Serbian
Journal
of
Management

Serbian Journal of Management 10 (1) (2015) 61 - 73

www.sjm06.com T —

SELECTION OF NON-CONVENTIONAL MACHINING PROCESSES
USING THE OCRA METHOD

Milo§ Madic¢*, DuSan Petkovi¢ and Miroslav Radovanovi¢
Faculty of Mechanical Engineering, University of Nis, A. Medvedeva 14, Nis, Serbia

(Received 29 September 2014, accepted 14 January 2015)

Abstract

Selection of the most suitable nonconventional machining process (NCMP) for a given machining
application can be viewed as multi-criteria decision making (MCDM) problem with many conflicting
and diverse criteria. To aid these selection processes, different MCDM methods have been proposed.
This paper introduces the use of an almost unexplored MCDM method, i.e. operational
competitiveness ratings analysis (OCRA) method for solving the NCMP selection problems.
Applicability, suitability and computational procedure of OCRA method have been demonstrated
while solving three case studies dealing with selection of the most suitable NCMP. In each case study
the obtained rankings were compared with those derived by the past researchers using different
MCDM methods. The results obtained using the OCRA method have good correlation with those
derived by the past researchers which validate the usefulness of this method while solving complex
NCMP selection problems.
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1. INTRODUCTION alloys, etc (Samanta & Chakraborty, 2011).

These materials have wide use in modern

In recent years there has been an increase
of development and application of difficult-
to-machine materials such as titanium,
stainless steel, high-strength temperature-
resistant alloys, ceramics, composites, super
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industry due to their improved technological
and mechanical properties. Although
machining of these materials is still viable
using conventional machining processes,
such as turning, drilling, milling, etc., there
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are situations where these processes are not
satisfactory, economical, or even possible
(Kalpakjian & Schmid, 2000). Machining of
these materials by conventional machining
processes gives rise to problems such as high
cutting forces and temperatures, rapid tool
wear and residual stresses generated in the
workpiece. More rigorous customer
demands regarding quality of the end
product, as well as manufacturers’ strive for
cost reduction, have made non-conventional
machining processes (NCMPs) even more
important in industry.

In today's industry, a large number of
NCMPs is applied such as laser beam
machining (LBM), abrasive jet machining
(AJM), electrical discharge machining
(EDM), wire electrical discharge machining
(WEDM), plasma arc machining (PAM),
electrochemical machining (ECM),
ultrasonic machining (USM), electron beam
machining (EBM), chemical machining
(CHM), etc. From the technological point of
view NCMPs are very complex, multi-input
multi-output machining processes governed
by a large number of machining parameters,
and each NCMP posses its own advantages
and limitations. A unique characteristic of
these processes is that there is no direct
contact between the tool and workpiece, as
well as the ability to concentrate large
amounts of energy per unit area (Kovacevic¢
et al., 2014).

Effective utilization of the capabilities of
different NCMPs and also maximization of
machining performance requires careful
selection of the most suitable NCMP for a
given work material and shape feature
combination (Chakladar & Chakraborty,
2008; Chakladar et al. 2009; Chatterjee &
Chakraborty, 2013). A particular NCMP
found suitable under the given conditions
may not be equally efficient under other

conditions (Karande & Chakraborty, 2012).
For a given machining application, the
selection of the most suitable NCMP requires
comprehensive analysis of machining
capabilities and  characteristics  of
competitive NCMPs which involves
consideration of several conflicting criteria
such as maximization of quality,
maximization of material removal rate,
minimization of cost, etc. Power
requirement, tooling and fixtures, tool
consumption, safety, work material, shape
feature are also recognized as one of the
main criteria that influence the NCMP
selection of a given machining application.
Therefore, selection of the most suitable
NCMP is a challenging task (Chakladar et al.
2009), and moreover often a time consuming
process (Chatterjee & Chakraborty, 2013).

In order to facilitate decision making
process and provide decision makers with a
structured, step-by-step procedure for
NCMPs selection, various multi-criteria
decision making (MCDM) methods have
been proposed in literature. These MCDM
methods transform multiple criteria decision
making process, i.e., multiple criteria
optimization, in a single criterion decision
making optimization, which is much easier
to solve (Stanujki¢ et al. 2013).

MCDM is an evaluation framework
aimed at evaluation and ranking of a set of
alternatives with respect to a set of
conflicting criteria considering performance
measures of each alternative with respect to
each criterion as well as relative
significances of the criteria which are
represented by criteria weights. Typically
criteria weights are determined by decision
makers so that the evaluation and ranking of
alternatives is performed considering
performance measures of alternatives, from
one side, and on the other hand, taking into
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account the decision makers preferences of
about the relative significance of criteria.
Given the evaluation (decision) matrix,
decision maker applies certain MCDM
method in order to define the evaluation
function and obtain a rank order of the
alternatives and/or define the utility function
and obtain a utility score of the alternatives
(Hajkowicz & Higgins, 2008).

2. LITERATURE REVIEW

Most of the past work is related to the
development of expert systems, decision
support systems and particularly to the
application of different MCDM methods for
solving NCMPs selection problems. It has to
be noted that the majority of the previous
studies considered decision matrices from
the literature, and only few studies, such as
one presented by Temugin et al. (2013), were
focused on the development of decision
models for NCMP selection.

Yurdakul and Cogun (2003) proposed a
selection procedure for NCMPs based on a
combination of analytic hierarchy process
(AHP) and technique for order preference by
similarity to 1ideal solution (TOPSIS)
methods. AHP method is used to determine
the criteria weights, i.e. relative importance
of the criteria, whereas TOPSIS method is
used to rank each of the feasible I CMPs.
Chakraborty and Dey (2006) presented a
systematic methodology for selecting the
best NCMP under constrained material and
machining conditions. The authors also
presented the design of an AHP based expert
system with a graphical user interface to ease
the decision-making process. Chakladar and
Chakraborty (2008) proposed the use of a
combined approach using the TOPSIS and
AHP methods to select the most appropriate

I CMP for a specific work material and
shape feature combination. The authors also
developed a TOPSIS-AHP based expert
system that automates the decision making
process with the help of a graphical user
interface and visual aids. Chakladar et al.
(2009) presented a digraph based approach
to ease out the appropriate NCMP selection
problem. It includes also the design and
development of an expert system that can
automate decision making process.
Chakraborty (2011) explored the application
of a recent MCDM method, i.e. the multi-
objective optimization on the basis of ratio
analysis (MOORA) method to solve
different MCDM problems in manufacturing
environment including NCMPs selection
problem. Das and Chakraborty (2011)
proposed the use of analytic network process
(ANP) method to select the most appropriate
NCMP for a given machining application
taking into account the interdependency and
feedback relationships among various
criteria affecting the NCMP selection
decision. To avoid the difficult and time
consuming mathematical calculations of the
ANP the authors developed a computer
program. Sadhu and Chakraborty (2011)
proposed the use of data envelopment
analysis (DEA) method for solving NCMP
selection problems. The authors considered
solving of two case studies and the obtained
results proved the applicability, versatility
and adaptability of this approach. Karande
and Chakraborty (2012) solved four NCMP
selection problems using an integrated
preference ranking organization method for
enrichment evaluation (PROMETHEE) and
geometrical analysis for interactive aid
(GAIA) method. As noted by the authors this
combined methodology is quite simple, easy
to understand and releases the process
engineers from performing detailed
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mathematical computations. Temugin et al.
(2013) developed a fuzzy based decision
support model for NCMP selection by
applying TOPSIS and fuzzy TOPSIS
methods. Comprehensive set of criteria for
the proposed model and weights representing
the importance of each criterion were
identified via questionnaires to specialists,
deep discussions with experts, and making
use of past studies. Chatterjee and
Chakraborty (2013) explored in details the
applicability, suitability, and potentiality of
evaluation of mixed data (EVAMIX) method
for solving the NCMP selection problems.
Three illustrative examples were presented,
which validated the usefulness of this
method. In order to take into account the
customers’ requirements (product
characteristics) as well as technical
requirements (process characteristics) for a
given NCMP selection problem, Prasad &
Chakraborty (2014) developed decision-
making model while integrating quality
function deployment (QFD). Recently, Roy
et al. (2014) integrated fuzzy AHP and QFD
for selecting best suited NCMP based on a
set of product characteristics and process
characteristics.

Although a good amount of research work
has already been carried out by the past
researchers on NCMPs selection, this paper
attempts to investigate the applicability of an
almost unexplored MCDM method, i.e.
operational competitiveness ratings analysis
(OCRA) method for solving the NCMPs
selection problems. Till date, this method has
very limited applications in the machining
domain. The OCRA method helps select the
most suitable NCMP for a given machining
application based on different qualitative
(ordinal) and quantitative (cardinal) criteria,
such as tolerance and surface finish, power
requirement, material removal rate, cost,

efficiency, tooling and fixtures, tool
consumption, safety, work material, shape
feature, etc. In this paper, three case studies
were solved to demonstrate its applicability
and compare its ranking performance with
other MCDM methods used by previous
researchers.

3. OCRA METHOD

The OCRA method is a MCDM method
which can be used to calculate relative
performance of a set of competitive
alternatives. The method uses an intuitive
approach for incorporating the decision
maker’s preferences about the relative
importance of the criteria (Parkan & Wu,
1997). The OCRA method was developed by
Parkan (1991) and later advocated by Parkan
and Wu (1997, 2000). It has been previously
successfully  applied to  construct
performance profiles for branch banks,
software development teams, hotel and
subway operations, and MCDM analysis of
industrials robots, manufacturing industries
and transport sector.

The main advantage of the OCRA method
is that it can deal with those MCDM
situations when the relative weights of the
criteria are dependent on the alternatives and
different weight distributions are assigned to
the criteria for different alternatives, as well
as some of the criteria are not applicable to
all the alternatives (Chatterjee &
Chakraborty, 2012). This method has the
advantage of  treating beneficial
(maximization) and non-beneficial
(minimization) criteria separately, which
helps the decision makers not to lose
information during the decision-making
process. Another major advantage of the
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OCRA method is that it is a nonparametric
approach i.e. calculation procedure is not
affected by the introduction of any additional
parameters (e.g., v in VIKOR method and A
in WASPAS method) as it happens in case of
other MCDM methods. Also, regarding
required application steps for solving
decision making problems, the OCRA
method has advantage over some other
MCDM methods. While only six steps are
needed to solve a particular decision making
problem using the OCRA method, TOPSIS
method for example requires nine steps
(Venkata Rao, 2007).

The main idea of the OCRA method is to
perform  independent evaluation of
alternatives with respect to beneficial and
non-beneficial criteria, and finally to
combine these two sets of ratings to obtain
the operational competitiveness ratings. The
main procedure of the OCRA method
implementation consists of several steps
(Parkan & Wu, 2000; Chatterjee &
Chakraborty, 2012):

Step 1. Set the initial decision matrix, X:

X1 X2 - X
X_[xv], _ | *21 %22+ X2p (1)
nxn
Xl X2 +++ X
where x; is the performance score of i-th

alternative with respect to j-th criterion, m is
the number of alternatives and n is the
number of criteria.

Step 2. In this step preference ratings with
respect to the non-beneficial criteria are
determined. The aggregate performance of i-
th alternative with respect to all non-
beneficial criteria is calculated using the

following equation:
") @)

where ¢g is the number of non-beneficial
criteria, 7,is the measure of the relative
performance of i-th alternative,x! is the
performance score of i-th alternative with
respect to k-th criterion and wy is weight of
the k-th non-beneficial criterion. If i-th
alternative is preferred over m-th alternative
with respect to -th criterion, then x! < x*

Step 3. Determination of the linear
preference rating for non-beneficial criteria
by using the following equation:

€)

Linear scaling is done to assign a zero
rating to the least preferable alternative./,
represents the aggregate preference rating for
i-th alternative with respect to the criteria.

Step 4. In this step preference ratings with
respect to the beneficial criteria are
determined. The aggregate performance of i-
th alternative with respect to all beneficial
criteria is calculated using the following
equation:

Tominl) o,

0= th mm( )

where b is the number of beneficial criteria
and w;, is weight of the A-th beneficial

m) (4)

criterion. The higher an alternatives score for
a beneficial criterion, the higher is the
preference for that alternative.
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Step 5. Determination of the linear
preference rating for beneficial criteria by
using the following equation:
a =a.—min((_)r.) (5)
Step 6. In this step the overall preference

ratings of competitive alternatives are
calculated using the following equation:

P = i +0, - min(?m +5”) (6)

Based on the overall preference ratings
the complete ranking of alternatives is
obtained. The alternative with the highest
overall performance rating receives the first
rank.

4. ILLUSTRATIVE EXAMPLES

In order to demonstrate computation
procedure and applicability of the OCRA
method for solving NCMPs selection
problems, the following three case studies
are illustrated. In each case study the results
obtained by previous researchers using
different MCDM methods and the results
obtained using the OCRA method were
compared and discussed.

4.1. Case study 1

Chakladar and Chakraborty (2008)
proposed combined approach using the
TOPSIS and AHP methods for solving
NCMP selection problem. This case study
deals with the selection of the best NCMP
that can efficiently machine precision holes
on duralumin. The NCMP selection problem
considers nine NCMPs (USM, WIM, AJM,
ECM, CHM, EDM, WEDM, EBM and
LBM) and ten criteria, i.e. tolerance and
surface finish (TSF), power requirement
(PR), material removal rate (MRR), cost (C),
efficiency (E), tooling and fixtures (TF), tool
consumption (TC), safety (S), work material
(M) and shape feature (F). Among these
criteria, TSF, PR and MRR are quantitative
in nature, having absolute numerical values
whereas C, E, TF, TC, S, M, and F have
qualitative measures for which a ranked
value judgment on a scale of 1-5 (1 is
lowest, 3 is moderate, and 5 is the highest) is
suggested (Chakladar & Chakraborty, 2008).
MRR, E, S, M and F are beneficial criteria
where higher values are preferred, and on the
other hand, TSF, PR, C, TF, and TC are non-
beneficial criteria where lower values are
preferred. Based on the data from literature,
Chakladar and Chakraborty (2008)
developed the following decision matrix
(Table 1).

Table 1. Decision matrix for case study 1 (Chakladar & Chakraborty, 2008)

TSF PR MRR

(um) (kW) (mm"f’min) E TF TC S M F

Goal Min Min Max Min Max Min Min Max Max Max
USM 1 10 500 2 4 2 3 1 4 1
WIM 2.5 0.22 0.8 1 4 2 2 3 3 1
AIM 2.5 0.24 0.5 1 4 2 2 3 3 |
ECM 3 100 400 5 2 3 | 3 5 4
CHM 3 0.4 15 3 3 2 1 3 5 4
EDM 3.5 2.7 800 3 4 4 4 3 4 5
WEDM 3.5 2.5 600 3 4 4 4 3 4 5
EBM 2.5 0.2 1.6 4 5 2 | 3 4 1
LBM 2 1.4 0.1 3 5 2 1 1 4 1
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Using the AHP method, Chakladar and
Chakraborty (2008) determined the criteria
weights as: wpgp = 0.0783, wpg = 0.0611,
Wyrr = 0.1535, we = 0.1073, wg = 0.0383,
wrp = 0.0271, we = 0.0195. wg = 0.0146,
wy = 0.2766 and wy = 0.2237. The same

criteria weights were used for the OCRA
method-based analysis.

By using Equation (2), the aggregate
performances of the alternatives with respect
to all non-beneficial criteria are calculated.
Based on obtained values and by applying
Equation (3) the linear preference ratings for
all non-beneficial criteria are determined.
Similarly, by applying Equations (4) and (5),
aggregate performances and the linear
preference ratings for the alternatives on all
beneficial criteria are calculated. Finally, by
using Equation (6) the overall preference
ratings for competitive alternatives are

Table 2. Computational details for case study
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obtained. The computational details of the
OCRA method are shown in Table 2.As
could be seen from Table 2 by applying the
OCRA method, the complete ranking of
competitive NCMPs is obtained as 3-7-8-4-
5-1-2-6-9. EDM is observed to be the most
appropriate  NCMP for this machining
application. WEDM process has the second
preference and LBM is the least favored
I CMP. The ranking performances of the
OCRA method with respect to those derived
by past researchers are given in Table 3.

As could be seen from Table 3 application
of different MCDM methods proposes EDM
as the most appropriate NCMP for this given
machining application. When compared with
the results derived by Chakladar and

Chakraborty  (2008), Karande and
Chakraborty (2012) and Chaterjee and
Chakraborty (2012), the values of

Spearman’s rank correlation coefficient (7)
1

I, I, 5; 0, P, Rank
USM 5.5143 5.4031 767.4770 767.3274 772.7304 3
WIM 6.0615 5.9503 1.1420 0.9924 6.9427 7
AIM 6.0604 5.9492 0.6815 0.5319 6.4811 8
ECM 0.1112 0 614.7312 614.5816 614.5816 4
CHM 5.8174 5.7062 23.7754 23.6257 293319 5
EDM 5.5661 5.4549 1228.9010 1228.7514 1234.2063 1
WEDM 5.5771 5.4659 921.9010 921.7514 927.2173 2
EBM 5.7602 5.6490 24814 2.3317 7.9807 6
LBM 5.8407 5.7295 0.1497 0 5.7295 9

Table 3. Rankings of the competitive NCMPs obtained using different MCDM methods

Combined TOPSIS and AHP PROMETHEE EVAMIX
(Chakladar & Chakraborty, OCRA  (Karande & Chakraborty (Chaterjee & Chakraborty,
2008) 2012) 2012)
USM N 3 4 6
WIM 8 7 8 8
AIM 9 8 9 9
ECM 2 4 3 4
CHM 4 5 7 3
EDM | 1 1 1
WEDM 3 2 2 2
EBM 6 6 5 7
LBM 7 9 6 5
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for the OCRA method were computed as
0.87, 0.85 and 0.73, respectively. This shows
similar ranking performance of these
MCDM methods for this particular
machining application.

4.2. Case study 2

In this example, surface of revolution
feature is to be generated on stainless steel
work material. To select the most appropriate
NCMP for generating surface of revolution
the same criteria as in previous case study
were considered. The original decision
matrix of this NCMP selection problem is
given in Table 4.

Chakladar and Chakraborty (2008) used
the same criteria weights as in case study 1.
Hence, these are also used here for the
OCRA method-based analysis.

Now, the same NCMP selection problem

M.Madié¢ / SIM 10 (1) (2015) 61 - 73

is solved using the OCRA method. Again, by
using Equation (2), the aggregate
performances of the alternatives with respect
to all non-beneficial criteria are calculated.
Based on obtained values and by applying
Equation (3) the linear preference ratings for
all non-beneficial criteria are determined.
Similarly, by applying Equations (4) and (5),
aggregate performances and the linear
preference ratings for the alternatives on all
beneficial criteria are calculated. Finally, by
using Equation (6) the overall preference
ratings for competitive alternatives are
obtained. The computational details of the
OCRA method are shown in Table 5.

As could be seen from Table 5 by
applying the OCRA method, the complete
ranking of competitive NCMP is obtained as
3-7-8-4-5-1-2-6-9. EDM is observed to be
the most appropriate NCMP for this
machining application. WEDM process has

Table 4. Decision matrix for case study 2 (Chakladar & Chakraborty, 2008)

TSF PR MRR

(um) (kW)  (mm®*/min) C E TF TC S M F
Goal Min Min Max Min  Max Min Min Max Max Max
USM ] 10 500 2 4 2 3 1 4 1
WIM 2.5 0.22 0.8 1 4 2 2 3 4 1
AIM 2.5 0.24 0.5 1 4 2 2 3 4 1
ECM 3 100 400 5 2 3 1 3 5 4
CHM 3 0.4 15 3 3 2 1 3 5 1
EDM 3.5 2.7 800 3 4 4 4 3 5 1
WEDM 3.5 2.5 600 3 4 4 4 3 5 1
EBM 2.5 0.2 1.6 4 5 2 1 3 4 1
LBM 2 1.4 0.1 3 5 2 1 1 4 1
Table 5. Computational details for case study 2
I, I, 0, 0, P, Rank

USM 5.5143 5.4031 767.4770  767.3274  772.7304 3

WIM 6.0615  5.9503 1.2342 1.0846 7.0349 7

AIM 6.0604 59492  0.7737 0.6241 6.5733 8

ECM  0.1112 0 6147312 614.5816  614.5816 4

CHM 5.8174 5.7062 23.1043 22.9546 28.6608 5

EDM 55661 54549  1228.0984 1227.9488 1233.4037 I

WEDM 55771 54659  921.0984  920.9488  926.4147 2

EBM 57602  5.6490  2.4814 23317 7.9807 6

LBM 5.8407  5.7295 0.1497 0 5.7295 9
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the second preference and LBM is the least
favored NCMP.

For solving NCMP selection problem
Chakladar and Chakraborty (2008) and
Chaterjee and Chakraborty (2012) applied
combined approach using the TOPSIS and
AHP method and EVAMIX method,
respectively. The comparison of obtained
performance rankings is given in Table 6.

On the basis of the results given in Table
6 it is observed that a very high rank
correlation between the OCRA and
combined TOPSIS and AHP methods exists
(Spearman’s rank correlation coefficient of 7,
= (0.83). It can be also observed that, the best
and the worst choices of NCMPs remain the
same in the case of combined TOPSIS and
AHP and EVAMIX methods. However, the
ranking of certain alternative NCMPs
obtained by the OCRA method is different
from that reported by Chaterjee and
Chakraborty (2012).

EDM is the first choice based on the
OCRA method, whereas it was ECM in
Chaterjee and Chakraborty (2012) and
Chakladar and Chakraborty (2008) and EDM
was proposed as the fifth and second choice,
respectively. A closer look at the quantitative
data for EDM and ECM (Table 4) reveals
that EDM is better than ECM in the case of
four criteria (PR, MRR, C and E) which have
total sum of criteria weights of 0.36. EDM is

equal to ECM in the case of two criteria (S
and M). Finally, ECM is better than EDM
also in the case of four criteria (TSF, TF, TC
and F) which have total sum of criteria
weights of 0.35. Therefore, considering
relative importance of criteria proposing
EDM as the first choice may be justified.

4.3. Case study 3

Chakladar et al. (2009) presented a
digraph-based approach for | CMPs
selection. This case study considers deep
through cutting operation performed on
titanium. Six most important criteria, like
tolerance and surface finish (TSF), material
removal rate (MRR), power requirement
(PR), cost (C), shape feature (F) and work
material type (M) were considered in the
analysis. Among these criteria, MRR, F and
M are beneficial criteria. The quantitative
assessments of alternative NCMP with
respect to considered criteria are given in
Table 7.

The criteria weights were calculated as
(Karande & Chakraborty, 2012): wygp =

0.03, wyrr = 0.36, wpr = 0.03, we = 0.04, wg
= 0.13 and wy; = 0.40 and are considered

here for the subsequent analyzes.

Now, the same NCMP selection problem
is solved using the OCRA method. All
calculations were done using Equations (2-6)

Table 6. Rankings of the competitive NCMPs obtained using different MCDM methods

OCRA Combined TOPSIS and AHP EVAMIX
(Chakladar & Chakraborty, 2008)  (Chaterjee & Chakraborty, 2012)
USM 3 4 3
WIM 7 8 7
AIM 8 9 9
ECM 4 1 1
CHM 5 6 8
EDM 1 2 5
WEDM 2 3 6
EBM 6 5 4
LBM 9 7 2
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Table 7. Decision matrix for case study 3 (Chakladar et al. 2009)

TSF MRR

(um)  (mm’/min) PR (kW) C F M

AIM 2.5 0.8 0.22 1 1 4

USM 1 300 2.4 2 1 4

CHM 3 15 0.4 3 1 4

EBM 2.5 1.6 0.2 4 4 4

LBM 2 0.1 1.4 3 4 4

ECM 3 1500 100 5 5 -+

EDM 3.5 800 2.7 3 1 5

PAM 5 75000 50 1 5 4

Table 8. Computational details for case study 3
I, I 0, 0, P. Rank

AIM 15.2020 15.1420 2.5200 2.1300 17.2720 7
USM 14.8800 14.8200 1079.6400 1079.2500 1094.0700 4
CHM 15.0800 15.0200 53.6400 53.2500 68.2700 5
EBM 15.0850 15.0250 5.7900 5.4000 20.4250 6
LBM 14.9600 14.9000 0.3900 0.0000 14.9000 8
ECM 0.0600 0.0000 5400.1600 5399.7700 5399.7700 2
EDM 14.7200 14.6600 2879.7400 2879.3500 2894.0100 3
PAM 7.6600 7.6000 270000.1600 269999.7700 270007.3700 1

and the computational details are given in
Table 8.

As could be seen from Table 8 by
applying the OCRA method, the complete
ranking of competitive NCMPs is obtained
as 7-4-5-6-8-2-3-1. PAM is observed to be
the most appropriate NCMP for this
machining application followed by ECM.
LBM is the least favored NCMP in this case.
The ranking performances of the OCRA
method with respect to those derived by past
researchers are given in Table 9.

As could be seen from Table 9 there exists

a very high rank correlation between the
rankings of OCRA and PROMETHEE
methods with Spearman’s rank correlation
coefficient of ;= 0.98. However, the ranking
of certain alternative NCMPs obtained by
OCRA and PROMETHEE methods is
different from that reported by Chakladar et
al. (2009). For example, ECM is the second
choice based on the OCRA method, whereas
it was EBM in Chakladar et al. (2009) and
ECM was proposed as the sixths choice by
authors. A closer look at the quantitative data
for ECM and EBM (Table 7) reveals that

Table 9. Rankings of the competitive NCMP obtained using different MCDM methods

OCRA Digraph-based approach PROMETHEE
(Chakladar et al., 2009) (Karande and Chakraborty, 2012)
AIM 7 3 7
USM 4 5 4
CHM 5 7 6
EBM 6 2 5
LBM 8 4 8
ECM 2 6 2
EDM 3 8 3
PAM 1 1 1
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ECM is better than EBM in the case of MRR
and F criteria, and equal to EBM in the case
M criterion. EBM is better than ECM in the
case of TSF, PR and C criteria. However,
considering relative importance of criteria
1.e. criteria weights, proposing ECM as the
second choice seems to be justified. It may
be added here, however, that the criteria
weights used by Chakladar et al. (2008) were
different from those used in the present
work. Thereby, the differences in the ranking
of competitive NCMPs between the OCRA
method and that suggested by Chakladar et
al. (2008) can be explained.

5. CONCLUSIONS

Selection of suitable NCMP for a given
machining application is a difficult task for
the process engineers due to limited
theoretical and practical knowledge, as well
as complexity of NCMPs. A large number of
mathematical methods and procedures have
been proposed to facilitate decision making
process and assist in systematical selection
and ranking of competitive NCMPs. This
paper introduces the OCRA method
approach, which helps the process engineers
in selecting the most suitable NCMP from a
large number of competitive alternatives.
Three case studies demonstrated the
potentiality, applicability and usefulness of
the OCRA method through solving complex
NCMP selection problems. OCRA method
can simultaneously take into account large
number of criteria as well as alternatives,
offering very simple and computationally
efficient approach by wusing fewer
formulations. As the NCMP selection
problems consist of both the qualitative and
quantitative criteria, the OCRA method is
quite suitable to deal with these types of

decision making problems. A major
advantage of the OCRA method its
calculation procedure is not affected by the
introduction of any additional parameters as
it happens in case of other MCDM methods.
A comparative analysis with the other
already developed MCDM methods showed
a good correlation with those obtained by the
past researchers, proving its acceptability
and strength for application in solving
NCMPs selection problems.  Slight
discrepancies between the rankings of the
alternatives may be attributed due to the
subjective judgments taken by the decision
makers.

Main scope of future work will be
application and comparative analysis of the
OCRA method for solving selection
problems in manufacturing environment and
design of an OCRA based expert system with
a graphical user interface to ease the decision
making process.
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