CARDIAC MAGNETIC RESONANCE IMAGING IN EARLY DIAGNOSTICS OF MYOCARDIAL INFLAMMATION AFTER COVID-19: CASE SERIES AND LITERATURE REVIEW

  • Marija Zdravković Kliničko-bolnički centar "Bežanijska kosa"
  • Slobodan Klašnja Kliničko-bolnički centar "Bežanijska kosa"
  • Maja Popović Kliničko-bolnički centar "Bežanijska kosa"
  • Predrag Đuran Kliničko-bolnički centar "Bežanijska kosa"
  • Andrea Manojlović Kliničko-bolnički centar "Bežanijska kosa"
  • Milica Brajković Kliničko-bolnički centar "Bežanijska kosa"
  • Olivera Marković Kliničko-bolnički centar "Bežanijska kosa"
  • Igor Jovanović Kliničko-bolnički centar "Bežanijska kosa"
  • Marija Branković Kliničko-bolnički centar "Bežanijska kosa"
  • Viseslav Kliničko-bolnički centar "Bežanijska kosa"
Keywords: COVID-19, magnetic resonance imaging, heart, myocarditis

Abstract


Although, in the beginning, it was considered a respiratory infection with bilateral pneumonia as its main manifestation, COVID-19 is more of a multisystemic disease with various extrapulmonary manifestations. Cardiovascular manifestations are caused by direct viral involvement or by the effects of different cytokines
on the myocardium and can occur during the acute phase of the disease or in the post-acute stadium. The most common cardiovascular symptoms in the post-acute COVID-19 stadium are fatigue, shortness of breath, chest pain, and palpitations. Routine cardiovascular diagnostics in these patients is usually without
significant findings, although underlying myocardial inflammation may be present. Myocardial damage can also be the substrate for the worsening of heart failure and different potentially life-threatening arrhythmias, which is extremely important for further treatment and prognosis. Cardiac magnetic resonance imaging
is a sophisticated, non-radiating imaging modality that can provide important information regarding left and right ventricle volumes and function, tissue characterization, and scar quantification. It is the golden standard in non-invasive diagnostics of myocarditis. In patients with prior COVID-19 infection and cardiovascular symptoms, typical signs of myocarditis, including myocardial edema, necrosis, and myocardial scarring, may be seen in cardiac magnetic resonance. Also, there are sophisticated cardiac magnetic resonance imaging modalities that can register subtle changes in the myocardium, in terms of myocardial inflammation, without visible signs in standard sequences.

We present a case series of patients with different myocardial inflammation patterns, followed by a comprehensive review of potential pathophysiological mechanisms, complications, treatment and prognosis of patients with myocarditis or pericarditis after COVID-19.

References

[1] Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. International Journal of Antimicrobial Agents. 2020;56(2):p. 106024. doi: 10.1016/j.ijantimicag.2020.106024.
[2] Bandyopadhyay D, Akhtar T, Hajra A, Gupta M, Das A, Chakraborty S et al. COVID-19 pandemic: cardiovascular complications and future implications. American Journal of Cardiovascular Drugs. 2020;20(4):311–324. doi: 10.1007/s40256-020-00420-2.
[3] Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia. 2020;75(10):1340–1349. doi: 10.1111/anae.15201.
[4] Liaqat A, Ali-Khan RS, Asad M, Rafique Z. Evaluation of myocardial injury patterns and ST changes among critical and non-critical patients with coronavirus-19 disease. Sci Rep. 2021 Mar 1;11(1):4828. doi: 10.1038/s41598-021-84467-4.
[5] Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020 Aug 1;116(10):1666-1687. doi: 10.1093/cvr/cvaa106.
[6] Seetharam K, Lerakis S. Cardiac magnetic resonance imaging: the future is bright. F1000Res. 2019 Sep 13;8:F1000 Faculty Rev-1636. doi: 10.12688/f1000research.19721.1.
[7] Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020 Jul 15;253:117723. doi: 10.1016/j.lfs.2020.117723.
[8] Bulfamante GP, Perrucci GL, Falleni M, Sommariva E, Tosi D, Martinelli C et al. Evidence of SARS-CoV-2 Transcriptional Activity in Cardiomyocytes of COVID-19 Patients without Clinical Signs of Cardiac Involvement. Biomedicines. 2020 Dec 18;8(12):626. doi: 10.3390/biomedicines8120626.
[9] Zdravkovic M, Popadic V, Klasnja S, Pavlovic V, Aleksic A, Milenkovic M et al. Development and Validation of a Multivariable Predictive Model for Mortality of COVID-19 Patients Demanding High Oxygen Flow at Admission to ICU: AIDA Score. Oxid Med Cell Longev. 2021 Jun 30;2021:6654388. doi: 10.1155/2021/6654388. eCollection 2021.
[10] Popadic V, Klasnja S, Milic N, Rajovic N, Aleksic A, Milenkovic M et al. Predictors of Mortality in Critically Ill COVID-19 Patients Demanding High Oxygen Flow: A Thin Line between Inflammation, Cytokine Storm, and Coagulopathy. Oxid Med Cell Longev. 2021 Apr 20;2021:6648199. doi: 10.1155/2021/6648199. eCollection 2021.
[11] Hu B, Huang S, Yin L. The cytokine storm and COVID-19. Journal of Medical Virology. 2021;93(1):250–256. doi: 10.1002/jmv.26232.
[12] Yi Y, Xu Y, Jiang H, Wang J. Cardiovascular Disease and COVID-19: Insight From Cases With Heart Failure. Front Cardiovasc Med. 2021 Mar 15;8:629958. doi: 10.3389/fcvm.2021.629958.
[13] Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond). 2021 Jan;21(1):e63-e67. doi: 10.7861/clinmed.2020-0896.
[14] Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JC et al. Post-acute COVID-19 syndrome. Nat Med . 2021 Apr;27(4):601-615. doi: 10.1038/s41591-021-01283-z.
[15] Carfi A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. J. Am. Med. Assoc. 324, 603–605 (2020). doi: 10.1001/jama.2020.12603.
[16] Chopra V, Flanders SA, O’Malley M, Malani AN, Prescott HC. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med . 2021 Apr;174(4):576-578. doi: 10.7326/M20-5661.
[17] Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E, Bourbao-Tournois C, Laribi S et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021 Feb;27(2):258-263. doi: 10.1016/j.cmi.2020.09.052.
[18] Weckbah LT, Curta A, Bieber S, Kraechan A, Brado J, Hellmuth JC et al. Myocardial Inflammation and Dysfunction in COVID-19-Associated Myocardial Injury. Trends Cardiovasc Med. 2020 Nov;30(8):451-460. doi: 10.1016/j.tcm.2020.08.002.
[19] Manolis AS, Manolis AA, Manolis TA, Apostolopoulos EJ, Papatheou D, Melita H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. 2020 Nov;30(8):451-460. doi: 10.1016/j.tcm.2020.08.002.
[20] Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res. 2020 Jun 5;126(12):1671-1681. doi: 10.1161/CIRCRESAHA.120.317134.
[21] Vasanthakumar N. Beta-Adrenergic Blockers as a Potential Treatment for COVID-19 Patients. Bioessays. 2020 Nov;42(11):e2000094. doi: 10.1002/bies.202000094.
[22] Wilson MG, Hull JH, Rogers J, Pollock N, Dodd M, Haines J et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: a practical guide for sport and exercise medicine physicians. Br J Sports Med. 2020 Oct;54(19):1157-1161. doi: 10.1136/bjsports-2020-102710.
[23] McKinney J, Connelly KA, Dorian P, Fournier A, Goodman JM, Grubic N et al.COVID-19-Myocarditis and Return to Play: Reflections and Recommendations From a Canadian Working Group. Can J Cardiol. 2021 Aug;37(8):1165-1174. doi: 10.1016/j.cjca.2020.11.007.
[24] Ojha V, Verma M, Pandey NN, Mani A, Malhi AS, Kumar S et al. Cardiac Magnetic Resonance Imaging in Coronavirus Disease 2019 (COVID-19): A Systematic Review of Cardiac Magnetic Resonance Imaging Findings in 199 Patients. J Thorac Imaging . 2021 Mar 1;36(2):73-83. doi: 10.1097/RTI.0000000000000574.
[25] Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol . 2009 Apr 28;53(17):1475-87. doi: 10.1016/j.jacc.2009.02.007.
[26] Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol. 2018 Dec 18;72(24):3158-3176. doi: 10.1016/j.jacc.2018.09.072.
[27] Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 Nov 1;5(11):1265-1273. doi: 10.1001/jamacardio.2020.3557.
[28] Wang H, Li R, Zhou Z, Jiang H, Yan Z, Tao X et al. Cardiac involvement in COVID-19 patients: mid-term follow up by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2021 Feb 25;23(1):14. doi: 10.1186/s12968-021-00710-x.
[29] Brito D, Meester S, Yanamala N, Patel HB, Balcik BJ, Casaclang-Verzosa G et al. High Prevalence of Pericardial Involvement in College Student Athletes Recovering From COVID-19. JACC Cardiovasc Imaging. 2021 Mar;14(3):541-555. doi: 10.1016/j.jcmg.2020.10.023.
[30] Gräni C, Eichhorn C, Bière L, Murthy VL, Agarwal V, Kaneko K et al. Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients With Suspected Myocarditis. J Am Coll Cardiol. 2017 Oct 17;70(16):1964-1976. doi: 10.1016/j.jacc.2017.08.050.
Published
2021/12/28
Section
Editorials