CTPYYHW YNAHUMW
NMPOPECCUNOHAIIbHBIE CTATBA
PROFESSIONAL PAPERS

THE METHOD OF “EXTERNAL SPIRAL”
FOR SOLVING A LARGE SYSTEM OF
LINEAR EQUATIONS

Aleksa S. Srdanov?, Radisa R. Stefanovic®,
Nada V. Ratkovié Kovad&evic®, Aleksandra M. Jovanoviéd,
Dragan M. Milovanovi¢®
@ Technical College of Vocational Studies,

Pozarevac, Republic of Serbia,

e-mail: aleksa.srdanov@vts-pozarevac.edu.rs,

ORCID iD: "=http://orcid.org/0000-0001-6042-0750
® Technical College of Vocational Studies, Pozarevac;

University of Defence in Belgrade, Military Academy, Belgrade;

Republic of Serbia,

e-mail: radisastefanovic@yahoo.com,

ORCID iD: “http://orcid.org/0000-0001-5497-3826
Technical College of Vocational Studies,

Belgrade, Republic of Serbia,

e-mail: nratkovicmf@gmail.com,

ORCID iD: “http://orcid.org/0000-0001-6398-4391
4Technical College of Vocational Studies,

Pozarevac, Republic of Serbia,

e-mail: aleksandra.jovanovic@vts-pozarevac.edu.rs,

ORCID iD: “http://orcid.org/0000-0003-1621-1120
® Technical College of Vocational Studies,

Pozarevac, Republic of Serbia,

e-mail: dragan.milovanovic@vts-pozarevac.edu.rs,

ORCID iD: =http://orcid.org/0000-0002-0320-2957

http://dx.doi.org/10.5937/vojtehg66-14625

FIELD: Mathematics, Computer Sciences
ARTICLE TYPE: Professional Paper
ARTICLE LANGUAGE: English

Abstract:

Solving a linear system of n x n equations can be very difficult for the
computer, especially if one needs the exact solution, even when the
number n - of equations and of unknown variables is relatively small (a
few thousands). All existing methods have to overcome at least one of the
following problems: 1. Computational complexity, which is expressed with
the number of arithmetic operations required in order to determine a
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solution; 2. The possibility of overflow and underflow problems; 3. Causing
variations in the values of some coefficients in the initial system, which
may be leading to instability of the solution; 4. Requiring additional
conditions for convergence; 5. In cases of a large number of equations
and unknown variables it is often required that the systems matrix be:
either sparse, or symmetrical, or diagonal, etc. This paper presents a
method for solving a system of linear equations of arbitrary order (any
number of equations and unknown variables) to which the problems listed
above do not reflect.

Key words: system of linear equations, method of “external spiral”,
hyperplane.

Introduction

If we perceive mathematics as a science oriented primarily towards
a man as a subject of its application, the problem of solving large
systems of linear equations is not a mathematical one. It is essentially
the problem steming from computer science since the very forming of
such a system is impossible without the help of computers. Just to write
down thousands of equations with thousands of unknowns, a man would
have to spend a lifetime. Let us suppose you need to solve the full
system of linear equations having a very large number of equations and
unknowns, e.g. n ~ 100,000 or more. In order to solve such a system, it is
necessary to devise a method which: 1) requires execution of the least
possible number of operations; 2) does not require exhaustive memory
usage; 3) does not produce unexpected overflow and underflow effects;
4) does not change the coefficients of the initial system; 5) can be
applied for an arbitrary system scale — any number of equations; 6) does
not insist that the systems matrix has any particular additional feature,
and 7) unconditionally and quickly converges starting from an arbitrary
initial point. The existing methods do not meet at least one of the issues
listed above. The difficulties stated in abstract from 1. to 5., as well as the
requirements listed above from 1) to 5) are well-known and described,
e. g. in (Boht, 1978), (Higham, 2002), (Stoer & Bulirsch, 2002), and some
in connection to solving large systems of linear differential equations in
modelling complex systems, such as (Randall, 2015) or in other real-
world applications (Gaji¢ et al, 2008).

An exact solution to the system of nxn has n components. Each
of these components functionally depends on every individual coefficient
of the system. The number of coefficients is of order n?. This implies that
a minimum number of operations required to obtain the exact solution of
the system of n x n is proportional to the number n®, in general. If we
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want to reach a solution using fewer operations, it is necessary to seek
the approximate methods or approximate solution.

Formulation of the problem

Assume that the computer memory contains a system of linear
equations n x n (where n is much higher than 1000). Let this system has
the following form:

Ay X + 8% +. A X =D
Ay, X +8,,% +...+a, X, =D, (1)
8y, % +a,,X ... Ha, X = b,

For n greater than a thousand, the system (1) can only be formed
inside a computer memory. For a system like this, it is possible to define
the procedure for finding the solution, which has a minimal, almost trivial
computation, and then, if the solution exists, to assure convergence to it.

For this work the only assumption made is that system (1) has a
solution, as well as that when checking whether obtained result is a
solution, there is no overflow in the intermediate results in any of
equations in (1). If overflow of this kind happened, then it would be
impossible to solve the system (1) in such an environment. Although the
initial assumption is that system (1) has a solution, the procedure defined
here could be utilized to determine whether system (1) is insolvable
(impossible) or if it has some degree of freedom. It is important to
assume that the solution of (1) exists in order to assure the convergence
of the method.

Description of the procedure

In order to reach a solution of system (1), it is not necessary to solve
it. To find the solution of system (1), it is suitable to apply a cybernetic
approach (method of invariants), similar to the procedure defined in
(Srdanov & Stefanovi¢, 2017). Each equation in a system given in (1)
carries a considerable amount of information. For example, each
equation from system (1) can be interpreted geometrically as one
hyperplane within a space whose dimension is at least equal to the
number of unknown variables e. g. n. Then, each equation from (1) can
reveal the coordinates of the line perpendicular to its respective
hyperplane, and so forth. Parts of this information can be utilized in the
process of finding solution of system (1). The essence of this idea is as
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following: If the solution of system (1) exists, then it is a point of
intersection of all hyperplanes defined by the equations of system (1).
Starting the calculation of the solution approximation from an arbitrary
point and advancing further using orientations and the positions of all
hyperplanes makes it possible to reach a common intersection
eventually.

At this point, it is necessary to precisely define the term angle
between two hyperplanes — to generalize the term angle between two
intersecting planes.

The angle between two intersecting three-dimensional spaces, both
contained within the common four-dimensional space, is defined
analogously to the definition of a dihedral angle between two intersecting
planes within the same three-dimensional space. The angle between two
three-dimensional spaces can be defined as a dihedral angle contained
within a third three-dimensional space which is perpendicular to both of
these. This dihedral angle consists of two intersecting planes of the third
three-dimensional space with the previous two three-dimensional spaces.
All three three-dimensional spaces are contained within the same four-
dimensional space. Therefore, the generalized dihedral angle between
the two three-dimensional spaces is the dihedral angle located within the
third three-dimensional space that is perpendicular to both of the
previous spaces (dihedron that makes up the cross-section area of the
third space with the previous two spaces). All of these three three-
dimensional spaces are within the same four-dimensional space.

Generalizing previous, more same-dimensional dihedral angles
having a common point can be called justifiably the clew.

In a completely analogous manner, the angles between two four-
dimensional spaces contained within the same five-dimensional space
could be defined, etc.

For the first approximation of the unknown solution, an arbitrary
point could be taken from the space the solution belongs to. Statistically
speaking, the most optimal way to choose the starting point is pseudo-
random. The problem connected to this is that the existing algorithms for
generating pseudo-random numbers, as arule, provide pseudo-random
choices within some range. Therefore, a pseudo-random initial choice
should not take precedence over the chance to choose the starting point
as always the same. If we choose the initial point in advance, it is

preferable that it is the point O =(0,0,...,O). A better method for the
%/_J

n
selection of the starting point is to determine the "centroid of the system
(1)". To achieve this, it would be perfect to add up all the columns in
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system (1) and all the results. Then, for the initial values of all unknown

Zin:l bi

1
variables it would be perfect to take the value given by: xi0 =— =

n z;au

1
if the nominator is not zero, and Xi0=_ E _nlbi otherwise, for all
n <=

i=12,..,n.

To determine the subsequent approximation of the solution of
system (1) it is required to extract from (1) the two equations
simultaneously. From now on, the first equation of these two will be
referred to as the first plane, and the second equation - the second
plane. Each equation is a hyperplane. The two hyperplanes within the
space of the same dimension can have one of the following relationships
- that these two hyperplanes: intersect, do not intersect or are overlaping
each other. If hyperplanes do not belong to the same dimensional space,
very different mutual relations are possible, which is not relevant from the
point of view of this article.

Let us suppose that the two hyperplanes intersect. Then we can
examine in detail the following cases. Dihedral angle that these two are
forming is: acute, right or obtuse. Besides this, a position that the
approximation of the solution has reached, namely the point O, is
important as well (the position of O compared to these hyperplanes). The
point O may: belong only to one hyperplane, to both hyperplanes or to
neither one of these two hyperplanes. The idea of the method is that we
should reach some of the points within the intersection of the first and the
second hyperplane ariving from the initial point O. This would complete
one semi-iteration. Then we eliminate the first hyperplane, the second
hyperplane is declared to be the first, and for the second hyperplane - the
following equation from system (1) is proclaimed. From the previously
attained point O, we are descending into one of the points belonging to
the intersection of the newly examined two hyperplanes. When the last of
all equations in system (1) has been examined, a full iteration is
completed.

The procedure of selecting one of the points from the intersection
differs for each of the three above mentioned cases. It can be described
as follows. Through the point O, we place two straight lines whose
directions are determined by the perpendicular vectors of the first and the
second hyperplane. We distinguish between the three cases: a) to c).
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a) The point O already belongs to the intersection of the hyperplanes
in concern. In this case, we should proceed with calculation retaining the
previous point O.

b) The point O belongs to only one of the two hyperplanes. Then we
should determine the point of penetration the intersection of the two
hyperplanes with the line positioned perpendicular to the other
hyperplane. Through this point of penetration, we set the hyperline and
determine its intersection with the other hyperplane. The resulting
penetration point represents the next choice for the point O.

¢) The point O does not belong to any of the noted hyperplanes.
Then we determine penetrations through both hyperplanes using the
perpendicular hyperlines drawn from O. Thus, in each hyperplane we get
two points that define the new pair of hyperlines. The intersection point of
these two hyperlines should be the next position for O.

The method defined here differs from the one given in (Srdanov &
Stefanovi¢, 2017) as follows. The points we are taking to get closer to a
solution, according to the method in (Srdanov & Stefanovi¢, 2017),
belong to a spiral located within some of the 2" clews which are forming
up all of the hyperplanes corresponding to all of the equations of system
(1). Wherein, if a point is within the dihedron that is larger than a right
angle, the next point should be taken in the new clew. This is carried out
until the point is taken the clew which has all dihedral angles acute. Then
further convergence towards a solution follows a unique internal spiral
whose points of intersection with the clew are the bases of the
perpendicular lines placed from one point of the dihedron side on the
neighboring side (internal spiral). The method described in this paper
follows the external spiral - the spiral located on one side of the clew face
which passes through the points obtained as the bases of the
perpendiculars from a point of the edge of the dihedron to the adjacent
edge of the same face. The term the edge of the dihedron is basically the
same: the edge is formed from the intersection points of the dihedron
sides - dihedral planes.

For the system described with (1), the coordinates of the

orthonormal vectors of all hyperplanes are given as the coefficients of the
system: 0, :(aiyl,aiyz,...,aiyn) i=12,...,n. A procedure of finding an
intersection of the line going through the given point O and being
perpendicular to the second hyperplane requires a minimum of

computation and is given as follows. Let the point O has the coordinates
yi, y2 yn) Let the orthogonal vector of the first plane be
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n, :(ai,l,ai,z,.. a ) and of the second n; =(ai+1,1’ai+1,2""'ai+1,n)’

1 %in

where 1<i<n-1. In order to determine the penetration point for the first

perpendicular line through the second plane, i. e. the point
X, = (Xi, X'2 . X% ) we determine firstly
bi+1_(ai+11‘)’i+ai+12 Yot Ay Yn) ' '
N Ny

where j=12,...,n. To determine the penetration point of another

perpendicular line, i. e. the point X, =(X£, X2 Xn) we determine at

. b — (ai+1,1 Yyt Yot Qg yn)
first t= ‘_ > , and

n
thenx}:ai+1yj-t+y'j, where j=12,.,n. Now the line is placed

i+1

through the points X;and X , and its intersection with the first plane is
determined. For this, it is necessary to calculate
bi - (ai’]_ * Xl + a.i’2 * X2+ ai‘n * Xn)

ni'

t= prior to calculating the

-X

Xi i

coordinates of the new O point using the formulas y'j = (XJ - XJ )-t + X'j ,

j=12,..,n. When a full circle is taken, from i=1 to i=n-1, the next

iteration can begin.

Only in the first intermediate step, the point O can be placed outside
both of the two planes observed. Each subsequent choice of the point O
would belong to at least the first plane. During computation of
intermediate steps within the same iteration, the following cases should
be considered for in the program. a) The two planes that have been
reached are mutually perpendicular. Then the line perpendicular to the
second plane should be placed through the point O, and through its
intersection with the second plane, a line should be placed that is
perpendicular to the first plane. Then the intersection of this line with the
first plane should be determined. b) The two planes reached are two
parallel hyperplanes. Then, there are two passing lines through the point
O that are the same (identical) and these lines penetrate both
hyperplanes in the same points. The system is then impossible and the
process should be stopped. c¢) Similarly to the above, only the
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penetration points in the hyperplanes observed are coinciding with the
point O. If this is the case, the process should be stopped because
system (1) is indetermined.

When one pass through all of the equations is made this way, one
full iterative cycle is completed. The next iterative cycle will begin with
placing the line perpendicular to the first hyperplane through the O point
reached in the last hyperplane.

The Problem of Accuracy and Completion of Iterating
Process

After a full circle and one iteration completed, checks should be
performed whether the required accuracy is reached. The problem of
accuracy and completion of repeating the iterative method is possible to
display in ranked levels. The user should choose the one level offering
balance between the number of iterations required and acceptable
accuracy. The method to be applied to a large number of equations and
unknown variables should require the least possible necessary additional
computation in every step, since in total there is a considerable amount
of computation already. Another goal is that the solution obtained has the
least possible relative deviation from the exact one, when each unknown
variable is considered. The highest level of accuracy for the "internal
spiral" is achieved by checking out whether the sum of the distances
from the last point obtained to all of the planes is small enough. For the
method according to the "external spiral”, this criterion may be the sum of
all distances between two consecutive points obtained over a full iterative
cycle (the length of an arc of the spiral). In the first case, the number of
operations is proportional to the number 2n*+n, and in the latter case - to
the number n?. These criteria for checking the accuracy both require
relatively large number of operations. The next level of accuracy in both
methods may be based on the length of the distance between the points
of two consecutive iterations. In both methods, this criterion requires 2n
operations. The number of operations is considerably lower; however,
the resulting conclusion is in accordance with that. Using such a criterion
in cases where the clew has all dihedral angles very small, it is possible
to be still relatively far from the solution and to erroneously assume that
the very high accuracy is already reached. The third level of accuracy
may include checking out the distance of two consecutive semi-iterations
or something of a kind. The number of necessary operations will not be
decreased significantly; however, the end result may be improved
considerably.
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Apart from selecting any of the criteria above, regardless of the
criterion rank, it is possible to reduce significantly the number of
operations in the following manner. It is not necessary to check out the
accuracy attained after each iterative cycle, but after ten or one hundred
of full iterations.

Insolvable (Impossible) system and indetermined
system

If the given system has no solution (impossible or insolvable
system), the procedure described here can detect that. In terms of
Geometry (geometrically speaking), there is no solution if any two of the
hyperplanes are parallel. The method presented here can detect this if it
happens at any position that the two adjacent hyperplanes have
perpendicular lines of the same direction. Having in mind the process of
solving equations, as soon as something like that is established, the
procedure should be stopped. If paralel hyperplanes are not adjacent,
then this can also be determined in advance, prior to solving - that the
system is impossible or insolvable, by checking out whether any two
vectors are of the same direction. The number of required operations is
proportional to the number n?.

The method proposed here provides a much simpler way to
determine whether the system is impossible (insolvable) when compared
to the method given in (Srdanov & Stefanovié¢, 2017).

If the system is indetermined, then its uncertainty can be numerically
evaluated with respect to the degrees of freedom. In the case observed,
the system may have from 1 to 99999 degrees of freedom. If there is one
degree of freedom, then all of the hyperplanes have a common line; If
there are two degrees of freedom, then all hyperplanes have a common
plane; If there are three degrees of freedom, then all hyperplanes have
common three-dimensional space within the space of one hundred
thousands dimensions, etc; If there are 99999 degrees of freedom, then
all equations of the system represent one and the same hyperplane
within the space of one hundred thousands dimensions.

In the algorithm proposed, the simplest way is just to establish that
the system is indetermined because to find out more than that would
require many more checks, which is not of great importance for this
paper.

The method proposed here does not always detect that the system
is indetermined and in cases when it is and not detected, the program will
report the solution. If the program is run again only this time from a
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different starting point, the method will again provide a solution, however
different from the previous one. This way, it is possible to always
accurately distinguish whether the obtained solution is unique or the
system is indetermined.

Convergence and speed

We will present an outline of proof, while the rigorous proof differs
only in detail. Let there be a system of n x n linear equations, where

ne N, which has a solution X(yfy;y;) Let us assume that we
have started solving that system using the method proposed here and

starting from an arbitrary point of the first hyperplane, O, (ylo, yg, y,?).

Then the next point in the first iteration is denoted by O, (y% y% yﬁ) In

(Srdanov & Stefanovi¢, 2017), the subsequent iteration next point was
the orthonormal projection of the point O, to the first hyperplane, denoted
M. In this paper, the next iteration is obtained as the cross-section of the
plane perpendicular to both of the hyperplanes with the "dihedral edge"
and this is the point O,. Now the angles ZO/MX and ZMO,X are both
right angles. It is obvious that O.X>MX >0,X (as the hypotenuse is of
greater length than both catheti). It should be noted here that the reason
why this method is faster than the method suggested in (Srdanov &
Stefanovi¢, 2017) is because here one point is approaching along two
different catheti of the two right-angled triangles. In practice this means
twice faster than the method in (Srdanov & Stefanovi¢, 2017).

If we denote with d}, j=12,...,n the distances between the
solution and consequtive points of the first iteration, then after the first

step of the first iteration is applied, it holds d; =d -COS(LPllXle)<d. A

perpendicular line always enters acute angle, which may be zero only if
the system has no solutions (parallel hyperplanes). This way we obtain a

sequence 0. <d’, <..<d;<d. As the procedure is extended in an

analogous manner during the following iterations, it is to conclude that
the method always converges provided that the system has a solution.

If all angles are right, one single complete iteration is sufficient to
reach the exact solution.
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The number of required operations

Once the lengths of the vectors perpendicular to the hyperplanes
corresponding to the equations of the system are calculated, it is not
necessary to re-calculate these again, and this requires 2n? operations.
The program does not always passes through the same path during its
execution and the various branches require a different number of
operations. The highest number of operations is needed when the point
O does not belong to any hyperplane, and these intersect at a sharp
angle - then one semi-iteration requires 6n” +3n necessary operations.

In any other case one semi-iteration requires 4n® + 2n operations. To
determine the accuracy, the 2n? operations are needed at most. It can be
estimated that to complete one iteration, the number of operations
required is proportional to n?. A solution can be reached after m steps. To
conclude, it can be stated that the number of operations required by this
method is of order n?.

An example

Let us assume that a following system of linear equations is given:

43x1—11x+13x3—17 x4+ 19x5—23 X5+29Xx7—31x5+37 X9—41 X190 = —496
41x1—-43Xxo+11x3—13x4+17 X5—19x5+23x7—29x5+31%9—37 X190 = —1008
37x1—41x+43x3—11x4+13x5—17 Xg+19x7—23xg+29x9—31 %49 = —204
31x1—37x2+41x3—43x4+11x5—13X6+17 x7—19xg+23x9—29x4¢ = —864
29X1—31 X2+37X3—41 X4+43X5—1 1X6+1 3X7—1 7X8+1 9X9—23X10 =0

23X1 —29X2+31 X3—37X4+41 X5—43X6+1 1 X7—1 3X8+1 7X9—1 9X10= -864
19x1—23x+29x3—31x4+37 x5—41 X5+43X7—11xs+13X9—17 x10= 204
17X1=19%+23x3—29x4+31x5—37 Xg+41x7—43x5+11x9—13x10= —1008
13x1=17Xo+19x3—23x4+29x5—31 x5+ 37 x7—4 1 xg+4 3X9—11x410= 496
11x1=13x2+17 X3—19x4+23X5—-29x5+31x7—37 Xg+41 xg—43x10= —1008

The exact solution of this system is:

x1=11; x2=13; x3=17; x4=19; x5=23; x6=29; x7=31; x8=37; x9=41,
x10=43.

In the paper (Srdanov & Stefanovié, 2017) the same example has
been tested. Then the following report has been received:
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The solution is reached in 205 semi-iterative steps. (20 complete
iterations) 10.9999 12.9998 16.9998 18.9999 23 29.0001 31.0002
37.0002 41.0001 43.

The method derived here is considerably improved compared to the
method in (Srdanov& Stefanovi¢, 2017).

The program developed in accordance with the instructions given in
this paper is outlined by the following pseudo-code:

int main() {

double t, br1, im1, Eps = .00001, Accuracy= 1.0;

inti, j, kK, m=-1, m1, check_out = 0, flagX1;

UploadSystem(A,B);

for(m = 0; m < 99; m++)

for(i = 0; i < 100; i++) {Modul1[m] = += A[m][i]*A[m][i];

Modul2[m] += A[m][i]*A[m+1][i];}

for(i = 0; i < 100; i++) {XD[i] = 0.0; Modul1[m] += A[m][i]*A[m][i];
Modul2[m] += A[O][i]*A[m][i];}

while (Accuracy > Eps) {
/I at first descend to intersection, if possible

m++;
if (m == 100) {m = 0; check out++;}
m1 =m+1;

if (m==99) m1 = 0;
for(k = 0; k < 100; k++) XO[k] = XD[K];
I/ perpendicular line to the first hyperplane and intersection with
// the second hyperplane
if (Modul2 !=0) {
br1=0;
for(k = 0; k < 100; k++) br1 += A[m1][k]*XO[K];
t = (B[m1] - br1)/Modul2[m1];
if (t!=0) for(k = 0; k < 100; k++) X1[k] = A[m][k]*t + XO[K];
else FlagX1 =1;}
else
{if(t == 0) cout << "THE SYSTEM IS UNDEFINED";
else cout << "THE SYSTEM IS IMPOSSIBLE "; return 1;}
Il the perpendicular line to the second hyperplane and intersection
I/ with the second hyperplane
if (Modul1 !'=0) {
br1=0;
for(k = 0; k < 100; k++) br1 += A[m1][k]*XO[K];
t = (B[m1] - br1)/Modul1([i];
if (t!=0) for(k = 0; k < 100; k++) X2[k] = A[m1][k]*t + XO[k];
else flagX2 = 1;}
else
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{if(t == 0) cout << "THE SYSTEM IS UNDEFINED";
else cout << "THE SYSTEM IS IMPOSSIBLE "; return 2;}
// forming the line through intersections obtained
for(k = 0; k < 100; k++) X3[k] = X2[k] - X1[K];
br1 =0;im1=0;
for(k = 0; k < 100; k++) {
br1 += A[m][K]*X1[k];
im1 += A[m][K]*X3[k]; }
/I intersection of the line obtained with the first hyperplane
t = (B[m] - br1)/im1;
if (t==0){
cout << "THE SYSTEM IS IMPOSSIBLE ";
else
if((br1 == B[m]) && (im1 == 0))
cout << " THE SYSTEM IS UNDEFINED";
return 3; }
else
for(k = 0; k < 100; k++) XD[k] = X3[k]*t + X1[k];
which_one += .1;
/I Assesing the accuracy reached
if (check_out == 2) {
Accuracy = 0.0;
for(i = 0; i < 100; i++) Accuracy += abs(XD][i] - XL[i]);
check_out = 0;
for(k = 0; k < 100; k++) XL[k] = XDI[k];}
for(i = 0; i < 100; i++) XO[i] = XDIi]; }
cout << "Finished in k = "<< which_one << " semi-
iterations " << " The solution is : \n";
for(k = 0; k < 100; k++) cout << XD[k]<<" ";
return 0;

}

After running that program the following report is received:

The solution is reached in 67 semi-iterative steps (6 completed
iterations).

11 13 17 19 23 29 31 37 41 43

It may be noted that three times fewer iterations were performed,
and the solution obtained is the exact one.

The algorithm proposed here should be significantly expanded and
improved in other ways provided the present method is used. For the
example chosen, the speed and accuracy were of greater importance
than the other issues that were listed at the beginning of this paper, and
are followers of all known methods for solving systems of equations.
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Therefore, the program was described with the condensed and simplified
algorithm, which can be the core of a more complex and detailed serious
algorithm.

Conclusion

From the computational point of view, the method proposed here
offers an extremely simple procedure. In addition, the proposed method:
1. Requires the number of operations that is feasible by the computer; 2.
It does not produce overflow and underflow effects, except in case when
the size of solution causes that (when it is impossible to avoid this by any
method); 3. The memory usage is proportional to the number n? (where n
is the number of unknowns); 4. It does not change the initially given
coefficients of the system (therefore, it uniformly converges to a solution
for each coordinate with a relative error distributed uniformly over all
coordinates); 5. If there is a solution, it always converges to it. This
procedure may be initiated from any starting point of space solutions. 6. It
is easy to assemble an algorithm and allows the determination in (to
distinguish between) cases when the system is either impossible or in
determinate. 7. It differs from the method in (Srdanov& Stefanovic, 2017)
as a process that is able to determine if a system is possible, impossible
or indeterminate.
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MPUMEHEHWVE METOLA «BHELIJHI?VI CNUPAINN» NPW PELLEHUN
CUCTEM JIMHEMHbBIX YPABHEHWW C BONbLUMM KONMMYECTBOM
HEN3BECTHbIX

Anexca C. CpaaHos®, Paduwa P. CTedpaHoBuy®,
Hada B. PaTkosuy Kosauesu4®, AriekcaHdpa M. MosaHoBuY?,
[pazax M. MunosaHosuy®
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@ Bbicwasi NpoeccroHarnbHO-TEXHUYecKas LKona,
r. Noxapesau, Pecnybnuka Cepbusa

® YHuBepcuTeT 06OpoHbI B I. Benrpaz, BoeHHast akagemms,
r. benrpag, Pecnybnuka Cepbus

® Biclas npodeccroHarnbHo-TeXHUYeckas LLKona,
r. benrpag, Pecnybnuka Cepbus

OBNACTb: matematuka, KOMMNbIOTEPHbIE HaYKK
BWO CTATbW: npodeccrnoHanbHasa ctaTbs
A3bIK CTATbW: aHrnunckun

Pe3swome:

PeweHue cucmem nUHEUHbIX ypagHeHUl n x n Moxem rpedcmaessisims
npobrniemy O Komrbtomepa, OCOOeHHO 8 mex criydasix, Koeda
mpebyemcsi mo4Hoe peweHue, U Oaxe 8 mex Ccrydasx, koeda
KOU4ecmeo ypasHeHUU U HEeu38eCMHbIX OMHOCUMESbHO HEe8esTuKo
(6ceco  HeckonbkO  mbicsd).  Bce  cywecmsyrouwue  mMemoOds!
cmarnkusaromcsi ¢ HaumeHee OO0HoU u3 crniedyroujeeo psida rnpobrem:
1. C/TIOXHOCMb  8bIYUCIEHUS], 8bipaXeHHasi  KO/Iu4ecmsom
coomeemcmeyowux onepayuli, komopbie HeobxodumMo npoussecmu
011 MofnyqeHuUs peweHus; 2. rnomeHyuanbHas 803MOXHOCMb
HeoepaHu4YeHHO20 pocma 3Ha4yeHul pe3ynbmamos, Ymo npusooum K
npobnemam: overflow u underflow; 3. u3MeHeHue 3Ha4YeHul
HeKomopbIx Ko3ghguyueHmos 8 UcxodHoU cucmeme, 4mo npusodum
K Heycmouqueocmu peuweHus;, 4. dornosHumesnbHble mpebogaHusi
ecnedcmeue KoHeepeeHyuu; 5. 8 cnydasix 60/bWO20 Konuvyecmea
ypasHeHul U Heu3eecmHbix He0bxo0umMo, Ymobbl Mampuya cucmembl
Obinia unu He CrIUWKOM HarosiHeHa, unu bbina cummempu4yHou, fiubo
OQuazoHarnbHol, U m.0. B daHHoU pabome npedcmasneHbl Memoodbl
peweHuss cucmeMbl  JIUHEUHbIX ypasHeHuUli C  [POoU380SIbHbLIM
KOIU4ecmeoM ypaeHeHUll U Heu3B8eCmHbIX, Ha KOmMopbIX He
ompaxaromcsi rnepeyuUcieHHble npobriemsi.

Kntouesble criosa: nuHeliHasi cucmema ypasHeHul, Memod «8HewHeul
cnupasnuy, 2unepriocKoCmeb.

METO[IA ,CMNOJbALWHE CMNNPANE” 3A PELUABAHE NMHEAPHOI
CUNCTEMA CA BENWKUM BPOJEM HEMO3HATUX

Anekca C. CpaaHos®, Paduwa P. CtecbaHosuh®,
Hada B. PaTkosuh Kosauesnh®, Anekcandpa M. JosaHosuh®,
[ApazaxH M. MunosaHosuh®

@ Bricoka TexHMYKa LKona CTPYKOBHUX CTyauja,
Moxapesau, Penybnuka Cpbuja
YHuBepauteT ogbpaHe y beorpagy, BojHa akagemuja,
Beorpag, Penybnuka Cpbuja,

@ Bucoka TexHMYKa LLKona CTPYKOBHUX CTyauja,
Beorpag, Penybnuka Cpbuja
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OBNACT: maTematuka, padyHapcke Hayke
BPCTAUJIAHKA: cTpyyHM unaHak
JEBNKYJTAHKA: eHrneckm

Caxemak:

Pewasar-e nnuHeapHoz cucmema jedHadyuHa n x n Moxe 6umu rpobriem
U 3a padvyHap, rnoaomoeo ako je nompebHo mayHo pelwere, Yak U kada
Je 6poj jeGHaduHa u HerosHam u penamueHo masnu (nap xurbada). Cee
nocmojehe memode cy onmepeheHe 6ap jedHum 00 criedehux
npobniema: 1. crioxeHowhy padyHarba uspaxeHum Kpo3 bpoj nompebHux
oriepauuja Koje je nompebHo usspuiumu Kako bu ce dowirio 0o pewieHa;
2. nomeHuyujarHom moayhHowhy HeoepaHu4yeHoe pacma gernuduHa mehy
pe3ynmama, wmo y3pokKyje rnpobreme rpexkopaver-a oriceea (overflow) u
HedosorbHEe ocemrbugoCcmU OOHOCHO rpeyudHocmu (underflow); 3.
MPOMEHOM 8peldHOCMU HEKUX KoeghuyujeHama y ronasHoOM cucmemy,
Wwmo y3poKyje HecmaburnHocm pewensa; 4. dodamHum 3axmesuma, 3602
KOHeepeaeHuyuje; 5. cnydajesuma eernukoe bpoja jedHadyuHa u Hero3Hamux
Koju 3axmesajy 0a mampuuya cucmema byde: unu cnabo nonyweHa, unu
cumempuyHa, unu OujazoHanHa, umd. Y osom pady npeseHmyje ce
mMemola 3a pewaeare cucmema JfuUHeapHux jeOHaduHa ca
rpou3sosrbHUM bpojeM jeOHadyuHa u Hero3Hamux Ha Kojy ce HaseleHUu
rpobriemu He peghriekmyjy.

KrbyyHe pe4qu: nuHeapHu cucmem jedHadyuHa, Memod ,CrosballHe
criuparne”, xuneppasa.
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