POSSIBLE IMPACT OF NCAM AND FGFR1 MOLECULE EXPRESSION PATTERNS ON THE BIOLOGICAL BEHAVIOR OF RENAL CELL CARCINOMA

  • Isidora Filipović University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
  • Ana Mioljević University of Belgrade, Faculty of Medicine, Belgrade, Serbia
  • Gorana Nikolić University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
  • Jelena Filipović University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
  • Sanja Radojević Škodrić University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
  • Nikola Bogosavljević Institute of Orthopedics "Banjica"; University of Belgrade, Faculty of Medicine, Belgrade, Serbia
  • prof. dr Maja Zivotic University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
Keywords: RCT, RCC, neural cell adhesion molecule, NCAM, fibroblast growth factor receptor 1, FGFR1, renal tumors

Abstract


Introduction: The incidence of renal cell tumors (RCT) and the deaths caused by them has been increasing in recent decades. Although renal cell carcinomas (RCCs) represent only 2% of all cancers, these tumors are among the top ten causes of death in Europe, when cancers are concerned.

Aim: As it is known that the neural cell adhesion molecule (NCAM) and fibroblast growth factor receptor 1 (FGFR1) interact on the surface of the cell membrane and can also be expressed in other cellular localizations, we decided to examine the potential influence of different patterns of their co-expression on the clinical and pathological characteristics of renal tumors.

Material and methods: A total of 100 renal tumors, diagnosed at the Institute of Pathology, Faculty of Medicine, University of Belgrade, were analyzed. Immunohistochemical analysis was performed on tissue microarray slides, using NCAM (1:50, clone123C3.D5) and FGFR1 (1:100, clone M19B2) antibodies. Clinical and pathohistological characteristics of renal tumors were examined in relation to the presence and localization of the co-expression of NCAM and FGFR1 molecules.

Results: Co-expression of NCAM and FGFR1 molecules in renal tumors was observed in the cytoplasm and on the membrane, however, these patterns did not depend on the pathohistological type of tumor. Each tumor in which FGFR1 immunopositivity was observed in the nucleus also showed membranous positivity for both tested molecules. It was observed that the frequency of co-expression of NCAM and FGFR1 molecules increased with increasing T stage, but the finding was not statistically significant.

Conclusion: Membranous co-expression was not observed in any benign tumor, despite the presence of cytoplasmic co-expression. There is also a possibility that the presence of FGFR in the nucleus induces the occurrence of membranous co-expression.

References

Levi F, Ferlay J, Galeone C, Lucchini F, Negri E, Boyle P, et al. The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int. 2008 Apr;101(8):949-58. doi: 10.1111/j.1464-410X.2008.07451.x.

Lipworth L, Tarone RE, Lund L, McLaughlin JK. Epidemiologic characteristics and risk factors for renal cell cancer. Clin Epidemiol. 2009 Aug 9;1:33-43. doi: 10.2147/clep.s4759.

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010.

Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007 Mar;18(3):581-92. doi: 10.1093/annonc/mdl498.

Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009 Mar 28;373(9669):1119-32. doi: 10.1016/S0140-6736(09)60229-4.

Trpkov K, Yilmaz A, Uzer D, Dishongh KM, Quick CM, Bismar TA, et al. Renal oncocytoma revisited: a clinicopathological study of 109 cases with emphasis on problematic diagnostic features. Histopathology. 2010 Dec;57(6):893-906. doi: 10.1111/j.1365-2559.2010.03726.x.

Penticuff JC, Kyprianou N. Therapeutic challenges in renal cell carcinoma. Am J Clin Exp Urol. 2015 Aug 8;3(2):77-90.

Klein G, Langegger M, Goridis C, Ekblom P. Neural cell adhesion molecules during embryonic induction and development of the kidney. Development. 1988 Apr;102(4):749-61. doi: 10.1242/dev.102.4.749.

Marković-Lipkovski J, Müller CA, Klein G, Flad T, Klatt T, Blaschke S, et al. Neural cell adhesion molecule expression on renal interstitial cells. Nephrol Dial Transplant. 2007 Jun;22(6):1558-66. doi: 10.1093/ndt/gfm006.

Ronkainen H, Soini Y, Vaarala MH, Kauppila S, Hirvikoski P. Evaluation of neuroendocrine markers in renal cell carcinoma. Diagn Pathol. 2010 May 12;5:28. doi: 10.1186/1746-1596-5-28.

Bade LK, Goldberg JE, Dehut HA, Hall MK, Schwertfeger KL. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor. J Cell Sci. 2011 Sep 15;124(Pt 18):3106-17. doi: 10.1242/jcs.082651.

Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78. doi: 10.1016/j.cytogfr.2005.01.004.

Xian W, Schwertfeger KL, Rosen JM. Distinct roles of fibroblast growth factor receptor 1 and 2 in regulating cell survival and epithelial-mesenchymal transition. Mol Endocrinol. 2007 Apr;21(4):987-1000. doi: 10.1210/me.2006-0518.

Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005 Apr;16(2):139-49. doi: 10.1016/j.cytogfr.2005.01.001.

Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, et al. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure. 2003 Jun;11(6):691-701. doi: 10.1016/s0969-2126(03)00096-0.

Williams EJ, Furness J, Walsh FS, Doherty P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron. 1994 Sep;13(3):583-94. doi: 10.1016/0896-6273(94)90027-2.

Francavilla C, Cattaneo P, Berezin V, Bock E, Ami D, de Marco A, et al. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. J Cell Biol. 2009 Dec 28;187(7):1101-16. doi: 10.1083/jcb.200903030.

Cavallaro U, Niedermeyer J, Fuxa M, Christofori G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol. 2001 Jul;3(7):650-7. doi: 10.1038/35083041.

Zecchini S, Bombardelli L, Decio A, Bianchi M, Mazzarol G, Sanguineti F, et al. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Mol Med. 2011 Aug;3(8):480-94. doi: 10.1002/emmm.201100152.

Sowparani S, Mahalakshmi P, Sweety JP, Francis AP, Dhanalekshmi UM, Selvasudha N. Ubiquitous Neural Cell Adhesion Molecule (NCAM): Potential Mechanism and Valorisation in Cancer Pathophysiology, Drug Targeting and Molecular Transductions. Mol Neurobiol. 2022 Sep;59(9):5902-5924. doi: 10.1007/s12035-022-02954-9.

Yang Y, Lu T, Li Z, Lu S. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer. Cell Adh Migr. 2020 Dec;14(1):82-95. doi: 10.1080/19336918.2020.1766308.

Raved D, Tokatly-Latzer I, Anafi L, Harari-Steinberg O, Barshack I, Dekel B, et al. Blastemal NCAM+ALDH1+ Wilms' tumor cancer stem cells correlate with disease progression and poor clinical outcome: A pilot study. Pathol Res Pract. 2019 Aug;215(8):152491. doi: 10.1016/j.prp.2019.152491.

Shukrun R, Golan H, Caspi R, Pode-Shakked N, Pleniceanu O, Vax E, et al. NCAM1/FGF module serves as a putative pleuropulmonary blastoma therapeutic target. Oncogenesis. 2019 Sep 2;8(9):48. doi: 10.1038/s41389-019-0156-9.

Ardizzone A, Scuderi SA, Giuffrida D, Colarossi C, Puglisi C, Campolo M, et al. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers (Basel). 2020 Dec 18;12(12):3825. doi: 10.3390/cancers12123825.

.Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer. 2021 Mar;124(5):880-892. doi: 10.1038/s41416-020-01157-0.

Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells. 2021 May 14;10(5):1201. doi: 10.3390/cells10051201.

Egbivwie N, Cockle JV, Humphries M, Ismail A, Esteves F, Taylor C, et al. FGFR1 Expression and Role in Migration in Low and High Grade Pediatric Gliomas. Front Oncol. 2019 Mar 13;9:103. doi: 10.3389/fonc.2019.00103.

Bogatyrova O, Mattsson JSM, Ross EM, Sanderson MP, Backman M, Botling J, et al. FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer. 2021 Jul;151:136-149. doi: 10.1016/j.ejca.2021.04.005.

Jimbo T, Nakayama J, Akahane K, Fukuda M. Effect of polysialic acid on the tumor xenografts implanted into nude mice. Int J Cancer. 2001 Oct 15;94(2):192-9. doi: 10.1002/ijc.1458.

Glüer S, Schelp C, von Schweinitz D, Gerardy-Schahn R. Polysialylated neural cell adhesion molecule in childhood rhabdomyosarcoma. Pediatr Res. 1998 Jan;43(1):145-7. doi: 10.1203/00006450-199801000-00022.

Seidenfaden R, Krauter A, Schertzinger F, Gerardy-Schahn R, Hildebrandt H. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol. 2003 Aug;23(16):5908-18. doi: 10.1128/MCB.23.16.5908-5918.2003.

Tomlinson DC, Baxter EW, Loadman PM, Hull MA, Knowles MA. FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCγ/COX-2-mediated mechanisms. PLoS One. 2012;7(6):e38972. doi: 10.1371/journal.pone.0038972.

Colombo N, Cavallaro U. The interplay between NCAM and FGFR signalling underlies ovarian cancer progression. Ecancermedicalscience. 2011;5:226. doi: 10.3332/ecancer.2011.226.

Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015 May;67(5):913-24. doi: 10.1016/j.eururo.2015.01.005.Sobin LH, Fleming ID. TNM classification of malignant tumors, (1997). Cancer. 1997; 80(9):1803-4. doi: 10.1002/(sici)1097-0142(19971101)80:9<1803::aid-cncr16>3.0.co;2-9.

Sobin LH, Fleming ID. TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer. 1997 Nov 1;80(9):1803-4. doi: 10.1002/(sici)1097-0142(19971101)80:9<1803::aid-cncr16>3.0.co;2-9.

Daniel L, Bouvier C, Chetaille B, Gouvernet J, Luccioni A, Rossi D, et al. Neural cell adhesion molecule expression in renal cell carcinomas: relation to metastatic behavior. Hum Pathol. 2003 Jun;34(6):528-32. doi: 10.1016/s0046-8177(03)00178-3.

Keresztes M, Boonstra J. Import(ance) of growth factors in(to) the nucleus. J Cell Biol. 1999 May 3;145(3):421-4. doi: 10.1083/jcb.145.3.421.

Chioni AM, Grose R. FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. J Cell Biol. 2012 Jun 11;197(6):801-17. doi: 10.1083/jcb.201108077.

Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 1998 Oct 15;17(20):5896-904. doi: 10.1093/emboj/17.20.5896.

Pardo OE, Latigo J, Jeffery RE, Nye E, Poulsom R, Spencer-Dene B, et al. The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res. 2009 Nov 15;69(22):8645-51. doi: 10.1158/0008-5472.CAN-09-1576.

Nguyen PT, Tsunematsu T, Yanagisawa S, Kudo Y, Miyauchi M, Kamata N, et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer. 2013 Oct 15;109(8):2248-58. doi: 10.1038/bjc.2013.550.

Published
2023/12/29
Section
Original articles