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Abstract 
 
Background/Aim. Heart rate variability (HRV) and heart 
rate recovery (HRR) show differences between genders, 
and dissimilarities were also reported in women in various 
menstrual cycle (MC) phases. The aim of this research was 
to analyze cardiac autonomic indices during rest and in re-
covery after the Wingate test between genders in the 
young, sedentary population and to investigate whether a 
MC phase in women can influence these indi-
ces. Methods. Twenty-five females (20.5 ± 0.7 years) and 
sixteen males (20.4 ± 0.7 years) performed the Wingate 
anaerobic test on a cycle ergometer while their HRR and 
resting and recovery HRV indices were obtained. In fe-
males, data were collected during three distinctive MC 
phases. Results. The natural logarithm of low-frequency 
(lnLF) HRV marker and the natural logarithm of high-
frequency (lnHF) HRV marker were higher in males dur-
ing rest compared to women in all MC phases, except in 
the late follicular phase, where no differences in lnHF be-

tween genders were observed. Markedly higher lnLF and 
lnHF were recorded in males after the Wingate test. There 
were no differences in HRV between women in various 
MC phases during rest. Surprisingly, parasympathetic time-
domain marker (the square root of the mean squared dif-
ferences of successive NN intervals, RMSSD) and lnLF 
were both higher in the early follicular phase in compari-
son to the luteal phase of MC during recovery. HRR was 
faster in men in comparison to women in all MC phas-
es. Conclusion. Males show greater HRR and total varia-
bility during rest and recovery, but it appears that resting 
parasympathetic activity is similar when females are in the 
late follicular phase of MC. Intra-female resting autonomic 
variability is not affected by the sex hormonal cycle. Post-
exercise HRV in the early follicular phase reflects a signifi-
cantly favourable autonomic profile in comparison to the 
luteal phase of MC. 
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Apstrakt 
 
Uvod/Cilj. Razlike u varijabilnosti srčane frekvencije 
(VSF) i oporavku srčanog ritma (OSR) postoje kako iz-
među polova, tako i među ženama u različitim fazama 
menstrualnog ciklusa (MC). Cilj istraživanja bio je da se 
ispitaju autonomni indeksi u stanju mirovanja i tokom 
oporavka nakon Vingejtovog testa između polova u 
mladoj, sedentarnoj populaciji i da li faza MC kod žena 
može imati uticaj na ove indekse. Metode. Dvadeset i 
pet ispitanica (20,5 ± 0,7 godina) i šesnaest ispitanika 
(20,4 ± 0,7 godina) izvodili su Vingejtov anaerobni test 
na bicikl ergometru pri čemu su im registrovani OSR i 
VSF u stanju mirovanja i tokom oporavka. Kod ispitani-
ca, podaci su prikupljani tokom tri faze MC. Rezultati. 

Prirodni logaritam markera niskih frekvencija (lnLF) VSF 
i prirodni logaritam markera visokih frekvencija (lnHF) 
VSF  bili su veći kod muškog pola u stanju mirovanja u 
odnosu na žene u različitim fazama MC, osim u slučaju 
kasne folikularne faze gde nije bilo razlike u lnHF među 
polovima. Značajno veći lnLF i lnHF uočeni su kod 
muškaraca tokom oporavka od Vingejtovog testa. Nije 
bilo razlike u parametrima VSF u stanju mirovanja među 
ženama u različitim fazama MC. Iznenađujuće, parasim-
patički marker vremenskog domena – kvadratni koren 
srednje vrednosti sume kvadrata razlika između sukce-
sivnih NN intervala (RMSSD) i lnLF bili su veći u ranoj 
folikularnoj fazi u odnosu na lutealnu fazu MC tokom 
oporavka. OSR je bio brži kod muškaraca u odnosu na 
žene u svim fazama MC. Zaključak. Muškarci pokazuju 

brži OSR i veću ukupnu varijabilnost u stanju mirovanja i tokom oporavka, ali čini se da je parasimpatička ak-
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tivnost u stanju mirovanja slična između polova kada su 
žene u kasnoj folikularnoj fazi. Hormonski ciklus kod 
žena nema uticaj na autonomnu varijabilnost u stanju mi-
rovanja. Rana folikularna faza pokazuje poželjniji au-
tonomni profil tokom oporavka u poređenju sa lute-

alnom fazom MC. 
 
Ključne reči: 
srce, frekvencija; nervni sistem, autonomni; vežbanje, 
testovi. 

 

Introduction 

Besides autonomic regulation, the rhythmicity of car-
diac beats is finely directed by humoral factors, hence the 
influence of hormonal fluctuations on heart rate variability 
(HRV) throughout the menstrual cycle (MC) 1, 2. The fe-
male monthly sexual cycle is dominantly regulated through 
the influences of the hypothalamic releasing hormone – 
gonadotropin-releasing hormone (GnRH), anterior pituitary 
sex hormones – follicle-stimulating hormone (FSH) and lu-
teinizing hormone (LH), and the ovarian hormones – estro-
gen (mainly in the form of ß-estradiol) and progestogens 
(almost exceptionally progesterone). At the very beginning 
of the proliferative phase, there is a rise in FSH and LH 
levels, where FSH increases estrogen production in primary 
follicles leading to a peak secretion just before the ovula-
tion. Two days prior to ovulation, the LH surge happens, 
rising by 6–10 fold, with the about 2–3-fold increase in 
FSH production at the same time. After ovulation, concen-
trations of progesterone and estrogen start to increase until 
the late luteal phase when involution of corpus luteum and 
cessation of progesterone and estrogen secretion removes 
the feedback inhibition, and levels of FSH and LH start to 
rise again 3. The influence of the MC phases on HRV is not 
yet clear. Higher sympathetic activity in the luteal phase 
has been reported proposing the effect of progesterone in-
crease on parasympathetic withdrawal 4–7. At the same time, 
others have reported the opposite or did not find any signif-
icant phase differences 8, 9. On the other side, estrogen, the 
leading hormone of the follicular phase, has a positive rela-
tionship with vagal activity 9. It acts on presynaptic alpha-2 
adrenoceptors leading to a decrease in norepinephrine se-
cretion and is also associated with an increase in acetylcho-
line production 10, thus, it may be that the rise in FSH, LH, 
and progesterone levels accounts for the inhibition of es-
trogen-related vagal control 9. Some studies show marked 
sympathetic tone in male athletes, while the parasympathet-
ic nervous system dominates in female athletes 11, 12. Re-
search conducted on non-athletes showed diminished para-
sympathetic influence in younger and middle-aged wom-
en 13. In another study, parasympathetic influence prevailed 
among adolescent female non-athletes, as opposed to their 
age-matched male counterparts 14. Women have a faster 
vagal post-exercise recovery after a maximal aerobic ca-
pacity test 15, but the supra-maximal anaerobic test has a 
greater impact on autonomic reactivation in women 16, 17. 
Women are, in general, underrepresented in exercise stud-
ies, and the majority of those that include them do not hold 
MC phases into account. 

The aim of this paper was to investigate the influence of 
different MC phases (especially the early and late follicular 
phase) on resting and post-exercise autonomic modulation 
between genders, as well as in females solely. It was postu-
lated that females would have higher parasympathetic indi-
ces when in the early and/or late follicular phase in compari-
son to males and intra-subject relations. Secondly, we want-
ed to examine how MC phases possibly influence the results 
of a supra-maximal (Wingate) test in females. 

Methods 

Participants 

Forty-one participants (16 males and 25 females), aged 
18 to 24 years (age 20.4 ± 0.7 years and 20.5 ± 0.7; height 
184 ± 5 cm and 168 ± 5 cm; body weight 79.38 ± 9.42 kg 
and 60.96 ± 6.93 kg; body mass index 23.53 ± 2.83 and 
21.57 ± 2.23, for males and females, respectively) entered 
the study voluntarily. All participants were regularly enrolled 
in the studies of medicine at the Faculty of Medicine, Uni-
versity of Novi Sad. Subjects were in self-reported good 
health, without the use of medications, and with no medical 
history of cardiovascular and neuromuscular diseases, in-
cluding neuro-vegetative dystonia. The inclusion criterion 
for female participants was a regular MC. Additional criteria 
implied that leisure-time physical activity in the past six 
months did not exceed an hour of sports activity per day for 
no more than three days a week. 

The research was approved by the Ethics Committee of 
the University of Novi Sad, Faculty of Medicine, and it was 
conducted according to the Declaration of Helsinki. Partici-
pants were thoroughly introduced to the study procedure and 
its goal, and they all gave written informed consent. 

All measurements were conducted at the Laboratory for 
Functional Diagnostics of the Department of Physiology, be-
tween 10 and 12 am, at room temperature around 22–24ºC. 
Participants were strongly advised to restrain from intensive 
training and from consuming caffeinated and alcoholic bev-
erages, including stimulant substances, 24 h before the test. 
Female subjects were required to come at three phases of 
their MC. MC phase calculation was performed via recom-
mendations provided by Stricker et al. 18, where the 14th day 
of the cycle was marked as day zero. The measurements 
were taken during the phase of menstrual bleeding (from day 
-15 until -6) – the early follicular phase, when levels of both 
estrogen and progesterone are low; in the middle of late fol-
licular phase (from day -5 until -1), when estrogen reaches 
its peak; in mid-luteal phase (from day +5 until +9), when 
progesterone peak is expected. 
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Study protocol and data acquisition 

The protocol consisted of two modes of heart rate ac-
quisition – at rest and during recovery, using a telemetric 
pulsometer (Polar RS800CX, Finland). Firstly, participants 
were required to sit quietly and breathe spontaneously for 5 
minutes on a cycle ergometer (Wattbike, Wattbike Ltd, 
Nottingham, UK), with their feet placed on a platform in 
front of the pedals, knees flexed at a 90-degree angle, and 
arms resting on thighs while heart rate recordings were ob-
tained. The Wingate anaerobic test was preceded by a 3-
minute warm-up where resistance was set at 50 W. 
Throughout this period, they performed 2–3 bouts of sprint 
in order to get adjusted to the level of speed and exertion 
they had to engage for the test. After the warm-up period, 
subjects were instructed to pedal at full speed in a standing 
position against the constant breaking force (7.5% of body 
weight). Upon cessation of the exercise test, heart rate re-
cording was started again for 5 minutes. During the first 
minute of the recovery period, participants continued ped-
alling without any resistance, and afterwards, they were re-
quired to stay in the same body position as before the exer-
cise for additional 4 minutes. 

Data analysis 

Ergometric parameters 

Peak power (PP) was a value of the highest power 
achieved at any 5-second stage. Mean power (MP) was de-
fined as an average of all obtained power values. 

Heart rate variability 

A sampling rate of 1000 Hz was chosen, and data from 
the pulsometer were transferred to a laptop computer via a 
USB interface, where they were analyzed in Polar ProTrainer 
5 TM (Polar, Finland) software. Ectopic beats and artefacts 
were identified with visual inspection and removed. They 
were deleted with the post extra systolic beat and replaced 
automatically with interpolated adjacent R-R interval values. 
HRV indices (the square root of the mean squared differ-
ences of successive NN intervals (RMSSD), low-frequency 
(LF) spectral power (0.04–0.15 Hz), and high-frequency 
(HF) spectral power (0.15–0.40 Hz) were calculated for all 5 
minutes of resting period and for the 3-minute recovery peri-
od (minutes 3–5). In order to ensure the stability of the data 
and reduce bias arising from non-uniformity of error, natural 
log-transformations (ln) of spectral HRV indices were per-
formed. 

Heart rate recovery (HRR) 

HRR was assessed via indices which were extracted 
from the 5-minute recovery recordings. HRR60 represents 
the absolute difference between heart rate values at 60 sec-
onds after exercise termination (HR60) and peak heart rate 
values registered immediately after termination of the test 

(HRmax). Resting heart rate (HRrest) was presented as a 
mean heart rate value acquired from the pre-exercise 5-
minute recordings. Heart rate readings at the end of the post-
exercise period (HRend) were also obtained. T30 was a time 
constant of the rapid heart rate decay during the first 30 sec-
onds of recovery and it represented the negative reciprocity 
of regression line slope. T was the time constant decay ob-
tained by fitting the 5-minute post-exercise HRR into the 
first-order exponential curve 16, 19, 20, where heart rates were 
modelled with an iterative technique using MatLab software 
(The Math Works Inc, Natick, MA, USA) to fit the following 
equation: 

HR = HRo + HR∆e(-t+T) 
Where: HR = heart rate, HRo = stabilized heart rate follow-
ing exercise, HR∆ = maximal heart rate – HRo, t = time (s), T 
= time constant of exponential heart rate decay. 

Statistical analysis 

The normality of the distribution was assessed with the 
Lilliefors normality test. Microsoft Excel data analysis tool 
was used for statistical inspection. The F-test was performed 
to assess the equality of variances between groups, after 
which we did the two-sample t-test. The data are presented 
as means ± standard deviation (SD) with respect to 95% con-
fidence interval (95% CI). Statistical significance was indi-
cated at p < 0.05. 

Results 

There were significant differences in mean values of PP 
comparing the results in men with the results in women in 
early follicular (p = 0.0000117), late follicular 
(p = 0.000016), and luteal phase (p = 0.0000157). There 
were also significant differences in mean values for MP 
comparing the results in men with the ones in women in ear-
ly follicular (p = 0.000000213), late follicular 
(p = 0.00000871), and luteal phase (p = 0.000000209) (Fig-
ure 1). There was no statistical significance in these parame-
ters among menstrual cycle phases in women. 

 

 
Fig. 1 – Wingate anaerobic test peak and mean power in 

men and women in different menstrual cycle phase  
[mean ±  standard deviation (95% confidence interval)] 

EF – early follicular phase; LF – late follicular phase;  
L – luteal phase 
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By analyzing HRV indices during rest in relation to 
gender, RMSSD did not show valuable differences, lnLF was 
significantly higher in men in comparison to women 
throughout all three MC phases, and lnHF was significantly 
higher in men in contrast to women in the early follicular and 
luteal phase of MC (Tables 1–3).  

After analyzing the HRV recovery parameters, it was no-
ticed that RMSSD did not show statistical significance when 
compared to any of the female cycle phases with males. On 

the other side, lnLF and lnHF values markedly differed be-
tween men and women in all MC phases (Figure 2). 

When comparing females during rest in various MC 
phases, no differences were observed in HRV. However, 
during the recovery from the Wingate anaerobic test, 
RMSSD was noticeably higher while females were in the 
early follicular phase vs. luteal phase of MC (6.29 ± 1.06, 
5.20 ± 0.83; p = 0.011415). Moreover, in the early follicular 
phase, female participants had greater values of lnLF in 

Table 1 
Resting heart rate variability indices in men and women in the 

early follicular menstrual cycle phase  

Indices Men Women 
in the early follicular phase p-value 

RMSSD 27.25 ± 8.27 
(22.84–31.66) 

29.25 ± 15.82 
(22.24–36.27) > 0.05 

lnLF 7.49 ± 0.51 
(7.21–7.76) 

6.62 ± 0.85 
(6.24–6.99) 0.000376 

lnHF 6.32 ± 0.58 
(2.82–3.81) 

5.73 ± 0.83 
(5.36–6.09) 0.019372 

Note: Results are given as mean ± standard deviation  
(95% confidence interval). 
RMSSD – root mean square of the successive differences;  
lnLF – natural log-transformations of low-frequency (LF) spectral 
power; lnHF – natural log-transformations of high-frequency (HF) 
spectral power. 

 
Table 2 

Resting heart rate variability indices in men and women in the 
late follicular menstrual cycle phase 

Indices Men Women 
in the late follicular phase p-value 

RMSSD 27.25 ± 8.27 
(22.84–31.66) 

31.87 ± 14.92 
(25.41–38.32) > 0.05 

lnLF 7.49 ± 0.51 
(7.21–7.76) 

6.61 ± 0.75 
(6.29–6.93) 0.000248 

lnHF 6.32 ± 0.58 
(2.82–3.81) 

5.93 ± 1.10 
(5.45–6.40) > 0.05 

Note: Results are given as mean ± standard deviation  
(95% confidence interval). 
RMSSD – root mean square of the successive differences;  
lnLF – natural log-transformations of low-frequency (LF) spectral 
power; lnHF – natural log-transformations of high-frequency (HF) 
spectral power. 

 
Table 3 

Resting heart rate variability indices in men and 
women in the luteal menstrual cycle phase 

Indices Men Women 
in the luteal phase p-value 

RMSSD 27.25 ± 8.27 
(22.84–31.66) 

28.66 ± 12.92 
(23.20–34.11) > 0.05 

lnLF 7.49 ± 0.51 
(7.21–7.76) 

6.47 ± 0.82 
(6.12–6.81) 0.0000232 

lnHF 6.32 ± 0.58 
(2.82–3.81) 

5.67 ± 0.89 
(5.29–6.05) 8.79E-10 

Note: Results are given as mean ± standard deviation  
(95% confidence interval). 
RMSSD – root mean square of the successive differences;  
lnLF – natural log-transformations of low-frequency (LF)  
spectral power; lnHF – natural log-transformations of  
high-frequency (HF) spectral power. 
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Fig. 2 – Recovery lnLF and ln HF values in men and women in different menstrual cycle phases  

[mean ± standard deviation (95% confidence interval)]. 
lnLF - natural log-transformations of low-frequency (LF) spectral power; lnHF - natural log-transformations 

of high-frequency (HF) spectral power; EF – early follicular phase; LF – late follicular phase; L – luteal phase. 

comparison to the luteal phase of MC (3.62 ± 0.20, 3.39 ± 
0.21; p = 0.008511). 

Mean values of HRrest, HRmax, HR60, HRR60, 
HRend, and T did not significantly differ between men and 
women in the examined MC phases (p > 0.05), but heart rate 
recovery perceived through T30 was faster in men in com-
parison to women in all MC phases (Table 4). Not one pa-
rameter showed differences in various phases among the fe-
males (p > 0.05). 

Discussion 

As opposed to what we have expected, males had a 
more favourable autonomic profile than females. Our study 
showed that males had greater resting and post-exercise 
overall HRV, as well as faster HRR no matter in which phase 
of the menstrual cycle the women were in. Contrary to the 
findings of some authors 21, 22, we did not find intra-subject 
HRV differences regarding the cycle phase during rest. Sur-

Table 4 
Resting heart rate and heart rate recovery indices after a Wingate anaerobic test in  

men and women in different menstrual cycle phases 
Indices Men Women – early follicular phase Women – late follicular phase Women – luteal phase 

HRrest 89 ± 11 
(84–95) 

89 ± 12 
(70–95) 

87 ± 14 
(81–93) 

90 ± 13 
(84–95) 

HRmax 188 ± 9 
(183–193) 

186 ± 7 
(182–189) 

185 ± 9 
(181–189) 

186 ± 10 
(182–191) 

HR60 158 ± 13 
(151–166) 

155 ± 8 
(151–159) 

156 ± 13 
(150–161) 

154 ± 13 
(148–160) 

HRR60 30 ± 9 
(25–34) 

30 ± 7 
(27–33) 

29 ± 9 
(25–33) 

32 ± 11 
(27–37) 

HRend 116 ± 6 
(112–119) 

113 ± 13 
(107–119) 

110 ± 15 
(104–117) 

115 ± 16 
(108–122) 

T30 262.1 ± 91.8 
(213–311) 

621.4 ± 161.1* 
(548–695) 

607.04 ± 150.6† 
(538–675) 

661.34 ± 206.9‡ 

(570–753) 

T 135.7 ± 53.1 
(107–164) 

134.2 ± 47.1 
(112–156) 

123.7 ± 44.2 
(102–145) 

117.8 ± 43.4 
(98–138) 

Note: Results are given as mean ± SD (95% confidence interval). 
*p = 6.88E-10; †p = 4.72E-10; ‡p = 4.56E-09. 
HRrest – resting heart rate; HRmax – peak heart rate values registered immediately after termination of the test;  
HR60 – the absolute difference between heart rate values at 60 seconds after exercise termination;  
HRR60 – the absolutwe difference between heart rate values at 60 seconds after exercise termination (HR60) and  
peak heart rate values registered immediately after termination of the test (HRmax); HRend – heart rate values at 
the end of the post-exercise period; T30 – time constant of the rapid heart rate decay during the first 30  
seconds of recovery; T – time constant decay obtained by fitting the 5-minute post-exercise heart rate recovery  
into a first-order exponential curve. 
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prisingly, both RMSSD and lnLF were augmented in the ear-
ly follicular in comparison to the luteal phase of MC. 

The anaerobic capacity results (PP, MP) after the Win-
gate test were in accordance with the existing literature 16, 23, 24. 
Muscle hypertrophy and variations in muscle fibre type are, al-
legedly, the main causes for higher values of PP and MP in 
men. There is a prevalence of slow twitching fibres in skeletal 
muscle sections in women 25, 26. Furthermore, some authors 
suspect that differences in sarcomeral metabolism might influ-
ence the divergence in muscle power between sexes 27. Similar 
to the recently published results 28, 29, the difference in anaero-
bic power parameters in women concerning MC phases was 
not observed in our study.  

In the general population, sympathetic nervous system 
activity is higher in men and parasympathetic one in premeno-
pausal women 12, 14, 30–32. Time and frequency domain differ-
ences between genders gradually fade out with age. In fact, 
they fade more progressively after the third decade 33. Numer-
ous papers point out that the differences disappear after 50 
years of age 12, 34, which is addressed to postmenopause and a 
lowered protective effect of endogenous sex hormones in 
women. In our study, resting values of lnLF were higher in 
men, which is in agreement with the above mentioned if we 
consider LF as a marker of solely sympathetic activity. How-
ever, LF portrays joined actions of both autonomic branches 
with a slight predominance in sympathetic activity, especially 
after a workout 35. LF also represents oscillations in the barore-
ceptors system 36, 37, and baroreflex sensitivity (BRS) is said to 
be higher in men while at rest 38. Our participants had their 
HRV registered in a sitting position, which provokes the sym-
pathetic response, but we saw no change in lnLF while com-
paring females in different phases, although the baroreflex re-
sponse of a sympathetic component in women is found to be 
more pronounced in the menstrual and/or luteal phase 21. In 
fact, a significant number of papers imply that the sympathetic 
nervous system is more active during the luteal phase 5, 7, 10. 
However, there are also papers where no differences between 
phases were observed 6, 9. On the other hand, our results also 
showed that parasympathetic influence (lnHF) during rest was 
more prominent in the male sex in comparison to women in 
the early follicular and luteal MC phase. The lack of differ-
ences between genders when females were in the late follicular 
phase might express the evolving vagal tone while approach-
ing peak levels of estrogen. Despite a much greater number of 
opposing results 39–41 that did not take MC into account, it ap-
pears that working in shifts can indeed influence female HRV 
depending on the MC phase 8. In this case, the follicular phase 
shows a fall in vagal and an increase in sympathetic activity. 
The results we got might have an explanation for stress and 
lack of sleep that medical students deal with, which may have 
heightened sympathetic tone in the male and lessened para-
sympathetic tone in female participants. On the other side, our 
study lacks information on physical activity levels. Greater 
participation in recreational sport could explain prevailed va-
gal indices in men. 

Markedly higher lnLF and lnHF values were obtained 
in males after the Wingate test in comparison to women in 
all menstrual cycle phases. These findings contrast the ones 

found by authors who reported higher values of HF in 
women during recovery from the test for maximal oxygen 
consumption and concluded that women have faster vagal 
post-exercise reactivation 15. In general, HRR is faster after 
the Wingate test, and recovery after an incremental 
VO2max test sometimes takes several days 42, 43, but supra-
maximal exercise has a greater impact on autonomic modu-
lation in women. Significantly decreased HF power after 
the Wingate test in females in contrast to males was report-
ed in one study with the upright sitting position where only 
vagal indices were analyzed 16, and a significant increase in 
LF power was reported in another study where recovery 
took place in a supine position 17. Despite that, men have 
accentuated resting baroreflex sensitivity (BRS), and wom-
en might possess a higher diapason of its effect during 
post-exercise recovery. This was supported by a persistent 
reduction in heart rate in women while seated, but not in 
men 38. Contrary to this, another study found that seated 
position provokes less favourable recovery than supine 19. 
In our study, women had a slower HRR and a lesser lnLF 
after exercise. Although stress can be addressed for sup-
pressed BRS 44, our participants were subjected to the same 
levels. Maybe poor engagement in sport in our female par-
ticipants can be held responsible for such results, but we do 
not have evidence to support that.  

Intra-subject differences in HRV during recovery were 
observed in females. A marker of vagal activity, RMSSD, 
was higher in the early follicular phase in comparison to 
the luteal one. Among eumenorrheic women, even in those 
who report premenstrual symptoms, resting RMSSD is 
mostly higher in the follicular in comparison to the luteal 
phase 10, 45. However, some authors consider the follicular 
phase as the one that follows the menstrual phase, starting 
on day 8 or 9 of MC, which is by our classification ad-
dressed as the late follicular phase. We also found that 
post-exercise lnLF was higher in the early follicular phase 
in relation to the luteal phase. Whether dysmenorrhoea can 
be the cause of disrupted autonomic modulation was a mat-
ter of subject in various studies 46, 47, which stated that a 
slight increase in LF/HF can exist during menstruation 
pointing out to a fall in parasympathetic activity. However, 
in our female population vagal index – RMSSD, was 
marked in the early follicular phase. It is possible that BRS 
during post-exercise recovery is more pronounced in the 
early follicular phase in comparison to other phases, or that 
the parasympathetic component of the low-frequency do-
main is augmented.  

Resting heart rate did not differ between the sexes in 
our study. Literature shows favourably lower resting heart 
rates in men 16, 48, 49. The lack of this difference in our results 
might be because of the small sample size but also because 
of the specificity of the medical student population. There is 
proof that stress and working in shifts can significantly lower 
the HRV indices (SDNN, TP, HF) among the male health 
workers without greater interfering with these indices in fe-
males 39–41. The similar stressful life milieu of our partici-
pants could have influenced diminished differences in gen-
ders. Maximally achieved heart frequencies did not stand in 
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contrast between men and women in our study, which is con-
sistent with previous results 15, 17, 23. 

In accordance with the previous findings 16, our results 
showed faster vagal reactivation in males, perceived by T30, 
which is an immediate post-exercise index of vagally medi-
ated cardiac rate decay 50, 51. HRR was found to be in a strong 
correlation with the level of physical activity 52. It was also 
found to negatively correlate with resting supine parasympa-
thetic markers of HRV when in a standing position during 
the first minute of recovery, but the higher the indices of 
combined autonomic modulation (LF, lnLF), the greater the 
HRR in the third and fifth-minute post-exercise 53–55. The ex-
isting data report no correlation of estradiol levels with the 
initial HRR dynamics 38. Similar to a study by Pestana et 
al. 29, we did not find statistical differences in HRR among 
the MC phases. 

Conclusion 

Men have greater total variability and a more favoura-
ble autonomic profile during rest and in a seated recovery af-
ter the Wingate test. Our study supports the notion that su-
pra-maximal exercises present a heavier load to the female 
autonomic nervous system. Products of anaerobic metabo-
lism and muscle metaboreflexes, in a way, may be responsi-
ble for this. We would also like to instigate more research 
towards understanding HRV dynamics concerning the early 
and late follicular phases. We guess that in a resting state, 
vagal influence could be expected in the late follicular phase 
coinciding with the peak levels of estrogen. On the other 
hand, in a recovery state, vagal reactivation might preferably 
be recorded in the early follicular phase before the preovula-
tory FSH and LH surge happen. 
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