time series dealt with
was observed to indicate a feature of non-
stationary process. It was found, in
particular, that the series did not ensure the
stationarity conditions of the series in the
event of studying with financial time series,
such as stock return. For this reason, the
ARIMA Model is introduced, allowing the
process to become stationary in this part.

Because the ARIMA approach was
popularized by Box and Jenkins (1970), it is
most often named as the BoxJenkins
model. The ARIMA model is defined as
follows:

AR(p): p = auto-correlation degree

I(d): d = Integration degree (taking the
difference)

MA(q): q = moving average degree

The general view of the ARIMA model is
given in the following Equation 9:
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The process of obtaining the ARIMA
model comprises of four stages: i) the
determination of the integration degree (d),
which makes the series stationary, of p value,
showing auto-correlation degree with the
help of auto-correlation function and partial
auto-correlation function, and of q value, that
is, moving average degree; ii) the estimation
of coefficients through the least squares
method or maximum likelihood method; iii)
the interpretation of a model by obtaining
diagnostic statistics to provide the validity of
the model, and repetition of all these stages
performed by returning to the first stage,
which has a restatement condition if the
model is not valid; and iv) the determination
of the accuracy of forecasting by using
simple statistics and confidence intervals.
The stages cited above are depicted in Figure
1 with the help of a flow chart (Makridakis et
al., 1998).

4.4. ANN Model

ANN is a mathematical model with
parallel data processing structure. Its
development was inspired by the structure
and function of brain cells. This model
possesses the ability to perform non-linear
mapping between the input and output.
Because the general and flexible modeling
abilities of neural networks allow them to
find non-linear structures and to model linear
processes, this ability makes them an
appealing approach in forecasting
applications (Zhang, 2001). Several
successful applications has shown that neural
networks is extremely useful in modeling
and forecasting time series (Zhang et al.,
1998). A feed forward network with a single
hidden layer is often preferred in forecasting
time series by considering the problem of
overfitting. In forecasting time series, the

224 S. Aras / SJM 12 (2) (2017) 217- 236

( )( ) ( )2 2

1 2 1 21 1 1
dp q

p t q t
B B B B y c B B B eθ θ θ−Φ −Φ − −Φ − = + − − − −� �

���������������������������������
(9) 

                    AR(p)                     I(d)                                 MA(q) 

�

Figure 1. The ARIMA Model process

� Identification 

Estimation 

Diagnostic Tests 

Forecasting 

Return to 

model  
bad 

good 

Reference: (Makridakis et al., 1998)



main process performed by Time-Delay
Neural Networks is given in Figure 2. Figure
2 shows how {y(t),y(t-1),y(t-2),⋯,y(t-m)}
finite time series is matched with y, which is
composed of a single output. The functional
form of the network with time-delay inputs is
stated in the following equation:

(10)

Where, yt-j is the j time before
observations of the series, m is the number of
inputs or delays in the model, n indicates the
number of hidden units,
wij,{i=1,2,⋯,n,j=0,1,⋯,m} is the weight
matrix from input units to hidden units,
wi,{i=1,2,⋯,n} is the weight vector from the
ith hidden unit to output unit, g and ∅
functions, respectively, indicate logistic and
linear transfer functions, considering the
suggestion of Faraway and Chatfield (1998)

for forecasting applications. wci and ϑc0,
respectively, represent the constant units of
input and hidden layers.

Different learning algorithms can be used
for training ANN. Among the learning
algorithms available, the most popular is the
backpropagation algorithm (Zou et al.,
2007). Backpropagation algorithm was used
in this study, and for changing the connection
weights, Levenberg-Marquardt optimization
algorithm was employed. More detailed
explanations about neural networks can be
found elsewhere (Hagan et al., 1996).

4.5. LssvM Model

LSSVM algorithm is the improved
version of Support Vector Machines (SVM)
algorithm. Let us suppose that we have
.            training data set while the input
pattern of ith sample is xi ∈ Rn and the
desired output pattern is yi ∈ Rn. For function
estimation, the optimization problem in the
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LSSVM approach is formulated as follows
(Suykens et al., 2002):

(11)

Where ϕ(x) performs non-linear mapping
input data to feature space. w and b are the
parameters minimize the following objective
function:

(12)

Where, γ represents the regularization
constant and ei corresponds to the training set
error. The constraints of this objective
function are as follows:

(13)

The equality constraint in LSSVM is
taken instead of the inequality constraint in
SVM. In addition, ei error was converted into
.   in  the  objective function. Thus, the
solution of the problem becomes easier. The
Lagrange function, established for the
solution, is as stated below:

(14)

Where, αi is Lagrange multiplier.
According to Karush-Kuhn-Tucker (KKT)
conditions, we partially differentiate L and
obtain the following equations:

(15)

The optimization problem takes the form
of the following linear system by eliminating
w and ei:

(16)

where K(xi,xj) = ϕ(xi)T ϕ(xj) is known as the
kernel function. αi and b are obtained by
solving the linear equations and, finally, the
following LSSVM model is attained for
function estimation:

(17)

Any function that satisfies Mercer’s
condition can be used as the kernel function.
In this study, the radial basis function (RBF)
given below was frequently utilized as the
kernel function:

(18)

The main difficulty of LSSVM algorithm
is the selection of free parameters, such as
kernel parameter and trade-off parameter. In
this study, a grid search was employed,
which is a common approach (Hsu & Lin,
2002) to overcome this selection problem.

5. eMpiriCAL resuLts

5.1. datasets and Model parameters

Performance evaluation of the proposed
method was carried out using six well-
known data series. Time plots of the series
under investigation are given in Figure 3.
Lynx data are used by many researchers for
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comparing the performances of linear and
non-linear methods (Subba Rao & Sabr,
1984; Priestley, 1988). Before modeling, the
series’ logarithm to the base 10 was taken, as
suggested by Priestley (1988). The last 14
observations of the series, composed of a
total of 114 observations, were divided as the
test set. Sunspot series was used to assess the
performance of several forecasting methods
by several researchers (Subba Rao & Sabr,
1984; De Groot & Wurtz, 1991). The last 67
observations of the Sunspot series, forming a
total of 289 data, were taken as the test set.
The third series is the annual Real GNP of
the USA, which has trended over a period of
time, and can be noted in the earlier part of
the series, where there is a significant
cyclical behavior (Hipel & McLeod, 1994).
The GNP series is non-stationary by means
of cyclic fluctuations and has no seasonal
component. The total number of
observations of the series is 85, and while we
use 70 observations for modeling the series,
the rest of the observations were used for the
test set.

The fourth series is the number of
childbirths annually per 10,000 of 23-year-
old women in the USA between 1917 and
1975. As shown in the time plot of the series,
the wide-ranging trends in the birthrate—
declining during the Depression and
increasing from World War II onward,
followed by a drop after 1960—are clearly
detectable (Velleman & Hoaglin, 1981). We
can see from the time plot that the childbirth
series is non-stationary and non-seasonal. A
total of 59 observations were made for the
total size of the series. The testing set
contained the total 10 forecast observations
used for comparing forecasts of different
combining techniques. Other series taken
from Box and Jenkins (1976) is the monthly
numbers of passengers in international air

travel between 1949 and 1960. We have
followed the suggestions of Box and Jenkins
(1976) by taking the logarithm base 10 of the
number of passengers. This series is an
example of a seasonal time series. Owing to
the seasonal nature of air travel, we expected
heavier travel in summer months, as shown
in the time plot of the series, where a 12-
month annual pattern with, an upward trend
can be clearly seen (Woodward et al., 2011).
The series contains 144 observations, which
are monthly totals of international airline
passengers. The last 12 observations are
obtained for the test set. The final series used
in the study is quarterly new plant/equipment
expenditures in the USA for 1964–1976. The
seasonality of new plant/equipment
expenditures can be easily seen in the time
plot of the series. The original series is split
into a dataset containing 44 observations for
building the models, as well as a dataset that
includes eight observations to test the
models. All datasets mentioned here can be
easily found on the website of Time Series
Data Library (Hyndman, 2012).

Table 1 provides the model parameters of
single models that are found in all
experiments of datasets. For SETAR
(k;p1,p2) model, k denotes the number of
regimes and p1 and p2 denote the degree of
autoregressive model in low and upper
regimes, respectively. In LSTAR (p1,p2)
model, p1 and p2 stand for the degree of
autoregressive model in low and upper
regimes respectively. Regarding the ARIMA
model, it is known from previous studies
(Zhang, 2003; Subba Rao & Sabr, 1984;
Priestley, 1988), that a subset autoregressive
model of order 12 and 9 are the simplest
ARIMA models for Lynx and Sunspot
datasets respectively. All ARIMA models
used for other series are presented in Table 1.
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For ANN models, an experiment was
conducted to determine the numbers of input
and hidden units, and the input and hidden
unit numbers producing the least square error
in the validation data set were used as the
final model. In ANN (i,h,o) model, i
corresponds to the number of input units, h
represents the number of hidden units, and o
represents the number of output units in the

final model. Finally, to find free parameters
of the LSSVM method, a grid search was
employed, conducting a 10-fold cross-
validation. Also, the analyses were based on
the one-step-ahead forecast errors, which
were differences between the data value at
time t and the forecast of that value made at
time t-1. All experiments in this study were
implemented on Matlab and R software.
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Figure 3. Time plots of the series



5.2. results

Table 2 indicates the results of the single
models in terms of MSE and MAE values.
As seen in Table 2, LSSVM produced the
best model results in Lynx data. However,
the ANN model gave close results. These
two models are superior to other single
models in the Lynx dataset. In Sunspot data,
the ARIMA model gave better error
performance than all other models. LVSSM
and ANN models followed the ARIMA
model. For the RGNP data set, from a non-
linear view-point, ANN model demonstrated
better forecasting performance than other
individual models. LSTAR model is the
second-best model, according to the
forecasting performance. Regarding other
childbirths series that show fluctuations of
birth rates through the years, the models that
best describe the behavior of the series are
SETAR and LSTAR. The forecasting
performances of the two models relative to
other models were superior. For the next
series, that is, airline passengers, which was
affected by increasing trend and seasonal
variations from January 1949 to December
1960, the best values of MSE and MAE were
reported for LSTAR and ARIMA models.
For the last series, expenditures in the USA,
seasonally adjusted, SETAR and ANN
models showed better results in terms of
forecasting performance. The results for all

datasets showed that, if a dataset has a trend
or cyclical pattern, non-linear models such as
SETAR, LSTAR, and ANN models showed
promising forecasting performance with
respect to other models. As observed from
Table 2, it is not possible to declare any one
of the individual models as the best for all
datasets.

In Table 3, the results of the combination
methods were provided. In addition to the
mean, median, and trimmed combination
methods, the results of other group
combination methods (we can call this
“group the meta-combining” methods,
because they are based on the combination of
combining methods) were also reported in
Table 3. Combining methods of α = 0.5, α =
0.25, and α = 0.75 indicate that all of them
were obtained by means of combining mean
and median combination methods, but at
different levels, which indicate the weights
of mean and median in Equation 1. Thus, α =
0.25 represents that the weight of median is
bigger than the mean in the combination, α =
0.5 corresponds to equal weights for mean
and median, and α = 0.75 shows that the
weight of the mean is bigger than median in
the combination method. Other meta-
combining methods in the table are
Med_Dom (Median Dominating) and
Mean_Dom (Mean Dominating) techniques
proposed by Adhikari and Agrawal (2013).

It is difficult to judge which method is
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Table 1. Parameters of the single models for the six real time series

Data Sets 

 

SETAR 

 

LSTAR 

 

ARIMA 

 

ANN 

 

LSSVM 

�            �
2 

LYNX SETAR(2;4,3) LSTAR(3,3) ARIMA(12,0,0) ANN(2-6-1) 19.86       3.67 

SUNSPOT SETAR(2;2,6) LSTAR(6,6) ARIMA(9,0,0) ANN(3-9-1) 246.54     11.68 

RGNP SETAR(2;1,1) LSTAR(1,5) Random Walk ANN(4-1-1) 288.91     8176.9 

BIRTHS SETAR(2;1,2) LSTAR(1,2) Random Walk ANN(4-2-1) 1.199       0.019 

AP SETAR(2;1.1) LSTAR(1,3) SARIMA (0,1,1)×(0,1,1)12 ANN(12-4-1) 63.96       2793.6 

UE SETAR(2;1,4) LSTAR(5,2) SARIMA (0,1,1)×(0,1,1)4 ANN(4-4-1) 3.63         1.88 

�



better by screening the numbers in Table 3.
We therefore used statistical tests to judge
more objectively the superiority of the
methods in comparison with others.
However, mean combining is of great
importance in literature, and several studies
have used it as a benchmark, which is
difficult to beat for more sophisticated
approaches (Clemen, 1989; Timmermann,
2006; Makridakis & Winkler, 1983; Stock &
Watson, 1999). Our results were in
agreement with those in the literature;
however, if some forecasts of the single
models are much superior to those of single
models, the proposed method tends to be
slightly better than the simple average
method in combining forecasts. For LYNX,
RGNP, BIRTHS, and UE data results, we
have one or more superior forecasts by
individual models as compared with

forecasts of other individual models. In such
situations, the proposed method tends to
work better than simple average combining
approaches in terms of MSE or MAE;
however, if the forecasts of the component
models are almost similar, as for SUNSPOT
and AP data, the simple average combining
approach tends to perform better than the
proposed method.

The nonparametric Friedman test was
employed to determine statistically
significant performance differences between
all forecasting methods, considering all
datasets under investigation. This test
included the null hypothesis that the different
groups have been selected from populations
with the same median; and the alternative
hypothesis was that at least one median is
different. The Friedman test results obtained
were, as follows: for forecasting MSE, the
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Table 2. Results of the single model

Models 

Lynx Sunspot RGNP   Births            AP            UE 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ARIMA 

SETAR 

LSTAR 

0.030 

0.028 

0.027 

0.133 

0.137 

0.115 

311.97 

402.71 

433.24 

13.36 

15.27 

15.77 

526.43 

516.06 

426.18 

17.29 

18.40 

17.06 

136.59 

96.14 

99.63 

10.15 

7.51 

8.10 

360.03 

455.98 

329.36 

14.47 

15.74 

12.87 

0.617 

0.574 

2.047 

0.670 

0.564 

1.247 

ANN 

LSSVM 

0.012 

0.011 

0.093 

0.076 

389.87 

380.86 

14.73 

14.52 

422.18 

458.75 

17.32 

17.98 

115.60 

148.10 

6.94 

9.98 

429.76 

416.97 

16.10 

15.77 

0.594 

1.184 

0.604 

0.857 

�

Table 3. Results of the combination model
Models 

Lynx Sunspot RGNP   Births            AP            UE 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

Median 

Mean  

Proposed 

0.0090 

0.0108 

0.0087 

0.075 

0.083 

0.074 

325.44 

304.44 

312.48 

13.33 

12.71 

12.95 

426.86 

417.70 

413.89 

17.09 

16.64 

16.76 

86.84 

88.63 

87.48 

6.27 

6.25 

6.19 

407.08 

359.09 

385.61 

14.97 

14.10 

14.56 

0.587 

0.477 

0.494 

0.596 

0.540 

0.528 

�=0.5 

Trimmed 

0.0096 

0.0097 

0.077 

0.073 

312.81 

321.01 

12.98 

13.14 

418.90 

436.52 

16.86 

17.21 

87.59 

86.74 

6.25 

6.25 

381.88 

411.12 

14.53 

15.01 

0.522 

0.581 

0.544 

0.615 

�=0.25 

�=0.75 

Med_Dom 

Mean_Dom 

0.0101 

0.0092 

0.0096 

0.0107 

0.080 

0.076 

0.077 

0.082 

308.09 

318.59 

334.36 

324.59 

12.83 

13.15 

13.24 

12.92 

417.46 

422.03 

432.37 

426.70 

16.75 

16.98 

17.14 

16.77 

88.08 

87.18 

89.90 

90.98 

6.24 

6.25 

6.69 

6.66 

370.19 

394.18 

446.93 

420.69 

14.31 

14.75 

15.22 

14.79 

0.497 

0.552 

0.582 

0.532 

0.538 

0.570 

0.628 

0.576 

�



Friedman’s χ2 statistic was 41.49 and p =
0.000079, and, for forecasting MAE, the
Friedman’s χ2 statistic was 44.76 and p =
0.000023. Significant differences were noted
between forecasting methods, and then
multiple comparison procedures were used
to decide which groups were significantly
different from others, based on the mean
rank differences in the groups. Detailed
information about these tests is given
elsewhere (Hochberg & Tamhane, 1987).

In Figure 4, the mean rank of each group
is indicated by a symbol, and the interval is
represented by a line extending from the

symbol. Two group means were significantly
different if their intervals were disjoined;
they are not significantly different when their
intervals overlapped. As shown in Figure 4,
the forecasting accuracies obtained through
combining methods are often better than
individual models in terms of MSE and
MAE. The proposed method produced
statistically significant forecasting
performance compared to all single models
in terms of both MSE and MAE. The
proposed combining method reduces the
overall forecasting error in a more accurate
manner than other combining methods in
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Figure 4. Friedman test results for MSE and MAE

 

 

 



question. As a great extent of error was
already reduced with the help of simple
average and median combination methods,
in our method, we only combined two
combination methods effectively to improve
the forecasting accuracy, as well as to
decrease the model selection risk.

6. CoNCLusioN

After Bates and Granger’s optimal
weights approach, which did not work well
in practice, there has been reports of several
improvement in several unique combining
methods. In the literature, several methods
are available, varying from simple average
methods to more complex ones for
combining weights. Methods to increase
forecasting accuracy have attracted the
attention of researchers over the past few
decades. For this purpose, the use of a
combination of forecasting methods has been
commonly used. Although there are several
different and enhanced combination methods
available, simple combination methods, such
as mean and median, have generally
produced better results than more
complicated methods. However, the simple
mean method also possess a disadvantage as,
it is sensitive to extreme forecasts. These
extreme forecasts have a detrimental effect
on the combined forecast in the course of
combining all forecasts. Hence, a consensus
approach between combination methods of
the mean and median has been introduced in
this study. By the proposed method, it is
hoped that the mentioned disadvantages of
the mean and median combination methods
have alleviated. The difference of this study
from other studies in literature is to use
dynamic weights in each forecasting point
instead of using fixed weights in combining

the mean and median combination methods.
In this study, a linear combination method

was used, which is partially responsive to the
question as to which of the so-called
combination methods be selected, and in
which weight values change at every data
point. Five single models, including
ARIMA, SETAR, LSTAR, ANN, and
LSSVM, were selected in accordance with
the purpose of the study. In our analysis, we
considered eight combining methods to
compare our proposed approaches.
Promising results were achieved in the
consequence of the research of the proposed
method, which was implemented on six real
known datasets. Through the use of the
proposed method, a performance between
the mean and median combination was
achieved in the worst case, although
superiority was established to both
combination methods in the best case.
Moreover, we applied a nonparametric
Friedman test to demonstrate that significant
differences exist in combined forecasts by
different methods under the study. Based on
the Friedman test, our proposed approach for
combined forecasts seems slightly better
than other combining methods.

The decision makers in both private and
public organizations must make effective
plans to survive and increase their market
shares in today’s competitive global
economy. Every plan such as capacity plan,
production and inventory plan, purchasing
plan, manpower plan, and financial plans
depends highly on forecasting future
conditions accurately. To improve
forecasting accuracy, a considerable number
of methods have been proposed. Based on
the findings reported in this study, managers
in all levels can employ the proposed
combination method in reducing risk of
selecting poor combination method.
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новИ консензус у комбИнацИјИ метода 

средње вредностИ И медИјане у цИљу повећања
тачностИ предвИђања

serkan Aras, emrah gülay
Извод

Како би се увећала тачност предвиђања,истраживачи већ дуће време користе различите
комбинације техника. У суштини, паралелно коришћење различитих метода за предвиђање
података временских низова требало би да омогући супериорне резултате. Иако су до данас
предложене бројне комбинације техника, једноставна комбинација - као што је средња
вредност и медијана - задржавају своју примењивост и популарност код истраживача. Овај рад
предлаже нови комбиновани метод, који се заснива на комбинацији средње вредности и
медијане, како би се комбиновале предности обеју метода. Предложена техника комбинације
има за циљ коришћење јаких аспеката аваке од метода и смањење ризика који се може
појавити из селекције комбинације метода са лошим перформансама.. Како би се показала
потенцијална снага предложеног комбинованог метода, коришћене су добро познате
временске серије из реалне праксе. Добијени резултати показују да се предложени метод може
адекватно применити, са погодним перформансама. Додатно, коришћен је непараметриски
статистички тест који предочава супериорност предложеног метода над појединачним
методима и другим комбинацијама које се користе за предвиђање, на истраживаном сету
података. 

Кључне речи: Предвиђање, временска серија, комбиновано предвиђање, векторске машине и
подршка, неуронске мреже, СЕТАР, ЛСТАР, АРИМА



Modeling cyclical asymmetries in GDP:
international evidence. Atlantic Economic
Journal, 33, 297-309.

Chan, Y.L., Stock, J.H., & Watson, M.W.
(1999). A dynamic factor model framework
for forecast combination. Spanish Economic
Review, 1, 91-121.

Chan, W., Wong, A.C.S., & Tong, H.
(2004). Some Nonlinear Threshold
Autoregressive Time Series Models for
Actuarial Use. North American Actuarial
Journal, 8, 37-61.

Clemen, R.T. (1989). Combining
forecasts: A review and annotated
bibliography. International Journal of
Forecasting, 5, 559-583. 

De Gooijer, J.G., & Hyndman, R.J.
(2006). 25 years of time series forecasting.
International Journal of Forecasting, 22, 443-
473.

De Groot, C., & Wurtz, D. (1991).
Analysis of Univariate Time Series with
Connectionist Nets: A Case Study Of Two
Classical Examples. Neurocomputing, 3,
177-192.

De Menezes, L.M., Bunn, D.W., &
Taylor, J.W. (2000). Review of Guidelines
for the Use of Combined Forecasts.
European Journal of Operational Research,
120, 190-204.

Deutsch, M., Granger, C.W.J., &
Terasvirta, T. (1994). The combination of
forecasts using changing weights.
International Journal of Forecasting, 10, 47-
57.

Diebold, F.X., & Pauly, P. (1990). The use
of prior information in forecast combination.
International Journal of Forecasting, 6, 503-
508.

Dijk, D.V., Terasvirta, T., & Franses, P.H.
(2002). Smooth Transition Autoregressive
Models-A Survey of Recent Developments.
Econometric Reviews, 21 (1), 1-47.

Faraway, J., & Chatfield, C. (1998). Time
Series Forecasting with Neural Networks: A
Comparative Study Using the Airline Data.
Applied Statistics. 47, 231-250.

Feng, H., & Liu, J. (2003). A SETAR
Model for Canadian GDP: Non-linearities
and Forecast Comparisons. Applied
Economics, 35 (18), 1957-1964.

Fiordaliso, A. (1998). A nonlinear forecast
combination method based on Takagi-
Sugeno fuzzy systems. International Journal
of Forecasting, 14 (3), 367-379.

Franses, P.H., Dijk, D.V., & Opschoor, A.
(2014). Time Series Models For Business
and Economic Forecasting. New York, NY,
USA: Cambridge University Press.

Genre, V., Kenny, G., Meyler, A., &
Timmermann, A. (2013). Combining expert
forecasts: Can anything beat the simple
average? International Journal of
Forecasting, 29 (1), 108-121.

Graefe, A., Armstrong, J.S., Jones Jr.,
R.J., & Cuzán, A.G. (2014). Combining
forecasts: An application to elections.
International Journal of Forecasting, 30 (1),
43–54.

Hagan, M.T., Demuth, H.B., & Beale, M.
(1996). Neural Network Design. Boston:
PWS.

Hansen, J.V., McDonald, J.B., & Nelson,
R.D. (1999). Time Series Prediction with
Genetic-Algorithm Designed Neural
Networks: An Empirical Comparison with
Modern Statistical Models. Computational
Intelligence, 15 (3), 171-184.

Hassan, S., Khosravi, A., Jaafar, J., &
Belhaouari, S. (2012). Load forecasting
accuracy through combination of trimmed
forecasts, in Neural Information Processing,
(pp. 152-159). Springer Berlin/ Heidelberg.

Hibon, M., & Evgeniou, T. (2005). To
combine or not to combine: Selecting among
forecasts and their combinations.

234 S. Aras / SJM 12 (2) (2017) 217- 236



International Journal of Forecasting, 21 (1),
15-24.

Hipel, K.W., & McLeod, A.I. (1994).
Time Series Modelling of Water Resources
and Environmental Systems (Vol. 45).
Elsevier. 

Hochberg, Y., & Tamhane, A.C. (1987).
Multiple Comparison Procedures. Hoboken,
NJ: John Wiley & Sons.

Hsu, C.W., & Lin, C.J. (2002). A
Comparison of Methods for Multiclass
Support Vector Machines. IEEE
Transactions on Neural Networks, 13 (2),
415-425.

Hyndman, R.J. (2012). Time Series Data
Library. www.robjhyndman.com/TSDL/.
(12/06/2012).

Jose, V.R.R., & Winkler, R.L. (2008).
Simple robust averages of forecasts: some
empirical results. International Journal of
Forecasting, 24 (1), 163-169.

Larreche, J.C., & Moinpour, R. (1983).
Managerial judgment in marketing: the
concept of expertise. Journal of Marketing
Research, 20, 110-121. 

Larrick, R., & Soll, J. (2003). Intuitions
about combining opinions: Misappreciation
of the averaging principle. Working paper
INSEAD, 2003/09/TM.

Lemke, C., & Gabrys, B. (2010). Meta-
learning for time series forecasting and
forecast combination. Neurocomputing, 73
(10), 2006-2016.

Makridakis, S., Wheelwright, S.C., &
Hyndman, R.J. (1998). Forecasting Methods
and Applications. New York: John Wiley and
Sons Ltd.

Makridakis, S., & Winkler, R. (1983).
Averages of forecasts: Some empirical
results. Management Science, 29 (9), 987-
996.

Makridakis, S., Anderson, A., Carbone,
R., Fildes, R., Hibdon, M., Lewandowski,

R., Newton, J., Parzen, E., & Winkler, R.
(1982). The accuracy of extrapolation (time
series) methods: results of a forecasting
competition. Journal of Forecasting, 1 (2),
111-153.

Marcellino, M. (2004). Forecast Pooling
for Short Time Series of Macroeconomic
Variables. Oxford Bulletin of Economic and
Statistics, 66 (1), 91-112.

McNees, S.K. (1992). The uses and
abuses of ‘consensus’ forecasts. Journal of
Forecasting, 11 (8), 703-710.

Miller, C.M., Clemen, R.T., & Winkler,
R.L. (1992). The effect of nonstationarity on
combined forecasts. International Journal of
Forecasting, 7 (4), 515-529.

Newbold, P., & Granger, C.W. (1974).
Experience with forecasting univariate time
series and the combination of forecasts.
Journal of the Royal Statistical Society, 137,
131-165. 

Newbold, P., & Harvey, D.I. (2002).
Forecast combination and encompassing”.
Pp. 268-283 in M.P. Clements & D.F.
Hendry (Eds.), A Companion to Economic
Forecasting, Oxford: Blackwell Press.

Priestley, M.B. (1988). Non-linear and
Non-Stationary Time Series Analysis. San
Diego, CA: Academic Press.

Rapach, D.E., Strauss, J.K., & Zhou, G.
(2010). Out-of-Sample Equity Premium
Prediction: Combination Forecasts and Links
to the Real Economy. Review of Financial
Studies, 23 (2), 821-862.

Reid, D.J. (1968). Combining three
estimates of gross domestic product.
Economica, 35 (140), 431-444.

Schauberger, G., & Tutz, G. (2014).
Regularization Methods in Economic
Forecasting, Advanced Studies in
Theoretical and Applied Econometrics.
Empirical Economic and Financial Research:
Theory, Methods and Practice (pp. 61-80).

S. Aras / SJM 12 (2) (2017) 217- 236 235



Switzerland: Springer International
Publishing.

Smith, J., & Wallis, K.F. (2009). A Simple
Explanation of the Forecast Combination
Puzzle. Oxford Bulletin of Economics and
Statistics, 71 (3), 331-355.

Stock, J.H., & Watson, M. (1999). A
Comparison of Linear and Nonlinear Uni-
variate Models for Forecasting
Macroeconomic Time Series. Pp. 1-44 in
R.F. Engle & H. White (Eds.). Cointegration,
Causality, and Forecasting: A Festschrift in
Honor of Clive W. J. Granger, Oxford, U.K:
Oxford University Press.

Stock, J.H., & Watson, M.W. (1999).
Forecasting inflation. Journal of Monetary
Economics, 44 (2), 293-375.

Stock, J.H., & Watson, M.W. (2004).
Combination forecasts of output growth in a
seven-country data set. Journal of
Forecasting, 23 (6), 405-430.

Subba Rao, T., & Sabr, M.M. (1984). An
Introduction to Bispectral Analysis and
Bilinear Time Series Models. New York:
Springer-Verlag.

Suykens, J.A., De Brabanter, J., Lukas,
L., & Vandewalle, J. (2002). Weighted least
squares support vector machines: Robustness
and sparse approximation. Neurocomputing,
48 (1), 85-105.

Terasvirta, T., & Anderson, H.M. (1992).
Characterizing nonlinearities in business
cycles using smooth transition
autoregressive models. Journal of Applied
Econometrics, 7, 119-136.

Terui, N., & Van Dijk, H.K. (2002).
Combined forecasts from linear and
nonlinear time series models. International
Journal of Forecasting, 18 (3), 421-438.

Timmermann, A. (2006). Forecast
combinations. Pp. 135-196 in G. Elliott, C.
Granger & A. Timmermann (Eds.),
Handbook of Economic Forecasting.

Elsevier. 
Tong, H. (1978). On a threshold model.

Pp. 575-586 in C.H. Chen (Eds.). Pattern
Recognition and Signal Processing. Sijhoff
& Noordoff. Amsterdam.

Velleman, P.F., & Hoaglin, D.C. (1981).
Applications, Basics and Computing of
Exploratory Data Analysis. Boston: Duxbury
Press.

Winkler, R.L., & Clemen, R.T. (1992).
Sensitivity of weights in combining
forecasts. Operations Research, 40 (3), 609-
614.

Woodward, W.A., Gray, H.L., & Elliott,
A.C. (2011). Applied Time Series Analysis.
London, U.K.: CRC Press.

Zhang, G.P. (2001). An Investigation of
Neural Network Model for Linear Time-
Series Forecasting. Computers & Operations
Research. 28 (12), 1183-1202.

Zhang, G.P. (2003). Time series
forecasting using a hybrid ARIMA and
neural network model. Neurocomputing, 50,
159-175.

Zhang, G.P., Patuwo, B.E., & Hu, M.Y.
(1998). Forecasting with Artificial Neural
Networks: The State of the Art. International
Journal of Forecasting, 14 (1), 35-62.

Zou, H., & Yang, Y. (2004). Combining
time series models for forecasting.
International Journal of Forecasting, 20 (1),
69-84.

Zou, H.F., Xia, G.P., Yang, F.T., & Wang,
H.Y. (2007). An investigation and
comparison of artificial neural network and
time series models for Chinese food grain
price forecasting. Neurocomputing, 70 (16),
2913-2923.

S. Aras / SJM 12 (2) (2017) 217- 236236


