VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

CTPYYHWN YITAHLUN
NMPOPECCHNOHAIIbHBIE CTATBU
PROFESSIONAL PAPERS

TESTING THE PERFORMANCE OF
NoSQL DATABASES VIA THE
DATABASE BENCHMARK TOOL

Lazar J. Krstié®, Marija S. Krsti¢®

@ Higher Business School of Applied Studies,

Leskovac, Republic of Serbia,

e-mail: krstic.lazar@vpsle.edu.rs,

ORCID iD: ‘https://orcid.org/0000-0001-9131-6876
® Technical School ,Nikola Tesla",

Medvedja, Republic of Serbia,

e-mail: krsticmarija1989@gmail.com,

ORCID iD: “@https://orcid.org/0000-0003-3009-8400

DOI: 10.5937/vojtehg66-15928; https://doi.org/10.5937/vojtehg66-15928

FIELD: Informatics, Databases
ARTICLE TYPE: Professional Paper
ARTICLE LANGUAGE: English

Summary:

NoSQL is often used as a successful alternative to relational databases,
especially when it is necessary to provide adequate system dimensioning,
usage of a variety of data types and high efficiency at a low cost for
maintaining consistency. The work is conceived in a manner that covers
the general concept of a database, i.e. the concept of relational and non-
relational databases, which are substantiated by all important aspects and
in an appropriate context. After analyzing the types of NoSQL databases,
emphasis is placed on explaining their advantages and disadvantages, as
well as on an overview of the NoSQL and SQL database comparison. The
final part of the paper presents the results of testing the performance of
NoSQL databases, obtained though the Database Benchmark tool. The
aim of the paper is to highlight all the details of NoSQL databases in order
to establish the justification of their application in practice.

Key words: Databases, Relational databases, NoSQL databases,
Performance testing.

Introduction

Nowadays, data and information are accumulated at a rapid pace
from a variety of sources, and it is not easy to understand what they

614

mean. To cope with the growing amounts of digital data of varied nature,
organizations must use sophisticated techniques for information
management. Viewed from this angle, databases are essential in all
areas of operation of one organization. Relational databases support
most of business systems of today's organizations and for a good
reason. Functionality and reliability of such databases have been proven
in many systems through many years. They have been supported by a
number of tools, documented in detail, and there are a large number of
people qualified for the implementation and maintenance of these
systems. However, both analytical and operational organizations now
increasingly take into account different solutions for their business
problems, which results in relational databases not always being
appropriate for storing and processing data. That is why NoSQL (Not
only SQL) databases have been created.

NoSQL databases apply different mechanisms for data storing and
establishing relationships across data from relational databases. If data
does not need to be stored in tables or there are relations that cannot be
presented by classic SQL relationships, and data has to be accessed
fast, then NoSQL databases are applied.

The term database

A database is a collection of interconnected logical related data
stored in computer external memory, simultaneously available to users
and application programs. It is organized in such a way that a set of
computer programs - system for managing databases (Database
Management System DBMS) - allows all users to access all data.

A database management system is a set of programs which provide
the user with tools to add, delete, access and analyze the data stored in
one location. Data can be accessed using queries or reporting tools
(which are an integral part of the DBMS) or using application programs
written specifically for the purpose of accessing the information. The
DBMS also provides mechanisms for the preservation of data integrity,
for the management of security and for user’s access to information
database in case of a crash.

This system minimizes the following issues:

— data redundancy - when the same data is stored in more than one

place;

— isolation of data - when an application cannot access the data that

is associated with other applications;

615

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

— data inconsistency - when different copies of the same data do not
match.

On the other hand, the system maximizes:

— data security;

— data integrity - data must meet certain criteria, e.g. there must not
be any letters in the field reserved for a personal identification
number;

— data independence - application software and data are
independent from each other (i.e. applications and data are not
related to each other, which means that different applications can
access the same data).

Defining a database requires not only a specification of types and data
structures that need to be memorised into the base, but also the
limitations of the data. In this regard, Data Definition Language - DDL is
used for the execution of these activities. Data definitions are located in
the system directory and are called metadata.

Add, delete, modify and search data represent the activities of
manipulating databases by the help of Data Manipulation Language
DML. A DML part that searches a database is called a query language.
Figure 1 represents a simplified database system
(http://sakshieducation.com).

Searching data in the database is probably the most frequently
executed process. Structured Query Language (SQL) is the most popular
language for data search. It allows the execution of complex search
using relatively simple phrases or keywords. Typical keywords are
SELECT (to determine the desired attribute), FROM (to determine the
tables that will be used) and WHERE (to determine the conditions which
will apply to search). For example: SELECT the name of the student,
FROM a database of students, WHERE the average score > 9.00.

Another way to find data in the database is by using search
examples (Query By Example - QBE). In the QBE search system, users
fill out a template (also called a form) to define an example or a
description of the desired information. Users can quickly and easily
construct a questionnaire using the techniques of drag-and-drop in the
DBMS. Such a search is easier than typing SQL commands.

There are many different models, such as the database Entity-
Relationship model (ER model), hierarchical models, network models,
relational models and object model. The most popular model is
undoubtedly the Entity-Relationship model (ER model).

616

Users / Programmers

Database
System Y
Application Programs /
Queries
DBMS *

Software to Process
Software Queries / Programs

v

Software to Access
Stored Data

T

Stored Database
Definition

Stored Database

(Meta-Data)

il
i)

Figure 1 — Simplified database system
PucyHok 1 — YnpouwieHHasi cucmema 6a3 0aHHbIX
Cnuka 1 — lNojedHocmasrbeH cucmem 6ase nodamaka

Relational databases

Relational databases contain and manage relational structured data,
and have a system for manipulating them. The data is stored in a two-
dimensional table consisting of rows and columns. The interaction with
the relational database management system, in most cases, is
implemented by using SQL query language. Types of data that could be
stored are determined by the system while information is organized using
a clearly determined scheme, typically based on the Entity Relationship
(ER) model. The relational database model and SQL as a standard query
language are widely accepted and were considered for long to be the
only alternative to storing and organizing data which can be accessed by
more than one user in a consistent manner.

Since there is a data structure, it is necessary to follow it, including
the classification of data into the table by rows and columns (Figure 2).
The intersection of a column and a row has only one value, and each
variable has a data type, each of which has a limited domain of allowed
values. Primary keys are placed in order to be able to identify each row in
the table, while the foreign keys are used to interconnect multiple tables.

617

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

Because of this structure type, relational databases are vertically
scalable, which means that they work best on a single node, that is, on a
single computer. If expansion is necessary due to a growing amount of
data, the best option is to increase the resource of that node.

Table Name - Student D Foreign Key
#IndexNumber | Name | Age | $DirectionCode

1234 Petar | 22 F1 [Record (Row)

2345 Marija | 21 F1)

3456 Milena | 21 M2 Attribute Names (Column)

[| Individual Value of Attribute

Figure 2 — Table (basic terms and components)
PucyHok 2 — Tabruya (OCHO8HbIE MepMUHbI U KOMITOHEHMb)
Cnuka 2 — Tabena (OCHO8HU MOjMOBU U cacmagHU efieMeHmu)

Non-relational database

As their name suggests, non-relational databases are not based on
the relational model, or at least do not stick to it firmly, and include data
without schemes. They are widely distributed systems that enable rapid
organization and analysis of large quantities of various types of data.
They are simple and horizontally scalable, meaning you can easily add a
new node (computer) which does not affect the operation of the system
(Strauch, 2011). Unlike relational databases, where the ACID (Atomicity,
Consistency, Isolation, Durability) properties are applied, non-relational
databases are based on the BASE (small plates, Soft state, arelis
possible consistency) properties. The BASE properties certainly do not
mean that NoSQL databases are unreliable and inconsistent, but
eventual consistency means that the system will become consistent once
all data is propagated into all nodes in the cluster.

ACID and BASE models

The ACID and BASE are models of control over transactions in
order to ensure consistency. The difference between them depends on a
layer in which they are: the ACID model is in the base layer, while the
BASE model is in the application layer. Also, unlike the ACID model
which is oriented to consistency, systems that use the BASE model focus
on accessibility.

618

Relational databases support the ACID properties of transactions:

1.

Atomicity - transactions must be done fully or not at all, which
means that systems that provide atomicity must be prepared for all
possible problems (hardware and software problems, network
failures, disk problems or full system crashes);
Consistency - data must be entirely consistent;

. Isolation - operations are mutually isolated (no part of the

transaction is aware of the others);

. Durability - after all transaction elements are complete, the

transaction becomes permanent.

NoSQL databases follow the BASE properties:

1.
2.

Basic Availability - the system is allowed to be temporarily
inconsistent in order to carry out transactions;

Soft state - some inaccuracies are allowed for a short time and the
data can be changed while being used, in order to reduce the
consumption of resources;

. Eventual consistency - after all operations are performed, the

system will become consistent.

The CAP theorem

The ACID and BASE concepts should not be seen as mutually
exclusive options, but as a spectrum. The BASE concept is often
mentioned along with another important concept, the CAP (Consistency,
Availability, and Partition Tolerance) theorem. This proposition can clarify
why it is sometimes necessary to sacrifice consistent work for other
properties. For NoSQL databases, according to the CAP theorem, only
two of the next three properties can be guaranteed at the same time
(Kumar, nd):

1.
2.

Consistency - all nodes have identical copies of the data available
for the transaction;

Availability - every request for information will be processed
successfully or there will be a message that the request cannot be
processed;

. Partition Tolerance - the system will continue to operate in the case

of breaking the link between the nodes, which would create
partitions in which nodes can communicate with each other only
within their own partition.

NoSQL - ,Not Only SQL"

The term NoSQL ("Not only SQL") is the term that describes the
entire class of databases which do not have the characteristics of

619

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

traditional relational databases and for which standard query SQL
language is not generally used. NoSQL databases are considered to be
the next generation databases and may be defined as non-relational,
distributed databases, open source, and horizontally scalable. They are
characterized by a less strict static data structure, simple support to
replication and simple application programming interface (API). They are
often related to large data sets that need to be quickly and efficiently
accessed and changed on the Web.

Basic characteristics of NoSQL databases

The basic characteristics of NoSQL databases are:

1. Distributed computing (Scalability, Reliability, Resource Sharing,
Performance) - NoSQL databases are distributed, provide
horizontal scalability, and handle large amounts of data e.g.
several of terabytes or petabytes with small time delay. A parallel
increase in the number of users and amount of data requests
relevant data from the Web and mobile applications, as well as
from accompanying databases, which can be achieved by using
the following two methods:

a. Scale up - this involves adding resources to a single node by
setting an additional processor or by increasing storage
memory.

» Vertical scalability with relational databases: to support a
large number of simultaneous users and/or store more data,
there is a need for big servers with more processors that will
handle that workload, more memory and more storage
space for all tables. Installing and maintaining large servers
is a complex task that requires large investments (costs).

b. Scale out - refers to adding new nodes to the system (for
example, adding new computers to the distributed software
application).

* Horizontal scalability with NoSQL databases: with this
method, the resource is added to a cluster of servers for
data storage and supporting operations with databases. The
cluster is expanded by adding additional servers to spread
database processing to a larger cluster. As servers are
vulnerable to failure, NoSQL databases are designed to
withstand and recover from constant failures, which makes
them very resistant. NoSQL databases enable a simpler,
straight-line approach to scaling databases. They are best
at dealing with sudden jumps in activities of new users. In
order to cope with sudden jumps in volume, a new database
server needs to be added to expand the cluster.

620

2. More flexible data model - NoSQL databases appear in one of the

following models:

+ key-value databases,

+ document-oriented databases,
« wide column databases,

» graph databases.

3. Asynchronous insertions and updates / low transactional -
Complete transactional guarantees and simultaneous execution
of transactions in all nodes in a distributed environment are not
provided by NoSQL databases. Instead, they guarantee the
availability of data at the distributed level (through an internal
synchronization). This is why NoSQL is a perfect model for
applications such as social networking, where simultaneous
transactions are not a limitation.

4. Follow BASE/CAP instead of ACID - Instead on ACID, NoSQL
databases work more or less on the BASE principle. All NoSQL
databases rely more or less on the ACID properties (CAP
theorem). For example, when there are no updates for a while
(this can mean a few seconds), all updates can propagate
through the system at the very end, which depends on the loads,
the size of the cluster and the network traffic, and it will make all
nodes consistent.

5. Query language - These databases do not support SQL, unlike
relational databases.

6. NoJoins - NoSQL databases do not use the concept of linking.

7. Low cost — They use clusters of low-cost, already available
equipment (servers) instead of own servers for managing large
amounts of data and transactions.

8. Easy implementation — They provide flexibility and simpler
schemes, unlike the Relational Database Management System
(RDBMS).

Types of NoSQL databases

There are four basic types of databases that are classified under the
category of NoSQL (Sadalage, 2014):

1. key-value databases,

2. document-oriented databases,

3. wide column databases,

4. graph databases.

Key-value databases

Key-value databases can be compared to a table in a relational
model that has two columns, the key and the value. The data is stored in

621

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

distributed hash maps, where the key is most often a string, while the
value can be one of the types supported by all programming languages,
such as strings, numbers, arrays, or objects. These databases store a
variety of data, but do not perform any additional data search by multiple
criteria.

+ Advantages:
— working with large amounts of data,
— very fast,
— usually support automatic replication and horizontal partition of
collections.

» Disadvantages: (Graovac, 2016):

— a high level of redundancy,

— complex structures are implemented by a large number of
collections

— if the data is "densely" linked, the efficiency drops dramatically,

— they have no mechanisms for the preservation of the integrity -
often do not provide even transaction atomicity,

— search condition is exclusively a fixed key value or a range of
key values.

The most popular key-value databases are: DynamoDB (Amazon),
Riak, Redis, Voldemort, and Oracle NoSQL.

Document-oriented databases

With document-oriented databases, data is organized as a collection
of documents with possibly different structures, which supports simple
adding and dropping of attributes. These bases store XML, JSON, BSON
formats of documents (tagged format) or, for example, PDF format
documents (unstructured format). Data is not normalized.

» Advantages:
— very simple and efficient operation,
— usually support at least semi-automatic replication and
horizontal collection partition - often just a replication of the
main-subordinate type.

+ Disadvantages:
— relatively limited domain of application,
— many implementations do not allow ad hoc querying and
changing data,
— some implementations do not stand high frequency data
changes.
Some of the most popular document-oriented databases are:
CouchDB, MongoDB, RavenDB, Couchbase, Azure DocumentDB.

622

Wide column databases

In wide column databases, data is grouped in columns, which gives
a better performance when there is a need for queries that should restore
only certain attributes, and not full entities. They operate with the terms
column and super column. The columns have a name, a value, and a
timestamp, which indicates that there is no need to define a scheme.

* Advantages:
— support very large amounts of data,
— they are very fast, except in some cases of values with very
complex structures
— most support automatic replication and horizontal collection
partition.

+ Disadvantages:
— a high level of redundancy,
— complex structures are implemented by a large number of
collections,
— if the data is "densely" linked, the efficiency drops dramatically,
— they have no mechanisms for the preservation of integrity - often
do not provide even transaction atomicity,
— search condition is exclusively a fixed key value or a range of
key values.
Some of the most popular wide column databases are: Cassandra
(Facebook, now part of the Apache Software), Hadoop / Hbase,
Accumulo, Hypertable, Amazon SimpleDB.

Graph databases

In graph-oriented databases, data is represented in the form of
graphs, with entities being represented by nodes, and their relations by the
edges of the graph. Each link and node carry certain information on the
basis of which quick inquiries can be made. Searching data by links shows
great performance advantages.

» Advantages:
— in contrast to other non-relational databases, they are very
effective when it comes to common operations with graphs,
— some support transactions and the ACID mode of conditions,
— usually only the replication of the main-subordinate type.

+ Disadvantages:
— relatively restrected application domain,
— not suitable out of their domain.

623

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

Some of the most popular databases oriented towards graphs are:
Neo4d, AllegroGraph, OrientDB, ArangoDB, Infinite Graph.

The general criteria for the selection of NoSQL databases

General criteria that need to be taken into consideration before making
a decision about which NoSQL database to use are as follows:
1. Storage type - one of important criteria that should be considered
when choosing an NoSQL database.
= For example, get, put and delete functions are best supported by
key-value systems.

= Aggregation becomes much simpler when using column-oriented
systems. They use tables, but without joining.

= Data mapping becomes easier with object-oriented software
using NoSQL databases based on documents, such as XML or
JSON.

< A tabular format is changing, and data is saved in the graphical
format.

2. Control of parallel execution - specifies how two users may
simultaneously modify the same information. It often happens that
one of the users loses access, so he/she cannot change or perform
actions, while an active user ends editing (Kumar, nd).

e Lock - prevents more than one active user from changing an
entity such as a document, a line or an object.

= Multiversion concurrency control (MVCC) - provides a readable
overview of the base, but leads to conflicting versions of an entity,
if more than one user perform changes at the same time. MVCC
enables seemingly smooth processing of transactions by creating
multiple versions of a site. This means that the consistency of
transactions is retained, although different users at any given
moment are shown various displays. All changes to the database
will be displayed to all users depending on which view they are
viewing.

= In some systems there is a lack of atomicity due to which all users
who modify the database do not have the same base overview.

= ACID should be chosen if reliable transactions are needed.

3. Replication - enables continuous synchronization of backups.

= Synchronous mode - this approach (although expensive due to
dependence on another server to respond) always provides
consistency.

= Asynchronous mode - with this approach, the database update is
done without waiting for a response from another database.
There is a small scale of inconsistencies that can last a few
milliseconds.

624

4. Language for implementation - assists in determining how fast the
database processing can be performed. NoSQL databases written in
low-level programming languages are most often the fastest. On the
other hand, those written in higher-level programming languages are
easier to modify.

Examples of applying the four basic types of NoSQL
databases

The next part of the paper provides some examples of applying the
four basic types of NoSQL databases, as well as some of the specific
criteria for determining which type meets specific requirements.

Examples of application of key-value databases

The databases of type key-value are suitable for applications that
have frequent short readings and typing with simple data models. The
values stored in this database type can be a simple scalar value such as
an integer or a boolean, but they can also be structured data such as lists
and JSON structures. Generally, have the option of a simple query that
allows identifying a value over its key. Some key-value databases
support search functions and are therefore more flexible.

The database of the key-value type is used in a large number of
applications, such as (Sullivan, nd):

¢ caching data from relational databases to boost performance,

e monitoring temporary attributes in a Web application, such as a

shopping cart,

¢ storing configurations and user information for mobile applications,

¢ storing large objects, such as images and audio files.

Examples of the application of document-oriented databases

Databases oriented towards documents are designed to be flexible.
If an application requires the ability to put different attributes together with
large amounts of data, then this database is the right solution. For
example, in order to present products in a relational database, the model
maker can use a table for common features and additional tables for
each product subtype in order to store the attributes that occur only in
product subtypes. Databases oriented towards documents are the best
choice for these situations.

Databases oriented towards documents are used for embedded
documents which are good for denormalization. Instead of storing data in
different tables, data which is often searched together is placed in the
same document. In addition, these databases improve the ability of key-

625

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

value databases by indexing and by the ability to filter documents based
on attributes in the document itself.

Databases oriented towards documents are perhaps the most
popular NoSQL databases because of their flexibility, performance, and
ease of use. They can be applied in the following situations:
back-end support for sites with large numbers of hits and data,
management of data with variable attributes, such as products,
tracking changeable metadata types,
applications that use the JSON data structure,
applications that take advantage of denormalization by embedding
structures into the existing structures.

Databases oriented towards documents are also available as cloud
service (Microsoft Azure Document and Cloudant's database).

Examples of the application of wide column databases

Wide column databases are designed for large amounts of data, for
reading and registration performances and they are extremely affordable.
Google's Bigtable was designed for its needs, while Facebook developed
Cassandra to enable the Inbox search service to its customers. These
database management systems function on the principle of a cluster of
multiple servers.

Wide column databases can be used in the following cases:

¢ applications that require a competence of permanent entries in the

database,

e applications that are geographically distributed across multiple data
centers,

o applications that tolerate some short-term inconsistencies in
responses,

¢ applications with dynamic fields,
¢ applications with potentially vast amounts of data, for example,
thousands of terabytes.

Examples of the application of graph databases

Databases oriented towards graphs are suitable for application in
problems that can be solved using graphical structures for data saving
and storage. One way to evaluate the utility of databases oriented
towards graphs is to check if each element contains a direct pointer to
the next element (if one element is connected with other elements).

626

For example, two orders in electronic trade probably are not linked
to each other. They may have been sent by the same customer but that
is a common atribute, not a link. Similarly, the configuration and progress
in a game of one gamer probably has nothing to do with the configuration
of another game of some other gamer. In these cases, the most
commonly used are key-value databases, document oriented or
relational databases.

On the other hand, examples such as railway tracks that connect
cities, proteins that are intertwined with other proteins and workers who
collaborate with other workers are cases where there is some kind of
connection or a direct relationship between the two instances of the
entities. These are the types of problems where database oriented
towards graphs can be used.

Other examples include:

¢ online management and IT infrastructure management,

¢ identity and access management,

e business process management,

o recommending products and services,

e social networks.

The above examples clearly show that, when it is necessary to make
a model of explicit and fast connections between the entities, databases
oriented towards graphs should be used.

NoSQL advantages and disadvantages
Table 1 presents the pros and cons of NoSQL databases.

Table 1 — NoSQL advantages and disadvantages
Tabnuya 1 — NoSQL npeumywecmsa u Hedocmamku
Tabena 1 — NoSQL npedHocmu u maHe

Advantages of NoSQL Disadvantages of NoSQL

Too many options (over 150), so it is

High scalability hard to make a decision

Flexibility of the scheme Limits query (for now)

Eventual consistency is not intuitive

Distributed computing (scalability, reliability, to programs such as banking

resource sharing, speed)

applications

There are no complicated connections Lack of Joins, Group by, Order by
features

Lower costs ACID transactions

Open Source - all NoSQL options with the
exception of Amazon S3 (Amazon Dynamo) are | Limited support - open source
open source solutions

627

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

Comparison between NoSQL and SQL
Table 2 presents the difference between NoSQL and SQL
(https://azure.microsoft.com).

Table 2 — Comparison between NoSQL and SQL
Tabnuya 2 — CpasHeHue mex0y NoSQL u SQL
Tabela 2 — lNopehere usmehy NoSQL u SQL

NoSQL

SQL

Non Relational

Relational

Storing data in JSON documents,

Model
key-value pairs, column-oriented Storing data in tables
warehouses or graphs
Flexibility due to the fact that all .
Excellent for solutions where each
records do not have to store the same o
L record has the same characteristics
characteristics
. Adding a new feature requires
Data Quickly add new features modifying the scheme
Links are graded by denormalizing . - .
. Links are built in normalized models
data and presenting all data for one by ioini
-) y joining tables
entity in a single record
Suitable for semi-structured, complex Suitable for structured data
or nested data
Dynamic or flexible schemes Clearly defined schemes
Database does not accept the s
Scheme scheme, and it is specified by the Scheme '.nUSt be mamtameq apd be
L . - - synchronized between applications
application. This results in agility and
! i . and databases
highly interactive development
Transactions ACID transaction support varies Supports ACID transactions

depending on the solutions

Consistency
and

Supports eventual consistency to
strong consistency, depending on the
solutions

Strong consistency

Consistency, availability, and

availability performances may vary depending on | Consistency has priority over
the application requirements (CAP availability and performance
theorem)
Insertion and update performances
Performances can be maximised on depend on the speed of record
) - creation, with strong consistency
account of consistency (if necessary) .
Performances can be maximized by
Performances scaling available resources
All information about an entity are Information about the entity can be in
generally in a single record, so an many tables and rows, so it requires
update can be performed in a single joining to perform updates or queries
operation
Scalability Scalability is mainly horizontal and Scalability is mainly vertical with more

data is distributed on multiple servers

server resources

628

Testing the performances of NoSQL databases

Database performance testing is one of the areas with few open
source tools. This may be due to the fact that most relational databases
are commercial tools that come with the existing infrastructure provided
by the seller. However, the current rise in NoSQL databases may still
change this situation in the future.

One of the most popular, and by many the most popular open
source tool for testing database performance is Yahoo! Cloud Service
Benchmark (YCSB). This tool enables testing of different systems and
their comparison; for example, on the same hardware configuration,
multiple systems can be installed over which an identical load scenario
will be run, so that eventually their characteristics can be compared. It
consists of a YCSB client, a load generator, and a set of basic load
scenarios (Cooper et al, 2017). The YCSB client is a Java program for
generating data that will be added to the database and generate
operations, which are the workload scenario. The Load Scheduler
manages multiple threads of the client. Each thread executes a
sequential series of operations by calling the database interface layer to
load it (load phase) and to execute the load scenario (transaction phase).
Threads also regulate the rate at which requirements are regulated, so it
is possible to directly control the offered load on the database. Threads
measure both latency and the achieved bandwidth of their operations
and pass the measurements to the statistical module. Finally, the
statistical module collects the measurements and reports on the average
values.

Performance testing using the YCSB tool requires first a correct
installation and configuration of the database management system. The
configuration refers to the creation of known "template tables"
(depending on the data model, as well as on the load scenario), within
which the tool itself will generate data. The next step involves selecting a
correct database interface layer generated by the Java class that will
perform reading, writing, updating, deleting, and searching. Then a load
scenario is selected from the basic set or an arbitrary one is created, to
be followed by the selection of the appropriate execution parameters
(number of client threads, targeted bandwidth, etc.). The last step is to
load the desired amount of data into the database, and start the
simulation.

Analyzing a large number of scientific and professional papers
whose content is focused on testing the performance of NoSQL
databases has led to two important conclusions:

629

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

e YCSB tool was used for performance testing;

e the emphasis is on testing the performance of some of the most
popular NoSQL databases, such as: MongoDB, Redis,
CassandraDB, Couchbase, Hbase.

Given the above facts, this part of the paper will present the results
of NoSQL databases performance tests obtained using Database
Benchmark. This is still one of the few tools for this purpose that has
built-in support for some of the most popular NoSQL databases. The
computer configuration presented in Table 3 test was used to test five
less popular (but not of a lesser value) NoSQL databases: HamsterDB,
LevelDB, STSdb 4.0 (database type key-value), RavenDB (document
oriented database) and BrightstarDB (graphs oriented database).

Database Benchmark is one of the most powerful open-source tools
for testing the performance of bases with large amounts of data. The
application has two main test scenarios:

¢ inserting large amounts of randomly generated records with

sequential or random keys and

¢ reading of the inserted records according to their keys.

Testing performance of NoSQL databases via the
Database Benchmark tool

The limited-resource computer system whose specifications are
presented in Table 3 was used for testing the performance of five NoSQL
databases: HamsterDB, LevelDB, STSdb 4.0, RavenDB and
BrightstarDB. Database Benchmark, a tool that was used to perform the
measurement itself, was selected to keep the NoSQL databases running
in different ways at approximately the same level, so that the obtained
measurement results could be relatively realistically compared. The
following parameters were measured:

¢ speed insertion of all records generated with random keys, and

e speed reading of all inserted records according to their keys.

Table 3 — Computer configuration (Acer Aspire 5750G)

Tabnuya 3 — KoHgpuzypayusi komrstomepa (Acer Aspire 5750G)
Tabena 3 — Pa4yyHapcka koHgpuzaypauuja (Acer Aspire 5750G)

Acer Aspire 5750G
Processor Intel® Core™ i3-2310M CPU @ 2.10 GHz
Random access memory | 6GB DDR3 @ 1333 MHz
Storage 640GB SATA 5400rpm
Operating system Microsoft Windows 10 Pro - 64 bit

630

Testing the performance of databases via the Database Benchmark
tool includes the following steps:

e select the databases to be tested,

¢ select the number of data streams to be inserted (tasks),

¢ select the number of records to be generated for each stream of
data (records),

o Select the type of generated keys for all streams (keys). Keys can
be sequential or random.

Speed of insertion of all records generated with random keys

Speed of insertion of all records generated with random keys was
measured in three different circumstances:

1. Number of data streams = 1; The number of records for each data
stream = 50,000; Key type = random;

2. Number of data streams = 2; The number of records for each data
stream = 50,000; Key type = random;

3. Number of data streams = 5; The number of records for each data
stream = 50,000; Key type = random.

The obtained measurement results are presented in Figures 3 to 6.

SPEED O FINSERTION OF RECORDS PER SECOND

M Situation 1 B Situation 2 | Situation 3

[+2]

(=]

o

=l

(2] r

w1
(s3] ~
— 1. e
] @

. L e R

HAMSTERDB LEVELDB STSDB 4.0 BRIGHTSTARDB RAVENDB

1 189.036
1 210970
117.096
] 182.482
] 225.428

93.809
96.993
100.361

773
543
1.017

| 1.141

Figure 3 — Speed of insertion of records per second
PucyHok 3 — Ckopocmb ecmasku 3arnuceli 8 CeKyHOy
Cnuka 3 — bp3uHa ymemarsa 3anuca ro cekyHou

631

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

DATABASE SIZE EXPRESSED IN MB

B Situation 1 W Situation 2 M Situation 3

1
=3
™~
—
e
<
=
X
-
. [+
Jr-] o o
@ o o w5 TS 6f 4 @ @ ™ g g i
= oo = w o I] . i -]
- - - - —m [
HAMSTERDB LEVELDB STSDB 4.0 BRIGHTSTARDB RAVENDB

Figure 4 — Database size expressed in MB
PucyHok 4 — Paamep 6a3bl 0aHHbIX, 8blpaxeHHbIl 8 MB
Cnuka 4 — Benu4uHa 6a3a noGamaka u3paxeHa y MB

TIME OF INSERTION OF GENERATED RECORDS
EXPRESSEDIN SECONDS

B Situation 1 W Situation 2 M Situation 3

w0
N
=

129

o0
—
o
o
o o
o3 =
B
— o -
Voo o Voo™ VoW I I
DB

HAMSTERDB LEVELDB STSDB 4.0 BRIGHTSTARDB RAVEN

Figure 5 — Time of insertion of generated records expressed in seconds
PucyHok 5 — Bpemsi ecmaeku czeHepupoeaHHbIX 3anucel, 8bipaxXeHHoe 8 CeKyHOax
Cnuka 5 — Bpeme ymemarba 2eHepucaHux 3arnuca uUspaxeHo y cekyH0ama

632

THE MAXIMUM UTILIZATION OF
OPERATIONAL MEMORY EXPRESSED IN MB

B Situation 1 ®Situation 2 ® Situation 3

1 4.956,6

1 41918

)

i~

REE | B¢ Il 1l

HAMSTERDB LEVELDB STSDB 4.0 BRIGHTSTARDB RAVENDB

1.252,1
1.005,7

o9 gh b o Lo ol Fs
o oo oo o ~
M~ M~ ~ @ w o

I 726,9

| 92,9

Figure 6 — Maximum utilization of operational memory expressed in MB
PucyHok 6 — MakcumaribHoe ucronb308aHue oriepamusHoU namsimu, ebipaxxeHHoe e MB
Cnuka 6 — Makcumym uckopuwherba onepamusHe memopuje udpaxeH y MB

Speed of reading of all inserted records according to their keys

Speed of reading of all inserted records by their keys was measured
in three different circumstances:

1. Number of data streams = 1; The number of records for each data
stream = 50,000; Key type = random;

2. Number of data streams = 2; The number of records for each data
stream = 50,000; Key type = random;

3. Number of data streams = 5; The number of records for each data
stream = 50,000; Key type = random.

The obtained measurement results are presented in Figures 7 to 10.

633

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

SPEED OF READING OF RECORDS PER SECOND

o
=]
o2
=]
=]
=

[Ty

0

—

A

o

—

ERDB LEVELDB

M Situation 1 W Situation 2 | Situation 3

—
™~
=
[
[Ta]

SDB 4.0 BRIGHTSTARDB RAVENDB

3

_ 602.410

@ o
S
[T

&

[381.679
I 393.701
[390.625
I 308.642
_ 526.316

817
| 403
| 333
| 198

ok
=
£
tA
=
wr
=

Figure 7 — Speed of reading of records per second
PucyHok 7 — Ckopocmb YmeHusi 3anucel 8 CEKyHOy
Cnuka 7 — bp3uHa Yumarba 3arnuca o cekyHou

DATABASE SIZE EXPRESSED IN MB

B Situation 1 ESituation 2 M Situation 3

3.170,1

I 2641
. 7240

| 10,7
| 15,3
I 64,0

S W 1360

— 2]
o (o]

o |
2 1104

[==]
—_

= 1 a00

< o
= o
STSDB 4.0 BRIGHTSTARDB R

€I
z)46
Z)50

EV

m
-
L=}
[==]
<
m
=

Figure 8 — Database size expressed in MB
PucyHok 8 — Paamep 6a3bl 0aHHbIX, 8blpaxeHHbIl 8 MB
Cnuka 8 — Benu4uHa 6a3a noGamaka u3paxeHa y MB

634

READING TIME OF INSERTED RECORDS EXPRESSED
IN SECONDS

B Situation 1 W Situation 2 H Situation 3

1 1264

338
306

—
v v

<1

—
v v

<1

—
v W

[— T

<1
I 172

I =
H o~
—

HAMSTERDB LEVELDB STSDB 4.0 BRIGHTSTARDB RAVENDB

Figure 9 — Reading time of inserted records expressed in seconds
PucyHok 9 — Bpemsi ymeHus ecmasneHHbIx 3amnucel, 8bipaXxeHHoe 8 CeKyHOax
Cnuka 9 — Bpeme yumarsa yMemHymux 3anuca UspaxeHo y cekyHOama

THE MAXIMUM UTILIZATION OF
OPERATIONAL MEMORY EXPRESSED IN MB

B Situation 1 ESituation 2 H Situation 3

=
=3 @
o L
@)
a 3 2
g - =
< =
= @
oy 3,
R -
o o~
~
=
™~
m
—
-~ w =]
o, v PoEs @ < o < I
M~ oo = o oo a o o
™~ 03 0w W ™ - = oo
e g — P L] =
HAMSTERDB LEVELDB STSDB 4.0 BRIGHTSTARDB RAVENDB

Figure 10 — Maximum utilization of operational memory expressed in MB
PucyHok 10 — MakcumarnbHoe ucronb3oe8aHue ornepamusHoU namsmu,
8bipaxkeHHoe 8 MB
Cniuka 10 — Makcumym uckopuwhera ornepamusHe mMemMopuje uspaxeH y MB

635

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

Analysis of the obtained measurement results

The analysis of the speed of inserting all records generated with
random keys in situations where the number of data streams is 1, 2 or 5,
the number of records for each data stream is 50,000, and the key is
random can be presented as follows:

e in all three situations, HamsterDB has the highest speed of
insertion of records per second, while the worst results are with
BrightstarDB,

e in all three measurements, STSdb has the smallest value, while
BrightstarDB has the largest value,

o the time it takes to insert all records generated with random keys in
all three situations is almost similar when it comes to HamsterDB,
LevelDB and STSdb, while the lowest time is achieved by
BrightstarDB,

¢ the maximum utilization of the operating memory varies depending
on the particular database, but the best result in two of the three
cases was shown by HamsterDB, while the Raven showed the
worst.

The analysis of the speed of reading all the inserted records
according to their keys in situations where the number of data streams is
1, 2 or 5, the number of records for each data stream is 50,000, and the
key type is random can be presented as follows:

e STSdb has the highest reading speed of inserted records per
second in all three cases of measurement, while the smallest read
speed in two of three cases has been shown by BrightstarDB,

¢ in all three cases, the STSdb measurement has the smallest value,
while BrightstarDB has the largest value,

¢ the time it takes to read all of the inserted records according to their
keys in all three situations is almost similar when it comes to
HamsterDB, LevelDB and STSdb, while much worse time is
achieved by BrightstarDB and RavenDB,

¢ with the maximum use of operational memory, the best result in
two of the three cases was shown by LevelDB, while BrightstarDB
proved to be the worst.

Conclusion

Information technologies and information systems support
organizations in data management, from collecting, organizing, storing,
accessing, to analyzing and interpreting data. For enormous amounts of

636

available data that are growing every day, relational databases are not
always the best solution for managing and storing them. In this sense,
big companies like Google, Facebook and Amazon have played a
significant role in reviving NoSQL technology.

In order to select the best database, it is necessary to see the
advantages and disadvantages of both relational and NoSQL databases.
Thus, for example, if structured data are used where the consistency of
data in transaction systems is very important, the right solution is a
relational database. If, on the other hand, it is necessary to process
unstructured data where speed and availability are important but
consistency is not to such an extent, the advantage is with NoSQL
databases. NoSQL databases are much cheaper than the known relational
databases and do not require expensive licenses and hardware. However,
this should in no way be taken as an excuse for selecting any of NoSQL
databases before considering their intended purpose.

NoSQL databases have their drawbacks, but as relatively new
technology, they have space for improvement. Although it can only be
guessed what will happen in the future with their development, it is certain
that the NoSQL market will grow significantly.

Considering the performance analysis of some less popular NoSQL
databases, a concrete conclusion can be drawn that HamsterDB has the
best performance, while the worst is BrightstarDB. This conclusion was
expected before the start of the actual performance measurement.

References

Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R.
2017. Benchmarking Cloud Serving Systems with YCSB. [Internet]. Available at:
https://www.cs.duke.edu/courses/fall13/cps296.4/838-CloudPapers/ycsb.pdf.
Accessed: 10 Oct 2017.

Graovac, J. 2016. Projektovanje baza podataka. [Internet]. Available at:
http://poincare.matf.bg.ac.rs/~jgraovac/courses/projbp/2016_2017/projbp_skripta
.pdf (in Serbian). Accessed: 9 Nov 2017.

Kumar, K. 2017. Selection criteria for NoSQL database part lll. [Internet].
Available at: https://www.3pillarglobal.com/insights/selection-criteria-for-nosq|l-
database. Accessed: 20 Sep 2017.

Kumar, K.Just say yes to NoSQL part I. [Internet]. Available at:
https://www.3pillarglobal.com/insights/just-say-yes-to-nosql. Accessed: 20 Sep
2017.

Sadalage, P. 2014. NoSQL Databases: An Overview. [Internet]. Available
at: http://www.informit.com/articles/article.aspx?p=2266741. Accessed: 9 Nov
2017.

637

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

Strauch, C.2011. NoSQL Databases. [Internet]. Available at:
http://www.christof-strauch.de/nosqldbs.pdf. Accessed: 30 Sep 2017.

Sullivan, D. Types of NoSQL databases and key criteria for
choosing them. [Internet]. Available at:
http://searchdatamanagement.techtarget.com/feature/Key-criteria-for-choosing-
different-types-of-NoSQL-databases. Accessed: 9 Oct 2017.

https://azure.microsoft.com/en-us/services/cosmos-db/?v=17.45b.
Accessed: 20 Oct 2017.

http://sakshieducation.com/Engineering/StudyStory.aspx?nid=100042&cid=
11&sid=666&chid=1107&tid=664. Accessed: 2 Nov 2017.

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 3

TECTUPOBAHME BO3MOXHOCTEWN BA3bl JAHHBIX NoSQL C
NMoMoulbiO DATABASE BENCHMARK MHCTPYMEHTA

Jasap V. Kpctuu®, Mapusi C. Kpctud®

@ Boicwwast Wwkorna npodecclMoHanbHOro 0byyeHuns,
r. JleckoBau, Pecny6nuka Cepbus

5 Texnnueckas wkona «Hukona Tecnay,
r. Megeexbs, Pecnybnuvka Cepbus

OBJIACTb: nHcpopmatuka, 6a3bl JaHHbIX
BWO CTATbW: npodeccrmoHanbHas ctaTbs
A3bIK CTATBW: aHrnunckun

Pe3swome:

Bbasa OdanHbix NoSQL yacmo ucrionib3yemcsi 8 Kadecmee ydayHou
anbmepHamuebl pPensiyuoHHbIM 6a3am OaHHbIX, OCOBEeHHO 8 mex
criyyasix, Koeda HeobxoOumo obecriequmbs CcoOmeemcmeyuue
pasmepbl cucmeMbl, MPUMEHEHUE OaHHbIX Pa3fiuYHbIX MUroe U 8bICOKYH
agbgheKmuBHOCMb 110 HU3KOU CMOUMOCMU XpaHeHUs U rnodoepxKu
KOHcucmeHmHocmu OaHHbIX. B daHHOU pabome npedcmaerneHo obuiee
ornpedeneHue 6a3bl OaHHbIX, OrucaHbl pasfiuyHble 8UObl 6a3 OaHHbIX KakK
PENISIUUOHHbIX, MaK U HEPENSIYUOHHbIX, 8bisi8NIeHb! UX npeumMywecmsa u
HedocmamKku 8 CcoomeemcmeyrueM KOHmekcme. BbisigrieHHble
npeumyuwiecmea u Hedocmamku 6a3 daHHbix NoSQL u SQL
rpoaHanu3uposaHbl, U pe3ynbmambl CpPasHUMesIbHo20 aHanu3a
npedcmaenieHbl 8 mabnuuye. B 3aknaryumernsHol 4Yacmu cmambu
rnpedcmaesieHbl pe3ysibmambel mecmuposaHusi 803MOXHocmel 6a3bl
OaHHbix NoSQL, rosny4eHHble ¢ romowkbio UHcmpymeHma Database
Benchmark. Llenb daHHOU pabombl 3aKioyaemcsi 8 8bisi8ieHUU 8Cex
xapakmepucmuk 6a3bi OaHHbix NoOSQL, padu nyqweeo MOHUMaHUS
060CHOBaHHOCMU UX UCIMO/Ib308aHUS Ha MPaKmMuKe.

Knroyesnie criosa: 6a3bl 0aHHbIX, pensayuoHHbie basbl 0aHHbIX, NoSQL
6a3bl OaHHbIX, mecmuposaHue 803MOXXHOCmeU.

638

TECTUPAHE NMEPOOPMAHCK NoSQL BASA NMOOATAKA
NMOMOTRY DATABASE BENCHMARK AJTATA

Tasap J. Kpctuh®, Mapuja C. Kpcm]’]6
@ Brcoka NocrnoBHa LKona CTPyKoBHUX cTyawja, JNeckosau, Peny6nvka Cpbuja
TexHnuka wkona "Hukona Tecna", Megseha, Penybnuka Cpbuja

OBNACT: nHdopmatumka, 6ase nogaTtaka
BPCTA UJIAHKA: cTpy4Hn YnaHak
JE3VK YJTAHKA: eHrnecku

Caxemak:

NoSQL 6asa nodamaka 4Yecmo je ycriewHa anmepHamusea pesiayuoHUM
ba3ama noGamaka, nocebHo kada je nompebHo 0b6e3bedumu adekgamHo
OuMeH3UOHUpare cucmemMa, Kopuwherwe pa3HO8pCHUX — murosa
rnodamaka U 8UCOKYy egbukacHOCM y3 HUCKE Mmpowkose odpxxasar-a
KOH3ucmeHmHocmu. Y pady je HaeeGeH onwmu rojam 6ase noGamaka,
OOHOCHO r1ojaM perlayuoHUX U HepenayuoHux 6asa rodamaka, Koje cy
objawibeHe ca ceuxX 3HayvajHujux acriekama U y odzosapajyhem
KOHmMekcmy. HakoH aHanusupara epcma NoSQL 6asa nodamaka,
mexuwme je Ha obpasnazarby HUX08UX MPedHocmu U Hedocmamaka u
yriopedHom ripeenedy aHanuse nopehersa NoSQL u SQL 6a3a
rnodamaka. Y nocrnedwem Oenly pada rpedcmasrbeHuU Cy pesynmamu
mecmuparka rnepgpopmarHcu NoSQL 6asa nodamaka 0OobujeHux
npumeHom Database Benchmark anama. Ljurb pada jecme ucmuuare
ceux nojeduHocmu NoSQL 6a3za nodamaka padu ymephusara
ornpagdaHOCMU HUX08E MPUMEHE Y MpaKcu.

KrbyuHe pedu: 6ase nodamaka, penayuoHe b6ase nodamaka, NoSQL
6ase nodamaka, mecmupare nepghopmMaHcu.

Paper received on / Jata nonyyeHus pabotsl / aTtym npujema ynaxka: 06.12.2017.
Manuscript corrections submitted on / lata nony4yeHus ncnpasneHHown Bepcun paboTsl /
Hatym goctaBrbana ucnpasku pykonuca: 09.01.2018.

Paper accepted for publishing on / [lata okoH4YaTenNbLHOro cornacoBaHus paboTsl / Jatym
KOHaYHOT NpuxBaTaka YnaHka 3a objaBrbmeare: 11.01.2018.

© 2018 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2018 AsTopbl. OnybnukoBaHo B «BoeHHo-TexHu4veckmin BecTHuk / Vojnotehnicki glasnik / Military
Technical Courier» (www.vtg.mod.gov.rs, BTr.mMo0.ynp.cpb). [laHHas ctaTbsi B OTKPLITOM 4OCTYNE U
pacnpocTpaHseTcs B COOTBETCTBUM C nueH3nen «Creative Commons»
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2018 Aytopu. O6jaBuno BojHoTexHuukm rmacHuk / Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). OBo je unaHak oTBOpeHOr Npuctyna n guctpudyupa ce y
cknagy ca Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/).

639

Krsti¢, L. et al, Testing the performance of NoSQL databases via the Database Benchmark tool, pp.614-639

