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Abstract:  

Solving a linear system of n × n equations can be very difficult for the 
computer, especially if one needs the exact solution, even when the 
number n - of equations and of unknown variables is relatively small (a 
few thousands). All existing methods have to overcome at least one of the 
following problems: 1. Computational complexity, which is expressed with 
the number of arithmetic operations required in order to determine a 
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2 solution; 2. The possibility of overflow and underflow problems; 3. Causing 
variations in the values of some coefficients in the initial system, which 
may be leading to instability of the solution; 4. Requiring additional 
conditions for convergence; 5. In cases of a large number of equations 
and unknown variables it is often required that the systems matrix be: 
either sparse, or symmetrical, or diagonal, etc. This paper presents a 
method for solving a system of linear equations of arbitrary order (any 
number of equations and unknown variables) to which the problems listed 
above do not reflect. 

Key words: system of linear equations, method of “external spiral”, 
hyperplane. 

Introduction 
If we perceive mathematics as a science oriented primarily towards 

a man as a subject of its application, the problem of solving large 
systems of linear equations is not a mathematical one. It is essentially 
the problem steming from computer science since the very forming of 
such a system is impossible without the help of computers. Just to write 
down thousands of equations with thousands of unknowns, a man would 
have to spend a lifetime. Let us suppose you need to solve the full 
system of linear equations having a very large number of equations and 
unknowns, e.g. n  ̴ 100,000 or more. In order to solve such a system, it is 
necessary to devise a method which: 1) requires execution of the least 
possible number of operations; 2) does not require exhaustive memory 
usage; 3) does not produce unexpected overflow and underflow effects; 
4) does not change the coefficients of the initial system; 5) can be 
applied for an arbitrary system scale – any number of equations; 6) does 
not insist that the systems matrix has any particular additional feature, 
and 7) unconditionally and quickly converges starting from an arbitrary 
initial point. The existing methods do not meet at least one of the issues 
listed above. The difficulties stated in abstract from 1. to 5., as well as the 
requirements listed above from 1) to 5) are well-known and described,   
e. g. in (Boht, 1978), (Higham, 2002), (Stoer & Bulirsch, 2002), and some 
in connection to solving large systems of linear differential equations in 
modelling complex systems, such as (Randall, 2015) or in other real-
world applications (Gajić et al, 2008). 

 An exact solution to the system of n×n has n components. Each 
of these components functionally depends on every individual coefficient 
of the system. The number of coefficients is of order n2. This implies that 
a minimum number of operations required to obtain the exact solution of 
the system of n × n is proportional to the number n3, in general. If we 
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want to reach a solution using fewer operations, it is necessary to seek 
the approximate methods or approximate solution.         

Formulation of the problem 
Assume that the computer memory contains a system of linear 

equations n × n (where n is much higher than 1000). Let this system has 
the following form: 

11,112,111,1 bxaxaxa n    

21,212,211,2 bxaxaxa n    

nnnnn bxaxaxa  1,12,11,   

(1) 

For n greater than a thousand, the system (1) can only be formed 
inside a computer memory. For a system like this, it is possible to define 
the procedure for finding the solution, which has a minimal, almost trivial 
computation, and then, if the solution exists, to assure convergence to it. 

For this work the only assumption made is that system (1) has a 
solution, as well as that when checking whether obtained result is a 
solution, there is no overflow in the intermediate results in any of 
equations in (1). If overflow of this kind happened, then it would be 
impossible to solve the system (1) in such an environment. Although the 
initial assumption is that system (1) has a solution, the procedure defined 
here could be utilized to determine whether system (1) is insolvable 
(impossible) or if it has some degree of freedom. It is important to 
assume that the solution of (1) exists in order to assure the convergence 
of the method. 

Description of the procedure  
In order to reach a solution of system (1), it is not necessary to solve 

it. To find the solution of system (1), it is suitable to apply a cybernetic 
approach (method of invariants), similar to the procedure defined in 
(Srdanov & Stefanović, 2017). Each equation in a system given in (1) 
carries a considerable amount of information. For example, each 
equation from system (1) can be interpreted geometrically as one 
hyperplane within a space whose dimension is at least equal to the 
number of unknown variables e. g. n. Then, each equation from (1) can 
reveal the coordinates of the line perpendicular to its respective 
hyperplane, and so forth. Parts of this information can be utilized in the 
process of finding solution of system (1). The essence of this idea is as 
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2 following: If the solution of system (1) exists, then it is a point of 
intersection of all hyperplanes defined by the equations of system (1). 
Starting the calculation of the solution approximation from an arbitrary 
point and advancing further using orientations and the positions of all 
hyperplanes makes it possible to reach a common intersection 
eventually. 

At this point, it is necessary to precisely define the term angle 
between two hyperplanes – to generalize the term angle between two 
intersecting planes. 

The angle between two intersecting three-dimensional spaces, both 
contained within the common four-dimensional space, is defined 
analogously to the definition of a dihedral angle between two intersecting 
planes within the same three-dimensional space. The angle between two 
three-dimensional spaces can be defined as a dihedral angle contained 
within a third three-dimensional space which is perpendicular to both of 
these. This dihedral angle consists of two intersecting planes of the third 
three-dimensional space with the previous two three-dimensional spaces. 
All three three-dimensional spaces are contained within the same four-
dimensional space. Therefore, the generalized dihedral angle between 
the two three-dimensional spaces is the dihedral angle located within the 
third three-dimensional space that is perpendicular to both of the 
previous spaces (dihedron that makes up the cross-section area of the 
third space with the previous two spaces). All of these three three-
dimensional spaces are within the same four-dimensional space. 

Generalizing previous, more same-dimensional dihedral angles 
having a common point can be called justifiably the clew.  

In a completely analogous manner, the angles between two four-
dimensional spaces contained within the same five-dimensional space 
could be defined, etc. 

For the first approximation of the unknown solution, an arbitrary 
point could be taken from the space the solution belongs to. Statistically 
speaking, the most optimal way to choose the starting point is pseudo-
random. The problem connected to this is that the existing algorithms for 
generating pseudo-random numbers, as arule, provide pseudo-random 
choices within some range. Therefore, a pseudo-random initial choice 
should not take precedence over the chance to choose the starting point 
as always the same. If we choose the initial point in advance, it is 
preferable that it is the point  

 
n

O 0,,0,0 . A better method for the 

selection of the starting point is to determine the "centroid of the system 
(1)". To achieve this, it would be perfect to add up all the columns in 
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system (1) and all the results. Then, for the initial values of all unknown 

variables it would be perfect to take the value given by: 





 n

j ji

n

i i

i
a

b

n
x

1 ,

10 1
 

if the nominator is not zero, and 


n

i ii b
n

x
1

0 1
 otherwise, for all 

ni ...,,2,1 . 
To determine the subsequent approximation of the solution of 

system (1) it is required to extract from (1) the two equations 
simultaneously. From now on, the first equation of these two will be 
referred to as the first plane, and the second equation - the second 
plane. Each equation is a hyperplane. The two hyperplanes within the 
space of the same dimension can have one of the following relationships 
- that these two hyperplanes: intersect, do not intersect or are overlaping 
each other. If hyperplanes do not belong to the same dimensional space, 
very different mutual relations are possible, which is not relevant from the 
point of view of this article.  

Let us suppose that the two hyperplanes intersect. Then we can 
examine in detail the following cases. Dihedral angle that these two are 
forming is: acute, right or obtuse. Besides this, a position that the 
approximation of the solution has reached, namely the point O, is 
important as well (the position of O compared to these hyperplanes). The 
point O may: belong only to one hyperplane, to both hyperplanes or to 
neither one of these two hyperplanes. The idea of the method is that we 
should reach some of the points within the intersection of the first and the 
second hyperplane ariving from the initial point O. This would complete 
one semi-iteration. Then we eliminate the first hyperplane, the second 
hyperplane is declared to be the first, and for the second hyperplane - the 
following equation from system (1) is proclaimed. From the previously 
attained point O, we are descending into one of the points belonging to 
the intersection of the newly examined two hyperplanes. When the last of 
all equations in system (1) has been examined, a full iteration is 
completed. 

The procedure of selecting one of the points from the intersection 
differs for each of the three above mentioned cases. It can be described 
as follows. Through the point O, we place two straight lines whose 
directions are determined by the perpendicular vectors of the first and the 
second hyperplane. We distinguish between the three cases: a) to c).  
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2 a) The point O already belongs to the intersection of the hyperplanes 
in concern. In this case, we should proceed with calculation retaining the 
previous point O.  

b) The point O belongs to only one of the two hyperplanes. Then we 
should determine the point of penetration the intersection of the two 
hyperplanes with the line positioned perpendicular to the other 
hyperplane. Through this point of penetration, we set the hyperline and 
determine its intersection with the other hyperplane. The resulting 
penetration point represents the next choice for the point O.  

c) The point O does not belong to any of the noted hyperplanes. 
Then we determine penetrations through both hyperplanes using the 
perpendicular hyperlines drawn from O. Thus, in each hyperplane we get 
two points that define the new pair of hyperlines. The intersection point of 
these two hyperlines should be the next position for O. 

The method defined here differs from the one given in (Srdanov & 
Stefanović, 2017) as follows. The points we are taking to get closer to a 
solution, according to the method in (Srdanov & Stefanović, 2017),  
belong to a spiral located within some of the 2n clews which are forming 
up all of the hyperplanes corresponding to all of the equations of system 
(1). Wherein, if a point is within the dihedron that is larger than a right 
angle, the next point should be taken in the new clew. This is carried out 
until the point is taken the clew which has all dihedral angles acute. Then 
further convergence towards a solution follows a unique internal spiral 
whose points of intersection with the clew are the bases of the 
perpendicular lines placed from one point of the dihedron side on the 
neighboring side (internal spiral). The method described in this paper 
follows the external spiral - the spiral located on one side of the clew face 
which passes through the points obtained as the bases of the 
perpendiculars from a point of the edge of the dihedron to the adjacent 
edge of the same face. The term the edge of the dihedron is basically the 
same: the edge is formed from the intersection points of the dihedron 
sides - dihedral planes. 

For the system described with (1), the coordinates of the 
orthonormal vectors of all hyperplanes are given as the coefficients of the 
system:  niiil aaan ,2,1, ,,, 


  .,,2,1 ni   A procedure of finding an 

intersection of the line going through the given point O and being 
perpendicular to the second hyperplane requires a minimum of 
computation and is given as follows. Let the point O has the coordinates 

 ''
2

'
1 ,...,, nyyy . Let the orthogonal vector of the first plane be 
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 niiil aaan ,2,1, ,,, 

 , and of the second  niiii aaan ,12,11,11 ,...,,   , 

where 11  ni . In order to determine the penetration point for the first 
perpendicular line through the second plane, i. e. the point 

 ''
2

'
11  ..., , , nxxxX  , we determine firstly 

 
1

'
,1

'
22,1

'
11,11 ...










ii

nniiii

nn

yayayab
t , and then '

,
'

jjij ytax  , 

where nj ,...,2,1 . To determine the penetration point of another 

perpendicular line, i. e. the point  ''''
2

''
12  ..., , , nxxxX  , we determine at 

first 
 

2

1

'
,1

'
22,1

'
11,11 ...



 


i

nniiii

n

yayayab
t , and 

then '
,1

''
jjij ytax   , where nj ,...,2,1 . Now the line is placed 

through the points 1X and 2X and its intersection with the first plane is 
determined. For this, it is necessary to calculate 

 
 '''

'
,

'
22,

'
11, ...

iii

nniiii

xxn

xaxaxab
t




  prior to calculating the 

coordinates of the new O point using the formulas   '''''
jjjj xtxxy  , 

nj ,...,2,1 . When a full circle is taken, from 1i  to ,1 ni  the next 
iteration can begin. 

Only in the first intermediate step, the point O can be placed outside 
both of the two planes observed. Each subsequent choice of the point O 
would belong to at least the first plane. During computation of 
intermediate steps within the same iteration, the following cases should 
be considered for in the program. a) The two planes that have been 
reached are mutually perpendicular. Then the line perpendicular to the 
second plane should be placed through the point O, and through its 
intersection with the second plane, a line should be placed that is 
perpendicular to the first plane. Then the intersection of this line with the 
first plane should be determined. b) The two planes reached are two 
parallel hyperplanes. Then, there are two passing lines through the point 
O that are the same (identical) and these lines penetrate both 
hyperplanes in the same points. The system is then impossible and the 
process should be stopped. c) Similarly to the above, only the 
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2 penetration points in the hyperplanes observed are coinciding with the 
point O. If this is the case, the process should be stopped because 
system (1) is indetermined. 

When one pass through all of the equations is made this way, one 
full iterative cycle is completed. The next iterative cycle will begin with 
placing the line perpendicular to the first hyperplane through the O point 
reached in the last hyperplane. 

The Problem of Accuracy and Completion of Iterating 
Process  

After a full circle and one iteration completed, checks should be 
performed whether the required accuracy is reached. The problem of 
accuracy and completion of repeating the iterative method is possible to 
display in ranked levels. The user should choose the one level offering 
balance between the number of iterations required and acceptable 
accuracy. The method to be applied to a large number of equations and 
unknown variables should require the least possible necessary additional 
computation in every step, since in total there is a considerable amount 
of computation already. Another goal is that the solution obtained has the 
least possible relative deviation from the exact one, when each unknown 
variable is considered. The highest level of accuracy for the "internal 
spiral" is achieved by checking out whether the sum of the distances 
from the last point obtained to all of the planes is small enough. For the 
method according to the "external spiral", this criterion may be the sum of 
all distances between two consecutive points obtained over a full iterative 
cycle (the length of an arc of the spiral). In the first case, the number of 
operations is proportional to the number 2n2+n, and in the latter case - to 
the number n2. These criteria for checking the accuracy both require 
relatively large number of operations. The next level of accuracy in both 
methods may be based on the length of the distance between the points 
of two consecutive iterations. In both methods, this criterion requires 2n 
operations. The number of operations is considerably lower; however, 
the resulting conclusion is in accordance with that. Using such a criterion 
in cases where the clew has all dihedral angles very small, it is possible 
to be still relatively far from the solution and to erroneously assume that 
the very high accuracy is already reached. The third level of accuracy 
may include checking out the distance of two consecutive semi-iterations 
or something of a kind. The number of necessary operations will not be 
decreased significantly; however, the end result may be improved 
considerably. 
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Apart from selecting any of the criteria above, regardless of the 
criterion rank, it is possible to reduce significantly the number of 
operations in the following manner. It is not necessary to check out the 
accuracy attained after each iterative cycle, but after ten or one hundred 
of full iterations. 

Insolvable (Impossible) system and indetermined 
system 

If the given system has no solution (impossible or insolvable 
system), the procedure described here can detect that. In terms of 
Geometry (geometrically speaking), there is no solution if any two of the 
hyperplanes are parallel. The method presented here can detect this if it 
happens at any position that the two adjacent hyperplanes have 
perpendicular lines of the same direction. Having in mind the process of 
solving equations, as soon as something like that is established, the 
procedure should be stopped. If paralel hyperplanes are not adjacent, 
then this can also be determined in advance, prior to solving - that the 
system is impossible or insolvable, by checking out whether any two 
vectors are of the same direction. The number of required operations is 
proportional to the number n2. 

The method proposed here provides a much simpler way to 
determine whether the system is impossible (insolvable) when compared 
to the method given in (Srdanov & Stefanović, 2017).  

If the system is indetermined, then its uncertainty can be numerically 
evaluated with respect to the degrees of freedom. In the case observed, 
the system may have from 1 to 99999 degrees of freedom. If there is one 
degree of freedom, then all of the hyperplanes have a common line; If 
there are two degrees of freedom, then all hyperplanes have a common 
plane; If there are three degrees of freedom, then all hyperplanes have 
common three-dimensional space within the space of one hundred 
thousands dimensions, etc; If there are 99999 degrees of freedom, then 
all equations of the system represent one and the same hyperplane 
within the space of one hundred thousands dimensions. 

In the algorithm proposed, the simplest way is just to establish that 
the system is indetermined because to find out more than that would 
require many more checks, which is not of great importance for this 
paper. 

The method proposed here does not always detect that the system 
is indetermined and in cases when it is and not detected, the program will 
report the solution. If the program is run again only this time from a 
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2 different starting point, the method will again provide a solution, however 
different from the previous one. This way, it is possible to always 
accurately distinguish whether the obtained solution is unique or the 
system is indetermined. 

Convergence and speed  
We will present an outline of proof, while the rigorous proof differs 

only in detail. Let there be a system of n x n linear equations, where 

n N , which has a solution  **
2

*
1 ,...,, nyyyX . Let us assume that we 

have started solving that system using the method proposed here and 

starting from an arbitrary point of the first hyperplane, O1  00
2

0
1  ..., , , nyyy . 

Then the next point in the first iteration is denoted by O2  11
2

1
1 ,..., , nyyy . In 

(Srdanov & Stefanović, 2017), the subsequent iteration next point was 
the orthonormal projection of the point O1 to the first hyperplane, denoted 
M. In this paper, the next iteration is obtained as the cross-section of the 
plane perpendicular to both of the hyperplanes with the "dihedral edge" 
and this is the point O2. Now the angles O1MX and MO2X are both 
right angles. It is obvious that O1X>MX >O2X (as the hypotenuse is of 
greater length than both catheti). It should be noted here that the reason 
why this method is faster than the method suggested in (Srdanov & 
Stefanović, 2017) is because here one point is approaching along two 
different catheti of the two right-angled triangles. In practice this means 
twice faster than the method in (Srdanov & Stefanović, 2017). 

If we denote with 1
jd , nj ,...,2,1  the distances between the 

solution and consequtive points of the first iteration, then after the first 

step of the first iteration is applied, it holds   dXPPdd  1
2

1
1

1
1 cos . A 

perpendicular line always enters acute angle, which may be zero only if 
the system has no solutions (parallel hyperplanes). This way we obtain a 

sequence dddd nn  
1
1

1
1

1 ... . As the procedure is extended in an 

analogous manner during the following iterations, it is to conclude that 
the method always converges provided that the system has a solution. 

If all angles are right, one single complete iteration is sufficient to 
reach the exact solution. 
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The number of required operations 
Once the lengths of the vectors perpendicular to the hyperplanes 

corresponding to the equations of the system are calculated, it is not 
necessary to re-calculate these again, and this requires 2n2 operations. 
The program does not always passes through the same path during its 
execution and the various branches require a different number of 
operations. The highest number of operations is needed when the point 
O does not belong to any hyperplane, and these intersect at a sharp 
angle - then one semi-iteration requires nn 36 2   necessary operations. 

In any other case one semi-iteration requires nn 24 2   operations. To 
determine the accuracy, the 2n2 operations are needed at most. It can be 
estimated that to complete one iteration, the number of operations 
required is proportional to n2. A solution can be reached after m steps. To 
conclude, it can be stated that the number of operations required by this 
method is of order n2. 

An example 
Let us assume that a following system of linear equations is given: 
 
43x111x2+13x317x4+19x523x6+29x731x8+37x941x10 = 496 
41x143x2+11x313x4+17x519x6+23x729x8+31x937x10 = 1008 
37x141x2+43x311x4+13x517x6+19x723x8+29x931x10 = 204 
31x137x2+41x343x4+11x513x6+17x719x8+23x929x10 = 864 
29x131x2+37x341x4+43x511x6+13x717x8+19x923x10 = 0 
23x129x2+31x337x4+41x543x6+11x713x8+17x919x10= 864 
19x123x2+29x331x4+37x541x6+43x711x8+13x917x10= 204 
17x119x2+23x329x4+31x537x6+41x743x8+11x913x10= 1008 
13x117x2+19x323x4+29x531x6+37x741x8+43x911x10= 496 
11x113x2+17x319x4+23x529x6+31x737x8+41x943x10= 1008 
 
The exact solution of this system is: 
 
x1=11; x2=13; x3=17; x4=19; x5=23; x6=29; x7=31; x8=37; x9=41; 

x10=43.  
 
In the paper (Srdanov & Stefanović, 2017) the same example has 

been tested. Then the following report has been received: 
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2 The solution is reached in 205 semi-iterative steps. (20 complete 
iterations) 10.9999  12.9998  16.9998  18.9999  23  29.0001  31.0002  
37.0002  41.0001  43. 

The method derived here is considerably improved compared to the 
method in (Srdanov& Stefanović, 2017). 

The program developed in accordance with the instructions given in 
this paper is outlined by the following pseudo-code: 

 
int main() { 
   double t, br1, im1, Eps = .00001, Accuracy= 1.0; 
   int i, j, k, m = -1, m1, check_out = 0, flagX1; 
   UploadSystem(A,B);   
   for(m = 0; m < 99; m++) 
       for(i = 0; i < 100; i++) {Modul1[m] = += A[m][i]*A[m][i];  
Modul2[m] += A[m][i]*A[m+1][i];}      
   for(i = 0; i < 100; i++) {XD[i] = 0.0; Modul1[m] += A[m][i]*A[m][i];  
Modul2[m] += A[0][i]*A[m][i];}        
   while (Accuracy > Eps) { 
// at first descend to intersection, if possible 
       m++;  
       if (m == 100) {m = 0; check_out++;} 
       m1 = m+1; 
       if (m == 99) m1 = 0;  
       for(k = 0; k < 100; k++) X0[k] = XD[k]; 
// perpendicular line to the first hyperplane and intersection with 
// the second hyperplane 
       if (Modul2 != 0) { 

br1 = 0; 
for(k = 0; k < 100; k++) br1 += A[m1][k]*X0[k];  
t = (B[m1] - br1)/Modul2[m1]; 
if (t != 0) for(k = 0; k < 100; k++) X1[k] = A[m][k]*t + X0[k]; 
else FlagX1 = 1;} 

       else 
{if(t == 0) cout << "THE SYSTEM IS UNDEFINED";  
else cout << "THE SYSTEM IS IMPOSSIBLE "; return 1;} 

// the perpendicular line to the second hyperplane and intersection  
// with the second hyperplane  
        if (Modul1 != 0) { 

br1 = 0;  
for(k = 0; k < 100; k++) br1 += A[m1][k]*X0[k]; 
t = (B[m1] - br1)/Modul1[i]; 
if (t != 0) for(k = 0; k < 100; k++) X2[k] = A[m1][k]*t + X0[k];  
else flagX2 = 1;}  

         else 
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{if(t == 0) cout << "THE SYSTEM IS UNDEFINED";  
else cout << "THE SYSTEM IS IMPOSSIBLE "; return 2;} 

// forming the line through intersections obtained 
          for(k = 0; k < 100; k++) X3[k] = X2[k] - X1[k]; 
br1 = 0; im1 = 0; 
for(k = 0; k < 100; k++) { 

   br1 += A[m][k]*X1[k]; 
   im1 += A[m][k]*X3[k];   } 

// intersection of the line obtained with the first hyperplane 
           t = (B[m] - br1)/im1; 
if (t == 0) { 

cout << "THE SYSTEM IS IMPOSSIBLE ";  
else  

if((br1 == B[m]) && (im1 == 0))  
cout << " THE SYSTEM IS UNDEFINED"; 

return 3; } 
else 
     for(k = 0; k < 100; k++) XD[k] = X3[k]*t + X1[k];  
     which_one += .1;  
// Assesing the accuracy reached 
if (check_out == 2) { 

Accuracy = 0.0; 
for(i = 0; i < 100; i++) Accuracy += abs(XD[i] - XL[i]);  
check_out = 0; 
for(k = 0; k < 100; k++) XL[k] = XD[k];} 
       for(i = 0; i < 100; i++) X0[i] = XD[i]; } 
   cout << "Finished in k = "<< which_one << " semi- 

iterations " << "  The solution is : \n"; 
for(k = 0; k < 100; k++) cout << XD[k]<< "  "; 
return 0; 
} 
 
After running that program the following report is received: 
The solution is reached in 67 semi-iterative steps (6 completed 

iterations). 
11  13  17  19  23  29  31  37  41  43 
 
It may be noted that three times fewer iterations were performed, 

and the solution obtained is the exact one. 
The algorithm proposed here should be significantly expanded and 

improved in other ways provided the present method is used. For the 
example chosen, the speed and accuracy were of greater importance 
than the other issues that were listed at the beginning of this paper, and 
are followers of all known methods for solving systems of equations. 
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2 Therefore, the program was described with the condensed and simplified 
algorithm, which can be the core of a more complex and detailed serious 
algorithm. 

Conclusion 
From the computational point of view, the method proposed here 

offers an extremely simple procedure. In addition, the proposed method: 
1. Requires the number of operations that is feasible by the computer; 2. 
It does not produce overflow and underflow effects, except in case when 
the size of solution causes that (when it is impossible to avoid this by any 
method); 3. The memory usage is proportional to the number n2 (where n 
is the number of unknowns); 4. It does not change the initially given 
coefficients of the system (therefore, it uniformly converges to a solution 
for each coordinate with a relative error distributed uniformly over all 
coordinates); 5. If there is a solution, it always converges to it. This 
procedure may be initiated from any starting point of space solutions. 6. It 
is easy to assemble an algorithm and allows the determination in (to 
distinguish between) cases when the system is either impossible or in 
determinate. 7. It differs from the method in (Srdanov& Stefanović, 2017) 
as a process that is able to determine if a system is possible, impossible 
or indeterminate. 
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ПРИМЕНЕНИЕ МЕТОДА «ВНЕШНЕЙ СПИРАЛИ» ПРИ РЕШЕНИИ 
СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ С БОЛЬШИМ КОЛИЧЕСТВОМ 
НЕИЗВЕСТНЫХ 

Алекса С. Срданова, Радиша Р. Стефановичаб,  
Нада В. Раткович Ковачевичв, Александра М. Йовановича,  
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a Высшая профессионально-техническая школа, 
  г. Пожаревац, Республика Сербия 
б Университет обороны в г. Белград, Военная академия, 
  г. Белград, Республика Сербия 
в Высшая профессионально-техническая школа, 
  г. Белград, Республика Сербия 
 
ОБЛАСТЬ: математика, компьютерные науки 
ВИД СТАТЬИ: профессиональная статья 
ЯЗЫК СТАТЬИ: английский 

Резюме: 

Решение систем линейных уравнений n × n может представлять 
проблему для компьютера, особенно в тех случаях, когда 
требуется точное решение, и даже в тех случаях, когда 
количество уравнений и неизвестных относительно невелико 
(всего несколько тысяч). Все существующие методы 
сталкиваются с наименее одной из следующего ряда проблем:      
1. сложность вычисления, выраженная количеством 
соответствующих операций, которые необходимо произвести 
для получения решения; 2. потенциальная возможность 
неограниченного роста значений результатов, что приводит к 
проблемам: overflow и underflow; 3. изменение значений 
некоторых коэффициентов в исходной системе, что приводит 
к неустойчивости решения; 4. дополнительные требования 
вследствие конвергенции; 5. в случаях большого количества 
уравнений и неизвестных необходимо, чтобы матрица системы 
была или не слишком наполнена, или была симметричной, либо 
диагональной, и т.д. В данной работе представлены методы 
решения системы линейных уравнений с произвольным 
количеством уравнений и неизвестных, на которых не 
отражаются перечисленные проблемы. 

Ключевые слова: линейная система уравнений, метод «внешней 
спирали», гиперплоскость. 

МЕТОДА „СПОЉАШЊЕ СПИРАЛЕ” ЗА РЕШАВАЊЕ ЛИНЕАРНОГ 
СИСТЕМА СА ВЕЛИКИМ БРОЈЕМ НЕПОЗНАТИХ 
Алекса С. Срданова, Радиша Р. Стефановићаб,  
Нада В. Ратковић Ковачевићв, Александра М. Јовановића,  
Драган М. Миловановића 
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2  
ОБЛАСТ: математика, рачунарске науке 
ВРСТАЧЛАНКА: стручни чланак 
ЈЕЗИКЧЛАНКА: енглески 

Сажетак: 

Решавање линеарног система једначина n × n може бити проблем 
и за рачунар, поготово ако је потребно тачно решење, чак и када 
је број једначина и непознат и релативно мали (пар хиљада). Све 
постојеће методе су оптерећене бар једним од следећих 
проблема: 1. сложеношћу рачунања израженим кроз број потребних 
операција које је потребно извршити како би се дошло до решења;  
2. потенцијалном могућношћу неограниченог раста величина међу 
резултата, што узрокује проблеме прекорачења опсега (overflow) и 
недовољне осетљивости односно прецизности (underflow); 3. 
променом вредности неких коефицијената у полазном систему, 
што узрокује нестабилност решења; 4. додатним захтевима, због 
конвергенције; 5. случајевима великог броја једначина и непознатих 
који захтевају да матрица система буде: или слабо попуњена, или 
симетрична, или дијагонална, итд. У овом раду презентује се 
метода за решавање система линеарних једначина са 
произвољним бројем једначина и непознатих на коју се наведени 
проблеми не рефлектују.  

Кључне речи: линеарни систем једначина, метод „спољашње 
спирале”, хиперраван. 
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