THE INTERACTION BETWEEN MESENCHYMAL STEM CELLS AND MACROPHAGES IN THE INFLAMMATORY MICROENVIRONMENT

Mesenchymal stem cells and macrophages in inflammation

  • Sanja Momčilović Institut za medicinska istraživanja Univerziteta u Beogradu
  • Dušica Kočović Group for Neuroendocrinology, Institute for Medical Research, University of Belgrade, National Institute of the Republic of Serbia, Dr. Subotića 4, POB 39, 11129 Belgrade 102, Serbia
  • Maja Milošević Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, University of Belgrade, National Institute of the Republic of Serbia, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
  • Dragana Marković Group for Neuroendocrinology, Institute for Medical Research, University of Belgrade, National Institute of the Republic of Serbia, Dr. Subotića 4, POB 39, 11129 Belgrade 102, Serbia
  • Sanja Vignjević Petrinović Group for Neuroendocrinology, Institute for Medical Research, University of Belgrade, National Institute of the Republic of Serbia, Dr. Subotića 4, POB 39, 11129 Belgrade 102, Serbia
Keywords: MSCs, macrophages, inflammation, immune system

Abstract


Mesenchymal stem cells (MSCs) are cells with significant therapeutic potential in regenerative medicine, primarily due to their capacity for self-renewal and differentiation into various cell types. The immunomodulatory properties of these cells enable them to regulate the inflammatory process, depending on their interaction with immune system cells. Macrophages, which are part of the innate immune system, can exhibit a pro-inflammatory M1 or an anti-inflammatory M2 phenotype, thereby influencing the immune response and tissue homeostasis. Mesenchymal stem cells affect macrophage polarization, thus modulating their effector functions. Conversely, macrophages can influence the differentiation potential of mesenchymal stem cells and their immunoregulatory function. The interaction between mesenchymal stem cells and macrophages, as well as their interaction with various immune and non-immune cells, highlights the complexity of processes within the inflammatory microenvironment. The interaction between these cells is essential for the tissue repair process. This brief review aims to analyze the importance of the interaction between mesenchymal stem cells and macrophages in certain inflammation-associated diseases, with special emphasis on the key role of the inflammatory microenvironment and the therapeutic potential of these cells.

References

Costela-Ruiz VJ, Melguizo-Rodríguez L, Bellotti C, Illescas-Montes R, Stanco D, Arciola CR, et al. Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications. Int J Mol Sci. 2022 Jun; 23(11):6356. doi: 10.3390/ijms23116356.

Song N, Scholtemeijer M, Shah K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol Sci. 2020 Sep;41(9):653–64. doi: 10.1016/j.tips.2020.06.009.

Wang LT, Liu KJ, Sytwu HK, Yen ML, Yen BL. Advances in Mesenchymal Stem Cell Therapy for Immune and Inflammatory Diseases: Use of Cell-Free Products and Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Transl Med. 2021 Sep;10(9):1288–303. doi: 10.1002/sctm.21-002.

Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res. 2022 May;45:15–29. doi: 10.1016/j.jare.2022.05.012.

Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020 Jan;53(1):e12712. doi:10.1111/cpr.12712.

Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood. 2011 Jul;118(2):330–8. doi: 10.1182/blood-2010-12-327353.

Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions. ChemTexts. 2022 Apr;8(2):12. doi: 10.1007/s40828-022-00163-4.

Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ. 2022 Sep;10:e14053. doi: 10.7717/peerj.14053.

Shapouri‐Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018 Sep;233(9):6425–40. doi: 10.1002/jcp.26429.

Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Sig Transduct Target Ther. 2023 May;8(1):207. doi: 10.1038/s41392-023-01452-1.

Kim J, Hematti P. Mesenchymal stem cell–educated macrophages: A novel type of alternatively activated macrophages. Exp Hematol. 2009 Dec;37(12):1445–53. doi: 10.1016/j.exphem.2009.09.004.

Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ, et al. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells. 2016 Feb;34(2):483–92. doi: 10.1002/stem.2254.

Carty F, Mahon BP, English K. The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents? Clin Exp Immunol. 2017 Apr;188(1):1–11. doi: 10.1111/cei.12929.

Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, et al. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells. 2016 Aug;34(8):2210–23. doi: 10.1002/stem.2372.

Chen L, Tredget EE, Wu PYG, Wu Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE. 2008 Apr;3(4):e1886. doi:10.1371/journal.pone.0001886.

Xia T, Fu S, Yang R, Yang K, Lei W, Yang Y, et al. Advances in the study of macrophage polarization in inflammatory immune skin diseases. J Inflamm (Lond). 2023 Oct;20(1):33. doi:10.1186/s12950-023-00360-z.

Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down Our Understanding of Macrophage Function? Front Immunol. 2014 Sep;5: 470. doi: 10.3389/fimmu.2014.00470.

Olefsky JM, Glass CK. Macrophages, Inflammation, and Insulin Resistance. Annu Rev Physiol. 2010 Mar;72(1):219–46. doi:10.1146/annurev-physiol-021909-135846.

Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory Mechanisms for Adipose Tissue M1 and M2 Macrophages in Diet-Induced Obese Mice. Diabetes. 2009 Nov;58(11):2574–82. doi: 10.2337/db08-1475.

Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, et al. Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M. Diabetes. 2015 Aug;64(8):2957–68. doi: 10.2337/db14-1473.

Orciani M, Campanati A, Salvolini E, Lucarini G, Di Benedetto G, Offidani A, et al. The mesenchymal stem cell profile in psoriasis: The mesenchymal stem cell profile in psoriasis. Br J Dermatol. 2011 Sep;165(3):585–92. doi: 10.1111/j.1365-2133.2011.10438.x.

Jiao J, Zhao X, Wang Y, Liang N, Li J, Yang X, et al. Normal mesenchymal stem cells can improve the abnormal function of T cells in psoriasis via upregulating transforming growth factor-b receptor. J. Dermatol. 2022 Oct;9(10):F988-97. doi:10.1111/1346-8138.16490.

Zhang Z, Yu Z, Tian P, Hou S, Han S, Tan X, et al. Differentially-expressed genes identified by suppression subtractive hybridization in the bone marrow hematopoietic stem cells of patients with psoriasis. Mol Med Rep. 2014 May;10(1):479–85. doi: 10.3892/mmr.2014.2203.

Kamiya K, Kishimoto M, Sugai J, Komine M, Ohtsuki M. Risk Factors for the Development of Psoriasis. Int J Mol Sci. 2019 Sep;20(18):4347. doi: 10.3390/ijms20184347.

Momčilović S, Bogdanović A, Milošević MS, Mojsilović S, Marković DC, Kočović DM, et al. Macrophages Provide Essential Support for Erythropoiesis, and Extracellular ATP Contributes to a Erythropoiesis-Supportive Microenvironment during Repeated Psychological Stress. Int J Mol Sci. 2023 Jul;24(14):11373. doi: 10.3390/ijms241411373.

Hagert C, Sareila O, Kelkka T, Jalkanen S, Holmdahl R. The Macrophage Mannose Receptor Regulate Mannan-Induced Psoriasis, Psoriatic Arthritis, and Rheumatoid Arthritis-Like Disease Models. Front Immunol. 2018 Feb;9:114. doi: 10.3389/fimmu.2018.00114.

Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, Van Rooijen N, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Invest. 2006 Aug;116(8):2105–14. doi: 10.1172/JCI27180.

Ge H, Mao Y, Chen W, Li Z, Yu Y, Luo S, et al. Stress Aggravates Imiquimod-Induced Psoriasiform Inflammation by Promoting M1 Macrophage Polarization. Int Immunopharmacol. 2023 Nov;124(Pt A):110899. doi: 10.1016/j.intimp.2023.110899.

Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin in Genet Dev. 2008 Feb;18(1):11–8. doi: 10.1016/j.gde.2007.12.007.

Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020 Dec;11:583084. doi: 10.3389/fimmu.2020.583084.

DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019 Jun;19(6):369–82. doi: 10.1038/s41577-019-0127-6.

Biswas S, Mandal G, Chowdhury SR, Purohit S, Payne KK, Anadon C, et al. Exosomes Produced by Mesenchymal Stem Cells Drive Differentiation of Myeloid Cells into Immunosuppressive M2-Polarized Macrophages in Breast Cancer. J Immunol. 2019 Dec;203(12):3447–60. doi: 10.4049/jimmunol.1900692.

Zhang Q, Chai S, Wang W, Wan C, Zhang F, Li Y, et al. Macrophages activate mesenchymal stem cells to acquire cancer-associated fibroblast-like features resulting in gastric epithelial cell lesions and malignant transformation in vitro. Oncol Lett. 2019 Jan;17(1):747-756. doi: 10.3892/ol.2018.9703.

Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep. 2016 Dec;6:38308. doi: 10.1038/srep38308.

Lin LY, Du LM, Cao K, Huang Y, Yu PF, Zhang LY, et al. Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene. 2016 Nov;35(46):6038–42. doi: 10.1038/onc.2016.131.

Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, et al. CCR2-Dependent Recruitment of Macrophages by Tumor-Educated Mesenchymal Stromal Cells Promotes Tumor Development and Is Mimicked by TNFα. Cell Stem Cell. 2012 Dec;11(6):812–24. doi:10.1016/j.stem.2012.08.013.

Vignjević Petrinović S, Milošević MS, Marković D, Momčilović S. Interplay between stress and cancer-A focus on inflammation. Front Physiol. 2023 Mar 20;14:1119095. doi: 10.3389/fphys.2023.1119095.

Yang J, Wei W, Zhang S, Jiang W. Chronic stress influences the macrophage M1-M2 polarization balance through β-adrenergic signaling in hepatoma mice. Int Immunopharmacol. 2024 Sep;10:138:112568. doi:10.1016/j.intimp.2024.112568.

Momčilović S, Bogdanovic A, Milošević M, Gašić U, Kapor S, Vignjević Petrinović S. Interactions between mesenchymal stem cells and macrophage in stress erythropoiesis: roles for nitric oxide and purinergic signalling. Hemasphere 2024; 8(Suppl 1); 4098-4099; Madrid, Spain, EHA2024, 13-16 June 2024.

Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, et al. Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using In Vivo Bioluminescent Imaging. Stem Cells. 2009 Oct;27(10):2614–23. doi:10.1002/stem.187.

Hwang JH, Shim SS, Seok OS, Lee HY, Woo SK, Kim BH, et al. Comparison of Cytokine Expression in Mesenchymal Stem Cells from Human Placenta, Cord Blood, and Bone Marrow. J Korean Med Sci. 2009 Jan;24(4):547-54. doi: 10.3346/jkms.2009.24.4.547.

Diotallevi F, Di Vincenzo M, Martina E, Radi G, Lariccia V, Offidani A, et al. Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci. 2022;23(23):15080. doi: 10.3390/ijms232315080.

Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009 Apr;15(1):42–9. [Internet] Available from: https://www.nature.com/articles/nm.1905.

Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, et al. Human Gingiva-Derived Mesenchymal Stem Cells Elicit Polarization of M2 Macrophages and Enhance Cutaneous Wound Healing. Stem Cells. 2010 Oct;28(10):1856–68. doi: 10.1002/stem.503.

Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, et al. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules. 2024 Oct; 14(11):1351. doi: 10.3390/biom14111351.

Ren X, Zhong W, Li W, Tang M, Zhang K, Zhou F, et al. Human umbilical cord-derived mesenchymal stem cells alleviate psoriasis through TNF-α/NF-κB/MMP13 pathway. Inflammation. 2023 Jun;46(3):987-1001. doi: 10.1007/s10753-023-01785-7.

Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells. 2016 Mar;34(3):627–39. doi: 10.1002/stem.2238.

Lv S, Cheng J, Sun A, Li J, Wang W, Guan G, et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting oxidative stress. Diabetes Res Clin Pract. 2014 Apr;104(1):143–54. doi: 10.1016/j.diabres.2014.01.011.

Yuan Y, Li L, Zhu L, Liu F, Tang X, Liao G, et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells. 2020 Jan;38(5):639–52. doi:10.1002/stem.3144.

Zielske SP, Livant DL, Lawrence TS. Radiation Increases Invasion of Gene-Modified Mesenchymal Stem Cells into Tumors. Int J Radiat Oncol Biol Phys. 2009 Nov;75(3):843–53. doi: 10.1016/j.ijrobp.2008.06.1953.

Published
2025/06/30
Section
Reviews