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Abstract

Entropy, a key measure of chaos or diversity, has recently found intriguing applications in the
realm of management science. Traditional entropy-based approaches for data analysis, however,
prove inadequate when dealing with high-dimensional datasets. In this paper, a novel uncertainty
coefficient based on entropy is proposed for categorical data, together with a pattern discovery
method suitable for management applications. Furthermore, we present a robust fractal-inspired
technique for estimating covariance matrices in multivariate data. The efficacy of this method is
thoroughly examined using three real datasets with economic relevance. The results demonstrate the
superior performance of our approach, even in scenarios involving a limited number of variables.
This suggests that managerial decision-making processes should reflect the inherent fractal structure
present in the given multivariate data. The work emphasizes the importance of considering fractal
characteristics in managerial decision-making, thereby advancing the applicability and effectiveness
of entropy-based methods in management science.
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1. INTRODUCTION surroundings  (Gleick,  2008).  The
mathematical underpinning of complex

Chaos theory serves as a paradigmatic nonlinear dynamic systems reveals that
framework elucidating the inherent chaos, specific chaotic systems manifest intricate
randomness, uncertainty, and fractal patterns characterized by their self-
unpredictability of events in our similarity and inherent self-development,
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exhibiting self-organization in various
structures (Akhmet et al.,, 2020). The
explication of complex and unpredictable

systems falls within the purview of
cybernetics, a discipline focused on
elucidating  feedback and  control
mechanisms.

Fractal patterns are not confined solely to
the natural realm but can also be discerned in
the societal framework, marked by an
uneven and multifaceted evolution. The
contemporary society is characterized by
heightened instability, lack of control,
unpredictability, and a complexity
surpassing that of previous eras (Darian-
Smith, 2022). The society's susceptibility to
volatility, amplified by rapid technological
advancements and further accentuated in the
wake of the COVID-19 pandemic, is termed
as its fractalization (Kalina, 2022).

Economic models face challenges in
capturing the unpredictable cycles and
chaotic  trajectories  of  economic
development, which exhibit fractal patterns
with  consequential implications for
managerial forecasts (Slanina, 2013).
Fractal-inspired methodologies have proven
promising in financial management decision-
making (Mosteanu, 2019) and portfolio
management (Tilfani et al., 2020). However,
their  application in  non-financial
management tasks remains relatively
underexplored. The incorporation of fractal
perspectives holds potential for a more
comprehensive understanding of managerial
challenges beyond the financial sphere.

Entropy as a fundamental mathematical
metric is widely acknowledged for its role in
gauging the degree of chaos, diversity, and
disorder within a specific system. While
commonly employed in the scientific
depiction of natural phenomena, it also finds
application, albeit more metaphorically, in
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characterizing societal dynamics. Although
the precise evaluation of entropy for an
entire society proves challenging, it is
evident that a state of nature or a stable
environment would exhibit a low entropy
level. Conversely, the advent of globalization
has been accompanied by a discernible rise
in entropy. In tandem with the escalating
global entropy, the complexity inherent in
managerial decision-making has experienced
a marked upsurge (Kahneman, 2011). The
heightened levels of uncertainty often liken
decision-making challenges to games of
chance. Despite this, the strategic utilization
of data remains a valuable asset in the
marketplace and the ability to harness data
effectively becomes increasingly crucial in
navigating the intricacies of contemporary
management (Himeur et al., 2023).

The complexity of available data,
particularly in management contexts, is on
the rise, owing to its heightened nonlinearity
and large numbers of variables. In many
instances, the data itself can be regarded as
possessing a fractal structure characterized
by a high fractal dimensionality (Jifina &
Jitina, 2015). In such a case, statistical and
machine learning methodologies should be
deployed to transform raw data into valuable
and interpretable knowledge, thereby
reducing entropy by discerning meaningful
distinctions between signal and noise (Reddy
et al., 2020).

Addressing the challenges posed by high-
dimensional data, dimensionality reduction
techniques come into play. These methods
work towards compressing information,
eliminating redundant variables, and
identifying only the most salient and
predictable patterns (Chhikara et al., 2022).
Traditional data analysis methods often
prove inadequate for high-dimensional data,
where a substantial number of variables are
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at play. Consequently, there exists a gap in
data analysis methodologies inspired by
fractals and entropy, which could find
application in multivariate data analysis, the
construction of complex predictive models,
optimization tasks, and multi-criterial
decision-making processes, among others.

Section 2 provides an overview of entropy
as a fundamental measure, emphasizing its
recent applications within the domain of
management science. In Section 3, a
regularized vresion of the uncertainty
coefficient, which is an entropy-based
measure for categorical data, is proposed.
The application of this coefficient is
explored in Section 4, where it is posited as a
valuable tool for pattern discovery,
particularly in scenarios characterized by a
multitude of categorical variables. In Section
5, the focus shifts to the presentation of a
robust fractal-inspired methodology devised
for estimating the covariance matrix of
multivariate data. This novel method is
subjected to scrutiny through its application
to three multivariate datasets, demonstrating
its efficacy and applicability. The results
reveal the method not to be confined to high-
dimensional datasets. In Section 6,
conclusions are drawn. This structured
progression serves to systematically unfold
the contributions and applications of entropy,
uncertainty coefficients, and fractal-inspired
methodologies within the realm of
management science.

2. ENTROPY IN MANAGEMENT
SCIENCE

The (Shannon) entropy is defined for a
discrete random variable X as

HX)=—-Yp@)logp(x), (1)
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where the summation considers all the
possible outcomes of X and p(x) is the
probability of an individual outcome x.
Entropy and related characteristics, which
are commonly inspired by thermodynamics,
have been thoroughly studied in the field of
information theory (Delgado-Bonal &
Marshak, 2019). Evaluating entropy in
management  applications is  often
inaccessible or can be evaluated in a very
specific situation (Czyz & Hauke, 2015).
Much more useful tasks include exploiting
entropy for evaluating related measures of
uncertainty, such as the uncertainty
coefficient studied later in Section 3. Also
the Kullback-Leibler divergence (often
denoted as relative entropy), which was used
e.g. in the energy storage management
application of Le et al. (2021), is derived
from the concept of Shannon entropy. In this
section, we recall and sytematize recent
management applications of entropy and
search for interesting connections.

Maximizing entropy is natural in financial
risk management and plays a key role in
modern approaches to portfolio optimization.
For example, Li & Zhang (2021) considered
a maximization of a combination of variance
and entropy in portfolio optimization. In a
non-financial context, entropy maximization
was used in the context of data fusion in
Zamani et al. (2023) to integrate the results of
multiple estimation methods in water quality
management. The method is able to
incorporate prior information by a Bayesian
argument. Maximizing entropy was also used
in Xiao et al. (2022) with a reinforcement
learning aimed at finding an energy
management strategy for an electric vehicle.
There, energy efficiency was penalized by
entropy in the process of modeling the
interaction between the vehicle and the
environment.
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Entropy emerges as a widely recognized
tool in the domain of Multi-Criteria Decision
Making (MCDM) within management
applications. A prevalent approach in
MCDM simplifies the complex decision-
making task by transforming it into a single-
criterion decision-making problem. This is
achieved through the creation of a weighted
combination of all criteria, where the weight
assigned to each criterion corresponds to its
entropy, as evaluated across the training data.
Such straightforward strategy turned out to
be successful e.g. in Vuyjici¢ et al. (2017),
Krsti¢ & Fedajev (2020), and Fedajev et al.
(2021). In all these papers, the method is
denoted as the “entropy method”, which is
unspecific and possibly misleading; we
therefore suggest a renaming to “entropy-
weighted single criterion decision making”
(EW-SCDM). The principle of the method
resembles constructing weights based on
variability of available continuous variables;
such approach is known as the inverse-
variance weighting (Lee et al., 2016).

Punetha & Jain (2023) constructed a
decision system for recommending the most
suitable mobile phone for a given user; their
analysis revealed the EW-SCDM method
within an MCDM task to be outperformed by
COPRAS, which is a more complex decision
model abbreviating the complex proportional
assessment of alternatives. Other complex
decision models, for which a systematic
comparison with the entropy method seems
still missing, include TOPSIS, VIKOR, or
ELECTRE (Pamucar et al., 2017).

The application of the max-entropy
principle provides an alternative avenue for
estimating unknown parameters, particularly
in situations where direct evaluation of
entropy may pose challenges. This approach
involves considering the least favorable case,
ensuring robustness in scenarios where
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precise entropy assessment is impractical.
[llustrating this principle in the context of
decision-making, Che et al. (2022) employed
entropy maximization within the DEMATEL
(Decision-Making Trial and Evaluation
Laboratory) framework—a versatile method
in multi-criterial decision-making that
identifies complex causal relationships. In
their study, the authors utilized the max-
entropy principle to determine the initial
influence matrix, thereby establishing the
degree of direct influence between various
factors (Smidovnik & Groselj, 2023). The
max-entropy principle is analogous to
considering least favorable distributions in
statistics, where the situation that is the most
difficult or least likely within a broad class of
situations 1s considered as the most
interesting one (Giiney et al., 2021).

3. REGULARIZED UNCERTAINTY
COEFFICIENT FOR CONTINGENCY
TABLES

Managerial decision making is often
shaped by uncertainties, and effective
managers strive to anticipate and navigate
these uncertainties (Love et al., 2022). In
certain situations, it proves beneficial to
make deliberate attempts to quantify
uncertainty, even if only within specific,
defined contexts (Lin et al., 2021). The
uncertainty coefficient U derived from
Shannon entropy represents a characteristic
of uncertainty, which may be reliable only
for data with a small number of variables.
Our idea is to use regularization, which
represents a common tool for extending data
analysis tools to high-dimensional data
(Kalina, 2024), and to propose a regularized
version of U in this section. The novel
version suitable (not only) for high-
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dimensional data may play the role of an
association measure between two categorical
variables. Its possible application within
pattern discovery will be suggested in
Section 4.

Table 1. Contingency table 2 xK.

X=1| X=2 X=K )

Y=] Tl11 Tl12 an 7’11.
Y=0 | n,, Nyy Nog n,.
2 n4 n., Ny n

Let us consider a 2 x K contingency table
shown as Table 1. We assume each column
of the table to be generated by a binomial
distribution. We understand X to be a
categorical variable with K categories and Y
to be a response variable and the unknown
probability of Y=I1 (success) in each column
is denoted as ;. for j=1,...,K. The maximum
likelihood estimator (MLE) of x; is simply
obtained as T, = nyx/n.. In this notation,
we can say that the data are observed in two
different groups (supervised situation)
corresponding to the two levels of the
response. We propose now to consider
regularized estimators of 7, denoted as 7y, in
the form

n,ﬁz(l—/l)z—t+/1%, k=1,..

for a given A€[0,1]. This estimator for the
probability of success in the j-th group is
based on m; shrunken to the overall MLE
across categories. The estimator (2) for the &-
th category borrows information from all the
remaining categories as it is common for
regularization for continuous data, e.g. for
covariance matrix estimates for high-
dimensional data (Sadik et al., 2023).

The regularization in (2) represents a
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penalization of 1, which is meaningful
when the columns of the table correspond
e.g. to different strata especially for a large
K. In such situations, regularized approaches
may be preferable due to the bias-variance-
tradeoft, i.e. individual estimation tools may
much improve the variability at the cost of
increasing their bias. It may not be
appropriate in some other designs, e.g. if
there is a natural ordering of the columns of
the contingency tables. The estimate (2) is a
compromise between nj/n; and n;-/n;
A=0 clearly corresponds to the plain MLE.

The biased estimates (2) may be plugged
into standard formulas for wvarious
association measures for Table 1. This allows
e.g. to formulate a regularized version of
Pearson's y? statistic as well as of the
likelihood ratio statistic G2, which both are
well known statistics of the test of
independence for contingency tables. These
test statistics (without evaluating their p-
values) may also be exploited as the basis for
obtaining regularized distance measures for
categorical data.

The uncertainty coefficient U, which is
also known as Theil's index U, represents a
common measure of accuracy of
classification methods for categorical data;
see p. 57 of Agresti (2002). It represents an
(asymmetric) association measure between
Y and X. The population version is formally
defined as

H(Y)H(Y|X
UY|X) = %
CHOO +HY) —HX,Y)  1(X,Y) 3
B H(Y) - H®Y)'

where H(X) denotes the entropy of the
categorical variable X, H(X,Y) denotes the
joint entropy of variables X and Y; H(Y|X)
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denotes the conditional entropy, and /(X Y)
denotes the joint information of X and Y. The
equivalences in (3) use the fact that
H(Y|\X)=H(X,Y)-H(X). The coefficient (3)
may be perceived as a conditional entropy
coefficient of the response. It evaluates the
proportional reduction in entropy, i.e. the
contribution of the sum H(X)+H(Y)
compared to H(X,Y) relatively to H(X), in
other words a conditional contribution of X
to the knowledge of Y. It holds that
U(Y|X)€[0,1] and particularly U(Y|X)=0 in
case of independence of X and Y, i.e. in case
that X does not carry any information about
Y.

Let us now propose a novel regularized
version of the uncertainty coefficient, which
is obtained by regularizing an empirical
version of (3). Let us define the regularized
version as

2 M vK s v2  yK Tk Tk
Us(Y|X) = —Yiz1g — k=1 T 108 M+ Ny Yk=1, 108,

—-3K_, m, logmy,

4)

with 74, ..., T defined in (2); the definition
is meaningful for data with ;>0 and n,>0.
Here, log denotes the natural logarithm.
Clearly, U*(Y|X)€[0,1].

The coefficient U*(Y|X) depends on 4
through (4). It is even possible to obtain an
explicit expression for the optimal value of 4
as an adaption of the general result of Ledoit
& Wolf (2022). The optimal value, denoted
here as A7, is derived as the asymptotically
optimal value minimizing the mean square
error among all values of (2) over all A€[0,1]
for n—oo. This asymptotically optimal value
of 4 has the form

2
K (Mk
1_Zk=1(n.k )

(n-1) Z’k‘:l(%-%‘)z

At = max<0,

)
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If the probabilities z;,...,mg are close to
homogeneous across all K groups, the value
of A7 is likely to be close to 0, which
corresponds to negligible (or no) effect of
regularization. This corresponds to intuition,
because the regularization is desirable
especially in a very heterogeneous situation
with very diverse results (i.e. due to the
presence of rare events) across individual
columns of Table 1. The explicit expression
for A7 may simplify various complications in
practical tasks; one such method for a pattern
discovery method for categorical data is
suggested in Section 4.

4. PATTERN DISCOVERY FOR
CATEGORICAL DATA

Pattern discovery as the identification of
patterns, characterized as the exploration for
key distinctions between two groups of data
samples, constitutes a crucial tool of
exploratory  data  analysis (EDA)
(Subramanian et al., 2020). Pattern discovery
for continuous dynamic data was used e.g. in
portfolio optimization in Martins & Neves
(2020). In this section, a possible approach
for pattern discovery for categorical data is
suggested, exploiting the regularized
uncertainty coefficient (4) in the task to find
variables contributing the most to the
discrimination between two given groups.
The method, which is intended as a
dimensionality reduction method (not only)
for a large number of categorical variables,
will be described on the example of a three-
dimensional contingency table of size
2x2xK, while it is designed to work also for
categorical data with a much larger number
of variables.

Table 2 is assumed to follow a
multinomial model, where »n is the total
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Table 2. Contingency table 2x2xK
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X=1 X=2 X=K
Z=1|2Z=0| Z=1 Z=0 Z=1 Z=0
Y=1 N1 Ni21 Ny12 Ny22 N1k N2k
Y=0 N211 N221 Nz12 N222 N2k N22x

number of counts. We consider the binomial
model in each of the total number of 2K
columns of Table 2. From the point of view
of a classification task, we understand Y to
represent a response variable. We assume K
to be large, while we are interested in
classification to two groups based on two
levels of the variable X. The aim is to find
relevant patterns, i.e. to detect the variables
that are strong predictors for the response.
Various approaches to pattern discovery
have been available for the analysis of
categorical data; commonly, they exploit the
Pearson's y? test statistic based on adjusted
residuals (Agresti, 2002). Our novel
approach allows to analyze complicated
quantitative and qualitative associations
among categorical random variables and to
discover patterns in a dataset and thus to
generate interesting hypotheses from data.
The subsequent analysis may be based only
on the detected variables, i.e. the procedure
may be exploited for dimensionality
reduction purposes.

The idea is to consider all possible
marginal tables obtained from Table 2 by
ignoring the effect of some of the categorical
variables. The regularized uncertainty
coefficient will be evaluated for all such
tables. In this way, such approach reveals
simple associations among variables, i.e.
low-order patterns (patterns with a small
dimension). The regularized uncertainty
coefficient may be computed for various
combinations of the available variables. All
such combinations should clearly retain Y in

order to evaluate the contribution of other
variables to its knowledge. The coefficient
(4) together with the optimal value of the
shrinkage intensity A7(5) quantifies in each
situation the conditional contribution of the
considered variables to the knowledge of Y
as explained in Section 3.

Table 3. An auxiliary contingency table
considered within the procedure of Section 4

X=1| X=2 X=K
Y =1 N1q Ny N1k
Y=0 N21 N2 Nyx

To illustrate low-order patterns obtained
from Table 2, let us have a look on the
particular table shown as Table 3, which is
one of the 2xK tables considered within the
procedure and evaluated by methods suitable
for (2). In this way, various tables will be
analyzed comparing different patterns in the
data. Only the patterns are considered to be
detected and recommended for a subsequent
analysis that lead to large values of the
coefficient ~U*(Y|X). Two possible
approaches could be used: (i) selecting a
fixed number (for example 10) of the most
relevant patterns, or (ii) selecting the patterns
that lead to U"(Y|X) exceeding a given
threshold. The property U™(Y|X)€[0,1]
suggests to choose a value closer to 1 such as
0.7 or 0.8, although there has been no
agreement about a single value of the
uncertainty coefficient, which would be
considered acceptably or significantly high
(Vourdas, 2020).
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On the whole, the pattern discovery of
this section may be performed for categorical
data with a much higher number of variables
than in Table 2, still perceiving the data as
observed in two different groups. The
method is designed tailor-made to have a
strong ability to detect the patterns that
contribute the most to the difference between
the two groups.

Keziou & Regnault (2017) investigated
estimates of mutual information based on
entropy-based measures such as f-
divergences in a semiparametric context; the
estimates were to derive independence tests
with optimality properties. The
semiparametric ideas were extended by
Broniatowski (2021) to derive minimum
divergence estimators as a broad class of
methods, which generalize e.g. the Pearson’s
22 statistic. The approach has robustness
properties and could be also exploited within
the pattern discovery of this section.

5. ROBUST COVARIANCE MATRIX
WITH RECIPROCAL WEIGHTS FOR
HIGH-DIMENSIONAL DATA

Various statistical tasks important for
managers require to estimate the covariance
matrix of continuous multivariate data. To
give some examples, Li et al. (2023)
exploited covariance matrices within
clustering applied to developing an effective
energy management stragegy. Boas et al.
(2023) used a covariance matrix adaptation
evolution strategy (CMA-ES) for the quality
management of human-robot collaboration.
Wielicka-Ganczarczyk & Jonek-Kowalska
(2023) estimated the covariance matrix as a
variability characteristic within a model for
smart city management. Covariance matrices
were used within a classification task solved
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in a credit risk management context in
Kalina (2022), who did not however
consider fractal-inspired reciprocal weights.
Here, a robust estimator of the covariance
matrix, which is tailor-made for high-
dimensional data, is proposed exploiting
reciprocal weights assigned to individual
observations.

The fractal-inspired weights in the form
of a reciprocal weight function were used in
a classification context by Jifina & Jifina
(2015), who associated reciprocal weights
with fractals through the Zips’s law; this
assumption (rather than law) states that ranks
of distances for pairs of observations are
very often distributed according to the Zipf’s
distributions for real data.

The MRWCD estimator was proposed
very recently in Kalina & Tichavsky (2022)
as a highly robust tool for multivariate
contaminated data. It abbreviates the
minimum regularized weighted covariance
determinant and is based on assigning a
weight to every observation. As a novelty,
we now propose to use the MRWCD
estimator with the reciprocal weights using
the weight function

1
v =7, teO. ©)

Our numerical experiments aim at
comparing robust multivariate estimators
over 3 real datasets all coming from publicly
available repositories. Particularly, they
reveal the performance of an implicitly
weighted MRWCD estimator of 2 with
fractal-inspired weights. The datasets
Aircraft and Delivery come from Rousseeuw
& Leroy (1987); the Housing dataset comes
from the UCI public repository. These three
datasets, which are known as benchmarking
data for robust estimation, contain no
missing values. The housing dataset is the
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largest and has acquired attention in the field
of urban planning (Chen et al., 2023); the
other two smaller datasets are used for
comparisons.

To estimate the mean and covariance
matrix of the data, we use the following
estimators: MLE (maximum likelihood, i.e.
mean and empirical covariance matrix),
MCD (Rousseeuw & Leroy, 1987) with the
trimming constant 3/4, MM-estimators
(Tatsuoka & Tyler, 2000), and MRWCD
with reciprocal weights. For each of the
estimators, we evaluate a summary measure
of variability denoted here as M , which
sums the variance estimates across all (say p)
individual variables. For a given estimate

5 of the true covariance matrix, the
measure M is defined by

(7)

M =3 var 5,

where pgr 1s the nonparametric bootstrap
estimate. In other words, pr adds up
estimates of diagonal elements of the
covariance matrix of the variances of the
given data. It is desirable to use estimators
that achieve a small value of M across
various realistic datasets. Principles of
nonparametric bootstrap have been many
times justified for the context of covariance
matrix estimation; a recent application was
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presented e.g. in Al-Hadeethi et al. (2022).

The results are presented in Table 4,
which also gives the number of observations
n and number of variables p of each dataset.
Because we can expect the results to depend
not only on outliers but also on the
correlation structure of the data, the tables
include det(S) as the determinant of the
empirical covariance matrix S and x as the
condition number of S. MLE, which is the
only non-robust method here, performs quite
well for the Aircraft and Housing datasets,
which do not contain severe outliers. The
Delivery dataset is the contrary and only
MM and MRWCD perform well there.

MCD and MM are robust but not
regularized, i.e. unsuitable if the covariance
matrix is ill-conditioned. MRW CD, which is
robust and regularized, is suitable also for ill-
conditioned data and outperforms the
remaining estimators for all the selected
datasets. MM-estimators represent the
golden standard and stays somewhat behind
MRWCD. This is true for datasets, which
have a high « and thus problems with
numerical stability of the covariance matrix,
as well as for those with a reasonably low k.
MCD is the worst in all the three datasets,
which confirms the findings of Kalina &
Tichavsky (2022).

Table 4. Analysis of the three datasets of Section 5. The value of Mis reported for 4

different estimators

Dataset
Aircraft Delivery Housing

n 23 25 506

p 4 2 11

det(S) 0.06 0.32 0.0005

K 40.4 11.2 21.3
MLE 0.67 0.35 0.06
MCD 7.79 0.41 0.17
Value of M MM 1.96 0.11 0.14
MRWCD 0.60 0.10 0.03
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6. CONCLUSIONS

Despite the growing significance of
disorder in the society, the indispensability
of data-driven methods in management
persists. Still, approaches influenced by
fractals prove to be more pertinent than
conventional tools. Consequently,
managerial decision making grounded in
available data should mirror the fractal
structure inherent in multivariate data. This
necessitates managers to grasp fractals and
employ more sophisticated methods
compared to simplistic approaches like e.g.
the entropy method, referred to here as EW-
SCDM, within MCDM tasks.

The experiments presented in Section 5
demonstrate the advantageous performance
of the novel version of the MRWCD
estimator, even for data with a small number
of variables. The inadequacy of standard
covariance matrix estimators becomes
evident in high-dimensional datasets. It is
essential to note that the analysis is based on
only three selected datasets. Future research
should prioritize exploring alternative
approaches tailored for high-dimensional
data, be it categorical or continuous, with
practical applications in management.

While this paper does not delve into the
realm of fractal management within an
organization possessing a fractal structure,
the intricate relationships between the two
warrant a dedicated research paper
(Rezazadeh et al., 2023). It is important to
acknowledge that entropy within an
organization can be advantageous, yet in
certain contexts, proactive measures may be
more effective in mitigating its effects.
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EHTPOIIMJCKE TEXHHUKE 3A ITIOY3JAHO JOHOUIEIBE
MEHAIIEPCKUX OLJIYKA Y YCJIOBUMA
BUIIEANMEH3UOHAJJHUX ITOAATAKA

Jan Kalina

)% E3: 001§

Entponuja, xao kjby4Ha Mepa Xaoca WM Pa3HOJIMKOCTH, MOCIEIBIX TOAWHA HANa3| CBE IMIMpe
NpUMEHe y Haynd O MeHajMeHTy. Mnak, TpaaunuOHaIHW TPUCTYNH 3aCHOBAHM Ha EHTPOIHjH
MOKa3yjy orpaHn4eHy e(UKacHOCT KaJa je ped O aHAJIN31 BULIEMMEH3MOHAIHUX CKYIIOBa [IOaTaKa.
VY oBOM pagy ce mpemiaxke HOBH KOe(UIMjEHT HEU3BECHOCTH, 3aCHOBAaH Ha EHTPONHjH, KOjU je
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