
1. intRoduction 

 

In the past centuries, the electric demand 

for various energy resources, in both 

sufficient quantities and satisfactory quality, 

has been growing worldwide, along with 

population growth, economic development 

and living standard enhancement. Thus, 

designers and decision makers are facing 

many pressure to deal more effectively to a 

number of energy-related subjects and 

conflicts, which can be represented as 
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optimization problem of energy management 

system, related in many cases to economic 

and environmental effects.  

In EMS, we can deal with several 

processes such as energy utilization and 

exploration, conversion and processing, 

production and load, as well as the associated 

greenhouse gas emissions. Which are in 

many case associated with uncertainty giving 

more complexities to the problem solution.  

Since the beginning of the last century, 

and for many years, a wide range of 

optimization techniques and methods has 

been developed and used to solve EMS 

optimization problems. The base load 

technique, the incremental scheme and the 

best point loading are some optimization 

techniques among others applied to solve 

this problem. A historical review, which 

highlights the previous works in this research 

area, is presented in (El-Hawary, 1979). 

Currently, a number of methods and 

procedures are used to resolve EMS 

optimization problems (Momoh, 2001), 

which include exact mathematical methods, 

iterative methods, artificial intelligence 

methods, and finally hybrid techniques. With 

the enhancement of the mathematical and 

calculation techniques, more details of the 

problem have been addressed.  

Many techniques including traditional 

and modern optimization methods, which 

have been developed to solve these EMS 

problems, are classified into three groups: (1) 

Exact optimization methods (such as NLP, 

LP, QP, IP, etc.), (2) Intelligence search 

methods (such as NN, TS, PSO, etc.) and (3) 

Nonquantity approaches to address 

uncertainties in objective functions and 

constraints (such as probabilistic 

optimization , fuzzy set applications and 

analytic hierarchical process). In this paper, 

we focus on the review of the first group. 

Hence, in this paper, a review of 

optimization methods based on advanced 

mathematical programming to solve 

problems associated to EMS and 

descriptions of some EMS optimization 

functions are discussed in section 2, a 

classification of optimization methods to 

solve nonlinear optimization problem is 

given in section 3, followed by a summary 

discussion and conclusions in section 4.  

 

 

2. mAthemAticAl oPtimizAtion 

 

Optimization is a process of choosing 

logically among given alternatives the best 

solution according to an objective. Most real 

optimization problems are very difficult or 

stochastic to be studied or resolved using 

conventional mathematics. Although, there 

are very essential problems where a 

mathematical description is possible, which 

can be resolved, and is a good estimation of 

the problem to resolve. Some classic cases 

are problems of planning (engines, trains, 

airplane carriers), measurement of (pipes, 

electric power units, etc.), direction-finding 

(salespersons, wire, telephone calls), and 

building (bonds, aircraft, integrated circuits) 

(Mathworks, 2018; Cheney & Kincaid, 

2012).  

     Optimization is a field of mathematics, 

where the concept is to minimize or 

maximize a function, (Mathworks, 2018; 

Ramos de Souza et al., 2017). The domain of 

optimization programming is compound of 

numerous sub fields, depending on the 

properties of the studied function. In the 

course of the Second World War, many 

researches are focused on analyzing and 

formulating several mathematical models for 

production planning, goods carriage and 

sharing of rare resources, which lead to the 
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so called of operations research. From then 

the concept and application of operations 

research increased rapidly (Ding et al., 2004; 

Luc, 2015). In mathematical programming 

the mainly concern is the theory and 

procedures for optimization. A good review 

of different subjects in mathematical 

programming can be found in (Nemhauser et 

al., 1989), and for some history see (Ambrus-

Somogyi, 2012). 

Given a mathematical system defined 

with m equations and n variables. Such 

system can be:  (1) algebraic problem             

(n = m), generally has at minimum a unique 

solution; (2) over constrained (n < m), 

commonly such problem can’t be resolved; 

(3) under constrained problem (n > m), in 

such problem numerous results could be 

existent which meet the problem 

formulation. The latest category is the 

subject of this review paper.  

Thus an optimization problem involves 

many types of variables and typically is a 

system with under constrained equation. This 

function of variables is well-defined as 

objective function. To match the optimality 

of several feasible solutions of the under 

constrained problem, the objective equation 

has the role to provide a weight for each 

solution. 

When dealing with optimization problem, 

there are two kinds of variables, the first are 

the known variables which are generally 

fixed values and the second are the unknown 

variables. The optimum numeric values of 

the latter is the goal to achieve. Within the set 

of unidentified variables, there are two main 

subclasses: (1) Control variables, which 

represent parameters directly controlled in 

the optimization process; (2) State variables, 

which represent parameters not directly 

controlled in the optimization process. The 

state variables result from the selection of the 

control variables and represent the processes 

image of their values.  

 

2.1. the mathematical model  

 

In general, optimization problem is 

defined as follows. Assume n variables; m 

linear or nonlinear equality constraints and p 

inequality constraints (Bacher, 2002). 

  

Subject to: 

min F(x) 

gi(x) = 0, for i = 1,..., m,                          (1) 

hi(x) ≤ 0, for i = 1, ..., p. 

 

The problematic is to calculate the values 

of x where the equality equation g(x) and 

inequality equation h(x) and the objective 

equation F(x) is at an exact local optimum.  

     The optimization problem in equation 

(1) have to be observed with respect to the 

subsequent points to simplify a solution 

which return the required optimality 

conditions (Ambrus-Somogyi, 2012). These 

points are: 

- Differentiate between those active 

inequality equation, and inactive inequality 

equation. 

- Give those active inequality equation the 

same consideration as equality function and 

define the optimality conditions for the 

augmented equality function problem 

similarly as for “standard” equality 

constrained optimization problem.  

- Assume that the Lagrangian multipliers 

(μi) of the active g(x) constraints are positive. 

- Assume that inactive h(x) inequality 

constraints are less than zero (else h(x) are 

inactive).  

The Lagrangian equation where all 

equality and all active inequality constraints 

are taken in consideration is given by:  
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where λi and μi are the Lagrange-multipliers 

elements of vectors λ and μ, respectively. We 

suppose the number p’ of  h(x) constraints are 

active h(x) constraints and the last h(x) 

constraints are inactive. The notation tr in 

equation (2) define the transpose of a matrix 

or vector (tr is an operator which flips a 

matrix or a vector over its diagonal). The 

problem given by equation (2) have the 

following optimality conditions: 

 

        (3) 

 

h(x) = 0, μ ≥ 0                                     (4) 

 

g(x) = 0                                              (5) 

 

If hj(x) = 0, so h(x) is active constraint, 

and if hj(x) < 0, so h(x) is inactive constraint, 

which are the set of needed optimality 

conditions for the optimization problem 

formulated by equation (1). 

 

2.2. linear Programming method (lP) 

 

Linear programming (LP) method is used 

to linearize the nonlinear EMS optimization 

model, with the aim of linearizing the form 

of objective function and constraints of EMS 

optimization. The most effective method 

known for solving LP problems is the 

simplex method. Among the many 

advantages of LP method, the LP method is 

reliable, particularly with respect to 

convergence properties and detect rapidly 

infeasibility. LP method deals with a wide 

range of EMS operating limits, including 

contingency equation constraints. The 

drawbacks of LP method are inability to find 

an exact solution and inaccurate estimation 

of system power losses compared to the 

original nonlinear EMS formulation. On the 

other hand, plenty of practical applications 

show solutions using LP method usually 

satisfy the engineering accuracy standards. 

Therefore LP method is commonly used to 

resolve EMS operation problems such as 

reactive power optimization, optimal power 

flow, security - constrained economic 

dispatch, steady - state security regions, etc.  

Mathematically, linear programming 

problem is defined as the problem of 

maximizing or minimizing of a linear 

function subject to linear equalities and 

inequalities constraints (Cheney & Kincaid, 

2012; Bacher, 2002; Ding et al., 2004).   

 

Standard LP problem is stated as: 

  

minimum (F) = ctr x                            (6) 

 

Subject to: 

A1 x = b1                                           (7) 

A2 x ≤ b2 

 

x ≥ 0                                                   (8) 

 

In some cases, a part of variables may be 

constrained to be nonnegative and others are   

not constrained. Some of the main 

constraints may be equalities (A1 x = b1) and 

others inequalities (A2 x ≤ b2). 

 

2.3. Quadratic Programming method 

 

Quadratic programming (QP) is a special 

method of nonlinear programming. The 

objective function of QP is quadratic, and the 

constraints are in linear function. QP has 

higher accuracy than Linear Programming - 
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based methods. Particularly, often most used 

objective function in EMS optimization is 

the unit production cost function, which is 

usually assumed as a quadratic equation. 

Therefore, there is no approximation for 

such objective function for an EMS 

optimization resolved by QP. 

Mathematically, QP is an area of 

mathematics that treats the determination of 

the optimum of a quadratic function 

constrained by linear equalities and 

inequalities equations (Cheney & Kincaid, 

2012; Michael, 2017).   

 

The standard objective equation of a QP 

problem is set as follows:  

 

minimum (F) = (1/2) xtr Qx + ctr x        (9) 

 

Subject to linear equality and inequality 

equations:  

 

A1 x - b1 = 0                                           (10) 

A2 x - b2 ≤ 0 

 

where x is the variables vector, c represent 

the cost constants vector, n is the dimension 

of vector x and vector c; dimension of matrix 

Q is (n×n); dimension of matrix A1 is (m×n) 

matrix; dimension of matrix A2 is (p×n) 

matrix; b1 is the right sides vector identifying 

the equality equation, with a dimension m 

and b2 is the right sides vector identifying the 

inequality equation, with a dimension p. 

Matrices Q, A1, A2 and vectors b1, b2 are 

numerically known. Furthermore, the matrix 

Q have to be symmetric and positive definite. 

(ytr×Q×y > 0 for y different to zero). In such 

conditions, the QP problem is convex. 

Depending on the optimization problem, 

matrices Q, A1 and A2 can be sparse or 

compact matrices. 

 

2.4. difinition of certain ems functions 

 

The Economic load Dispatch (ELD): It is 

the main and simple function where the 

objective is to minimize the total production 

cost of active power generation of an entire 

power system, by supposing that each 

generator has a well-known cost curve which 

is related to its own real power generation. 

Each power unit has maximum and 

minimum real power generating limits. It is 

supposed to that the whole generated real 

powers have to be equal to an assumed total 

system load (forecasted value) plus total 

power losses.  

Optimal load Flow (OPF): is a model 

which represents the question of determining 

the best operating outputs for electric power 

plants permitting to meet the total system 

demands given throughout a transmission 

network, usually with the objective of 

minimizing operating cost. At the same time 

the OPF model take in consideration all 

equations of power flow and operational 

constraints on the network elements (i.e. 

limits on voltage magnitude on generator bus 

and limits on transmission branch current).  

Electrical power flows equation are 

nonlinear, nonconvex functions of the 

system's physical characteristics, so the 

problem of OPF can be a difficult problem. 

On the other hand, in real operations, a case 

with the total distribution network must be 

resolved in real time (every 5 minutes for 

many Independent System Operators) to 

guarantee that demand is met precisely. 

The deregulated electricity market calls 

also to robust optimal power flow (OPF) 

tools that can provide deterministic 

convergence with accurate computation of 

nodal prices which support of both smooth 

and nonsmooth costing of a variety of 

resources and services, such as real energy, 
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reactive energy, voltages support. (Wang, 

2007) 

Unit Commitment: Since power units 

cannot rapidly turn on and generate power, 

unit commitment (UC) have be planned 

beforehand so that enough production is 

always available to satisfy system demand 

with an tolerable reserve margin (in case of 

go out of generators or transmission lines or 

power demand increases). UC handles the 

production unit schedule for minimizing 

operating cost and satisfying typical 

constraints such as load demand and system 

reserve requirements over a set of time 

periods (Zhu, 2015). The standard UC 

problem objective is to define the start - up 

and shutdown time calendars of production 

thermal units to satisfy predicted demand for 

a determined time (24 h to 1 week). This 

problem is a combinatorial optimization 

problems category. Many methods that have 

been used to solve such problem until now 

can be classified into approximately three 

categories: mathematical programming, 

heuristic search, and hybrid methods. Some 

mathematical Optimization programming 

techniques used such problem are the 

priority list, dynamic programming, 

augmented Lagrangian relaxation, and the 

branch – and – bound algorithm. Heuristic 

search such Genetic algorithms (GA), 

simulated annealing (SA), and particle 

swarm optimization (PSO) have also been 

used for UC problem since the beginning of 

the last decade time (Wu & Shahidehpour, 

2016). 

 

3. clAssiFying oF oPtimizAtion 

methods to solve nl- 

oPtimizAtion PRoBlem 

 

In this section, the general optimization 

problem is solved by a combined method. 

The constraint equations and the objective 

function are smooth and differentiable. 

Vector of unknown x are and continuous 

variables. The aim is to find the objective 

solution for this problem. The nonlinear 

optimization problem procedures are 

presented in two categories:  

 

3.1. category A: iterative solution of 

approached lP or QP  

 

The algorithms of this category are the 

procedures by which the optimization starts 

from a resolved and fixed nonlinear system 

of equations or Newton-Raphson (NR) 

process (Bacher, 2002). The sensitivity 

relationships and the Jacobian matrix based 

on LP or QP usually are used in the 

optimization procedure, which are iterative 

as a whole. The NR process is solved after 

each approached LP or QP iteration.  

 

3.1.1. Consecutive QP solution of 

approached optimization problem 

 

     An approached formulation around an 

assumed point x0 give to the subsequent QP 

system: A quadratic approached objective 

function:  

 

minimum (F) = (1/2)ΔxtrQΔx+ctrΔx   (11) 

  

Subject to the following linear equality 

and inequality function (constraints):  

A1 Δx - b1 = 0                                           (12) 

A2 Δx - b2 ≤ 0 

x is the vector of variables, where n is the 

dimension of vector x . 

c = ∂F/∂x|x°, where c is the cost 

coefficients vector of the of the linear 

objective function, where n is the dimension 

of vector c.  

Q = ∂2F/∂x2|x° is a square matrix of 
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dimension (n×n); A1 = ∂g/∂x|x°, is a matrix of 

dimension (m×n); A2 = ∂h/∂x|x°, is a matrix 

of dimension (p×n); b1= - g(x0) is the right 

sides vector identifying the equality 

equation, with a dimension m; b2= - h(x0) is 

the right sides vector identifying the 

inequality equation, with a dimension p. 

The iteration loop is represented by the 

following algorithm: 

Step 1. Choose a initial values for x0; 

initiate k=0 

Step 2. Determine the QP solution of 

approached optimization problem around xk 

Step 3. Calculate Δxk 

Step 4. Update of all variables                     

xk+1 = xk+ Δxk, update k = k + 1 

Step 5. Return to step 2 

 

3.1.2. Consecutive QP solution of 

approached optimization problem based on 

NR  

 

There is many difficult when dealing with 

the iterative process of consecutive QP 

solution discussed in the earlier paragraph, 

especially when selecting the value of a 

starting solution x0. This initial point affect 

significantly the convergence. The first aim 

of the procedure is determine a starting 

solution satisfying principally the equation 

of equality constraints g(x0) = 0, without 

necessarily satisfying the inequality 

constraints. The dimensions of the problem 

have been already stated, where m equality 

equation (g) and n unknown variables (x). 

Assuming also (n > m), number of variables 

is superior to number of equality constraints. 

Therefore, a degree of lack of restrictions 

exists for the solution of the equality 

function (g). Now, we have to divide the 

vector x into two sub vectors allowing the 

solution of a part of equations which have 

identical number of variables and number of 

equations. That is, the equality functions (g) 

can be expressed like this: xtr = [x1
tr, x2

tr] and 

g(x1, x2
0) = 0, where m is the dimension of 

(x1) and (n-m) is the dimension of (x2). 

Therefore, the earlier mathematical 

procedure discussed of the iterative QP 

implementation can be prolonged to the 

following iterative execution, (1) a NR 

resolution and (2) a QP solution procedure. 

(3) Update the iterative value of Δx, (4) 

began a new NR procedure with the new 

updated values of x2
0, (5) Starting again a 

new QP solution, etc. The previous iterative 

procedure is called a consecutive execution 

of a QP, although the iterative procedure of 

QP starts continuously around a solved set of 

non-linear equations as represented by the 

following algorithm.             

Step 1. Choose a starting values x0; 

initiate k = 0 

Step 2. Splitting x so that, xtr=[x1
tr, x2

tr] 

Step 3. Solve g(x1, x2
k) = 0. For the vector 

x1 (x2
k = constants) 

Step 4. Determine the QP solution of 

approached optimization problem around xk 

Step 5. Calculate Δxk 

Step 6. Update of all variables 

xk+1=xk+Δxk, update k = k+1 

Step 7. Return to step 3 

 

 

3.1.3. Consecutive compacted QP 

procedure of approached optimization 

problem with NR support 

       

The word compact QP is given to 

quadratic programming where the number of 

variable and equality constraint are reduced. 

From equation (12), the variables Δx1 is 

removed, which lead to the compact 

formulation. The equality functions in Eq. 

(10) are divided as follows: 
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A11Δx1 + A12Δx2 = b1                          (13) 

 

The value of Δx1 can be calculated from 

equation (13): 

 

Δx1= (A11)inv (- A12Δx2 + b1)                 (14) 

 

The solution of equation (14) exists if A11 

is square non-singular matrix where the 

dimension is (m x m). So the solution Δx1 can 

be replaced in the original quadratic 

programming model of equation (11) and 

equation (12), which give the subsequent 

compact quadratic programming:  

 

minimum (F) = (1/2)Δx2
trPΔx2+c2

’trΔx2      (15) 

 

Having the subsequent inequality 

equation (linearized) as constraint to satisfy: 

 

A’22 Δx2 - b’2  ≤ 0                                (16) 

 

where 

 

 

                    (17) 

 

 

 

       

 

 

 

I  is unity matrix;  

 

The QP formulated by Equation (15) and 

(16) is a compact quadratic programming 

where the number of variables Δx2 is equal to 

(n-m) with no need to deal with equality 

constraints equations because they have been 

excluded. The main variable remaining for 

the compact QP model is now Δx2. As soon 

as the vector Δx2 values are calculated, the 

optimal solution of vector Δx1 values are 

calculated by equation (14). This is the 

principle of the iterative procedure 

represented by the following steps:             

Step 1. Choose a starting values x0; 

initiate k = 0; 

Step 2. Splitting x so that, xtr = [x1
tr, x2

tr]; 

Step 3. Solve g(x1, x2k) = 0. For the vector 

x1 (x2
k =constants); 

Step 4. Compute the compact QP form by 

eliminating the variables Δx1; 

Step 5. Compact QP solution of  

approximated optimization problem around 

xk ; 

Step 6. Calculate Δxk ; 

Step 7. Update of all variables       

xk+1=xk+ Δxk, update k = k+1; 

Step 8. Return to step 3. 

 

3.2. category B: integrated iterative 

solution of (Kuhn-tucker) Kt-optimality 

conditions 

 

The algorithms of this category are the 

methods dealing with strict formulation of 

optimality conditions by which the equality 

equations are involved. There is no previous 

information (solution) concerning any part of 

equality equation as mentioned in category 

(A). The procedure as a whole is iterative 

and every solution during the iterative 

process come close to the optimality 

conditions. 

    In this category, integrated method are 

used to solve optimization problem in 

comparison to category (A), where Newton 

Raphson solution of a part of equations are 

detached from the optimization formulation 

(Bacher, 2002; Ding et al., 2004). A unique 

method is presented in this paper. Which is 

commonly named nonlinear Interior Point 
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(IP) method (Cheney & Kincaid, 2012; 

Michael, 2017). This method is derived from 

a solution of the nonlinear optimality 

conditions of (KT) by means of a 

combination of Newton Raphson and barrier 

function parameter diminution (ζ ) through 

the iteration processes. Many other 

procedures can be used which can be found 

in previous research in this category (B) 

optimization. In all category (B) procedures, 

the iterative solution of optimality conditions 

(transformed nonlinear KT) must to be 

completed.  

 

3.2.1. Interior Point procedure for 

Kuhn-Tucker optimality conditions  

 

The augmented optimization problem is 

stated as follows: 

 

L = F(x) + λtr g(x) + μtr h(x)                (19) 

 

Reminder that variables x only are 

handled in the category (B) method. This is 

to some extent unlike the category (A) 

method in which a difference concerning the 

state variables and control variables is 

beneficial. The optimality conditions 

resulting from first order derivative of the 

Lagrange function in equation (18) represent 

the necessary optimality conditions:  

 

 

The notation diag in equation (20) is the 

diagonal matrix. The constraint set (3) and 

(5) mean that an inequality equation is active 

if  μ > 0, so h(x) = 0. An inequality equation 

is inactive, hi(x) < 0, if  μ = 0. 

 

 

 

3.2.2. Interior Point (IP) method 

 

Interior point (IP) technique is initially 

used to solve linear programming problem. It 

is better than the conventional simplex 

algorithm in linear programming with 

respect to speed. IP approaches were first 

used to resolve Optimal Power Flow (OPF) 

problems in the 1990s, and lately, the IP 

technique has been prolonged and enhanced 

to resolve OPF with QP and NLP formulas.   

 The concept of the Newton Raphson 

applied to equality constraints equation is 

spread out to comprise in the formulation the 

inequality constraints equation. To 

comprehend the main ideas behind IP 

procedure for a nonlinear optimization 

problem (Ramos de Souza et al., 2017; 

Quintana, 2000; Luc, 2015). The original 

optimization problem is expressed as 

(Michael, 2017): 

 

With the constraints g(x) = 0; h(x) + z = 0 

and z > 0 

 

The next two conditions must be satisfied: 

 

1. ζ in equation (21) converge to zero 

during the iterative process. 

2. the variables z in equation (21) must 

kept positive during iterations process, 

which gives the name Interior point to this 

algorithm. In other hand, the word barrier 

came from the barrier equation (ζ ∑i ln(zi) 

for i=1 to p) associated with the objective 

function in equation (21), which can’t travers 

the limit zero (ζ > 0).  
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The KT optimality conditions can be now 

derived from the so-called IP-oriented  

 

Lagrangian as follow: 

 

 

 

 

 

Where e is an all-ones vector. For any 

value of ζ > 0, the problem reach an optimum 

where the necessary conditions of equation 

(23) must be valid. The dimension of vectors 

e, µ and z is equal to p. The main idea behind 

the IP-KT solution procedure for necessary 

conditions of equation (23) is summarized in 

the following points:  

a. Find a solution of equality equation by 

Newton Raphson method.  

b. Select an initial positive value for the 

variables z and μ. Note that initial value is 

quite delicate for procedure convergence.  

c. After calculating the optimal Δ values 

of xopt, λopt , zopt, and μopt, by the previous 

procedure, update all variables, by using 

step- length control so that the variables z 

and μ stay positive through the iterative 

process.  

d. At the optimum ζ must close to zero. If 

not the optimization problem solved differ 

from the original one. 

 

 

4. conclusion 

 

Optimization is a part of mathematics, 

which is the concept of optimizing (finding a 

minimal or a maxima) an equation, by 

satisfying certain equality and/or inequality 

constraints. The optimization approaches are 

weighted by their performance related to 

robustness, versatility and speed.  

From the view of optimization, the 

various techniques including traditional and 

modern optimization methods, which have 

been developed to solve these EMS 

operation problems, are classified into three 

groups: (1)  Conventional optimization 

methods (such as NLP, LP, QP, IP, etc.), (2) 

Intelligence search methods (such as NN, 

TS, PSO, etc.) and (3)  Nonquantity 

approaches to address uncertainties in 

objectives and constraints (such as 

Probabilistic optimization, Fuzzy set 

applications and Analytic hierarchical 

process). The first optimization group is the 

subject of this paper.        

Methods of category (A) and (B) have 

relative qualities and performance for a 

specific application. However, in any single 

problem, a particular method could 

demonstrate reduced performance. Category 

(A) and (B) procedures together have 

identical dimension of the linear inequality 

equation set. Therefore, there is no existence 

of difference between both categories related 

to this point. Methods of Category (B) are 

known for their robustness, they have a 

tough benefit compared to category (A) 

methods by resolving all functions of 

optimization problems with no specific 

differences in the course of the solution 

procedure. Which result, generally because 

the category (B) procedures resolve directly 

the optimality conditions of the original 

optimization problem. In the other hand, 

category (A) procedures resolve simply the 

optimality conditions equations of the 

approached optimization problem. Main 

drawbacks of category (B) procedures is that 

the number of variables to be deal with is 
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relatively huge, compared to the category 

(A) procedures. We have to underline that 

among all optimization method class, no 

existence of a single one which satisfy all 

performance suitably and has to be 

categorized as the better non-linear 

optimization problem solution procedure. To 

conclude, the choice can be established 

based on the best combination of computer 

code effectiveness, procedure robustness, 

and computer code credibility (Bacher, 

2002).  
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Извод 

 

Енергија је основа у подршци свакодневном животу људи, као и континуираној мисији за 

побољшање људских живота. Систем рачунарско потпомогнутих инструмената који користе 

оператори електричних комуналних мрежа или микро мрежа за управљање, надгледање и 

оптимизацију рада електроенергетског система обично се назива Систем за управљање 

енергијом (ЕМС). Методе оптимизације примењене на проблеме доношења одлука у таквом 

систему су тешка и сложена комбинација математичке формулације, моделирања и 

алгоритамског решења. Најбољи резултат у таквом процесу примењује се на проблем који 

треба оптимизовати, а који се мора проучити са великом пажњом. Даље, могу се разрадити 

комплексни математички прорачуни и поступци; такође, мора се поседовати знање о 

информационим технологијама и софтверско инжењерство. Предмет овог рада је преглед 

постојећих важних метода оптимизације који се користе у систему управљања електричном 

енергијом, као што су ангажовање јединице, оптималан проток снаге и економска испорука. 

 

Кључне речи: метода оптимизације, квадратно програмирање, линеарно програмирање, 

систем управљања енергијом 
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