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Introduction

With the advent of S. Banach paper (Banach, 1922), the
development of the theory of fixed point is moved upwards. A huge
number of scientists, for more than 90 years, have managed to
generalize Banach contraction principle (Abbas & Jungck, 2008, pp.416-
420), (Altun et al, 2010, pp.2238-2242), (Boyd & Wong, 1969, pp.458-
464), (Dori¢, 2009, 1896-1990), (Geraghty, 1973, pp.604-608),
(Amini-Harandi & Emami, 2010, pp.2238-2242), (Hussain et al, 2013),
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(Harjani & Sadarangani, 2009, 3403-3410), (Jachymski, 2011, pp.768-
774), (Jungck, 1976, pp.261-263), (Karapinar & Salimi, 2012), (Khan et
al, 1984, pp.1-9), (Liu et al, 2015), (Rhoades, 1977, pp.257-290),
(Rhoades, 2001, pp.2683-2693), (Radenovi¢ & Kadelburg, 2010,
pp.1776-1783), (Radenovi¢ et al, 2012, pp.625-645), (Salimi et al, 2013),
(Samet et al, 2012, pp.2154-2165). In 2014 A. H. Ansari (Ansari, 2014a,
pp.373-376), (Ansari, 2014b, pp.377-380) introduced the concept of C -
class functions which cover a large class of contractive conditions, see
also (Ansari, 2014a, pp.373-376), (Ansari, 2014b, pp.377-380), (Ansari
et al, 2017, pp.2657-2673), (Ansari & Chandok, 2016, pp.65-71).

Definition 1 (Ansari et al, 2017, pp.2657-2673) A C -class function
is a continuous function F :[0,00)x[0,00)— R such that for any

x,y €[0,), the following conditions hold:

(C1) F(x,y)sx;

(C2) F(x,y)=x implies that either x=0 or y=0.

An extra condition on F that F(0,0): 0 could be imposed in some
cases if required. By C we will denote the class of all C - functions.

Example 1 (Ansari et al, 2017, pp.2657-2673) The following
functions belong to the class C:

1. F(x,y)=x—y.
2. F(x,y)=mx, for some m e (0,1).

3. F(x,y)=

al — for some r € (0, ).
(1+y)

F(x,y)ZM,forsome a>1.

5. F(x,y) = (x+ )Y _1 1>1 for e (0,).

6. F(x,y)=x— :
k+y

7. F(x,y)=x—¢(x), where ¢:[0,0) —>[0,0) is a continuous
function such that ¢(z) =0 if and only if ¢#=0.

8. F(x,y)=4In(1+x").

We start this section with the following definitions and notions:
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Definition 2 (Ansari, 2014b, pp.377-380) A mapping
F :[0,+0)> = R has a property C,, if there exists an C, >0 such that

(C.1) F(x,y)>C, implies x> y;

(C.2) F(y,y)<C,, forall ye[0,+w).

For more examples of C —class functions that have the property C,.

see (Ansari, 2014b, pp.377-380) Here we announce the following three
examples

a) F(x,y)=x-y,C, =r,re[0,+o0);

b) F(x,y)Zx—M,CF =0;
1+y

+k
Let ¥ denote the class of all functions y :[0,0)—[0,0), @
denote the class of all functions ¢:[0,) —[0,%) and F elements of C
satisfying the following conditions:

c) F(x,y)=ﬁ,k >1,C. =1L,r22.

(i) w is non-decreasing and continuous;
(i) ¢ is non-decreasing and continuous;

(iit) y () = F(y (s),4(s))>0 forall t>0 and s =¢ or s = 0.
The condition (iii) generalizes (2.3) from (Karapinar & Salimi, 2012,

p.9).

Definition 3 (Ansari et al, 2017, pp.2657-2673) A subclass of type
I is a function H : R x[0,0) — R ifitis continuous and

s>1 implies H(L,¢)< H(s,t) for all £ €[0,0).

Example 2 (Ansari et al, 2017, pp.2657-2673) We have the
following functions of the subclass of the type I :

. H(s,t)
o H(s,t)
o H(s,t)

(t+1), 1>1,
(s+1Y, 1>1,

st", neN,
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° H(s,t)Z ,

. H(s,t):STH ,

. H(S,t) 2S3+1 ’
Zn:Sn—i

H , = | i=0 ,

» Hls) n+l t
n t
an—i

o H(s,t)= Fol-u ,1>1
n+

Definition 4 (Ansari et al, 2017, pp.2657-2673) We say that the pair
(F,H) is an upclass of the type [ if F:[0,0)x[0,00) > R is
continuous, H is a function of the subclass of the type / and satisfies:

(1) 0<x<1 implies F(x,y)< F(1,y)

(2) H(L y,)< F(x,y,) implies y; < xy,,
for all x,y,y,,y, €[0,0).

Example 3 (Ansari et al, 2017, pp.2657-2673) Below are listed the
functions of the upclass of the type [, for all seR, ¢t ye[0,),

xef0,1]:

Y, 1>1,F(x,y)=xy+1,
) [>1,F(x,y)=@0+1)",
" F(x JO x"y",
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Definition 5 (Ansari et al, 2017, pp.2657-2673) We say that the pair
(F,H) is a special upclass of the type [ if F :[0,0)x[0,0) > R is
continuous, H is a function of the subclass of the type I and satisfies:

(1) 0<x<1implies F(x,y)< F(1,y)
(2) H(L,t1)< F(1,y) implies 1< y,
forall y,t [0, o).

Example 4 (Ansari et al, 2017, pp.2657-2673) The following
functions are a special upclass of the type I, for all s € R,#,x,y €[0,0):

( ) [>1, ny) x" Y+ 1,
( 1Y, 151, Flx,y)=@+0)""

Remark 1 (Ansari et al, 2017, pp.2657-2673) Every pair (F,H) of

the upclass of the type I also belongs to the class of a special upclass
of the type I, but converse is not true.

Assertions similar to the following lemma were used (and proved) in
the course of proofs of several fixed point results in various papers
(Radenovic et al, 2012, pp.625-645).

Lemma 1 (Radenovié et al, 2012, pp.625-645) Let (X,d) be a
metric space and let {xn} be a sequence in X such that

Iimd(xn’xn+1) = 0

If {x,} is not a Cauchy sequence, then there exist £>0 and two
sequences {mk} and {nk} of positive integers such that n, >m, >k and

the following sequences tend to ¢* when k — o
d (xmk X, ), d (xmk X, +1), d (xmk X, ) d (xmk 40X, +1)
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Definition 6 (Abbas & Jungck, 2008, pp.416-420) Let /' and g be
self maps of a set X. If o= fx = gx for some x e X, then x is called a
coincidence point of f and g, and w is called a point of coincidence of
f and g. The pair f,g of self maps is weakly compatible if they
commute at their coincidence points.

Proposition 1 (Abbas & Jungck, 2008, pp.416-420) Let f and g
be weakly compatible self maps of a set X. If f and g have a unique
point of coincidence @ = fx = gx, then @ is the unique common fixed
pointof / and g.

Main results

Previously described functions attracted the attention of authors and
now there are various generalizations of the results from the fixed point
theory, not only in a metric space, but also in the partial metric spaces,
metric like-spaces, G-metric spaces,...(Ansari, 2014a, pp.373-376),
(Ansari, 2014b, pp.377-380), (Ansari et al, 2017, pp.2657-2673), (Isik et
al, 2015, pp.703-708), (Ansari & Chandok, 2016, pp.65-71). In this paper,
we will present some of these results. Also, we shall prove some new
results, which generalize already known ones, by using the C —class
functions introduced recently by A.H. Ansari (Ansari, 2014a, pp.373-376),
(Ansari, 2014b, pp.377-380). In this review paper, we will use only C-
class functions.

Ouir first (probably new) result is the following:

Theorem 1 Let (X,d) be a complete metric space. Suppose that
the mappings f,g: X —» X satisfy the following condition

w(d(fr, 7)< Fly(d(gx, 2v)) #ld(gx, g9)) (1)
for all x,ye X where we¥,pe® and FeC. If the range of g
contains the range of f and f(X) or g(X) is a closed subset of X,
then f and g have a unique point of coincidence in X. Moreover, if f
and g are weakly compatible, then f and g have a unique common
fixed point.
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Remark 2 Putting in (1): w(t)=t,6()=1-k), k<(0,1) and
F(s,t) =s—t forall 5, [0,0) we get a well-known Jungck’s result from

(Jungck, 1976, pp.261-263). Hence, Theorem 1 is a genuine
generalization of the old and important Jungck’s result in several
directions (see all assumptions in (Jungck, 1976, pp.261-263).

Further, putting in (1): t//(t)=t,F(s,t):ﬂ(s)~s for all 5,7 €[0,0)
where f:[0,00) —[0,1) such that t, — 0" whether (¢, )—>1,g=1,

(identity mapping on X ), we get a well-known Geraghty type result
(Geraghty, 1973, pp.604-608). Hence, Theorem 1 is a new generalization
of this old and important result in the fixed point theory in the framework
of complete metric spaces.

Proof. Let us prove that the point of coincidence of f and g is

unique in the case that it exists. Suppose that @ and o are two distinct
points of coincidence of f and g. From this follows that there exist two

points u, and u, such that fu, =gu,=w#0d6= fu;=gus Now, (1)
implies
v(d(o.0)=ylalfu,. fu, )
< Flylalgu,.gus ) oldlgu, gu, )
= Fly(d(0,9))¢(d(@,5)) <y (d(,5))

Fly(d(0,9)) (d(0,5)) = y(d(e,5)) (2)

From (2) according to the property of the function F follows that

either w(d(®,6))=0 or ¢(d(w,6))=0. In both cases, we get a
contradiction.

Further, let x, be an arbitrary point in X. Let us choose a point

that is

x, € X such that y, = fx, = gx,. This can be done, since the range of g
contains the range of f . Continuing this process, having chosen x, in

X, we obtain x,,, in X such that y, = fx, = gx, ,. Now consider the
following two possible cases:

1° ¥, =y, for some keN. Hence, gx,, = fx,,, is a (unique)
point of coincidence and then the proof of Theorem 1 is finished.
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2° Thus, suppose that y, #y, , forall ne Nu{O}. In this case, we
have

‘//(d(yn+1' Yur2 )) = (d(fxnw S, ))
<Fly (gxn+1’ 8X,.12 )) ¢(d(gxn+l’ 8X,40 )))
= Fly(d(v, 5,.))4d(y,.7,.))

<y (d(y, y,.))

Since we¥ we get that d(y,,.v,.,)<d(y,.y,.) ie.,

d(yn,y,ﬁl)i«, r>0. We prove now that »=0. Indeed, if >0, then
passing to the limit in the previous relation when n — o, we obtain that

w(r)< Fu(r)o(r))<p(r)
that is F(y(r),4(r))=w(r) This implies that either w(r)=0 or @(r)=
In both cases we get a contradiction. Hence, Iim,Hood(yn,yM) =0.

We next prove that {yn} is a Cauchy sequence in a complete metric
space (X,d). If that is not case, then by using Lemma 1 we get that
there exist £ >0 and two sequences {mk} and {nk} of positive integers
and sequences

d (ymk Y )a (ymk Va1 )a (ymk AV, Jd (ymk AV )
all tend to ¢° when k — 0. By applying condition (1) to the elements
X=X, and y = X, 1 and since y, = fx, = gx,, for each n>0, we get
that
vld,, v, )< Fllaly, v, oldb, oy, ) 3)
Letting k£ — o in (3), we obtain

w(e)< Fly(e) gle))

which is a contradiction because ¢>0. This shows that
{yn}z {fxn}: {gxn+l} is a Cauchy sequence in a complete metric space

(x,d)
Since g(X) is closed in a complete metric space (X,d), thenitis a
complete metric space. Therefore, there exists u,v e X such that v = gu
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and lim,_.gx, = gu =v. We shall show that also fu =v= gu. Indeed,
putting x =x,,y =u in (1) we get

wld(fx,, fu))< Fly(d(gx, qu)) #ld(gx,  gu))) (4)
Letting n—> o in (4) and applying the properties of all three
functions F,y and ¢, we get

wld(gu, fu))< Fly(d(gu, gu)) ¢ld(gu, gu))) < y(d(gu, gu) = y/(0)=0,
i.e., fu = gu is a (unique) point of coincidence of the functions f and g.
By the Proposition 1 f and g have the unique common fixed point.

In the case when f(X) is a closed subset in (X,d), the proof is
similar.

2
Putting 1//(t) = ¢(t) =1, F(s, t) = %;,g =1, the identity mapping of

X in Theorem 1, we get the following result:

Corollary 1 Let (X d ) be a complete metric space. Suppose
mappings f: X — X satisfies
d? X,y
d(fe, o)< 7 d(z(x,)y) (5)
forall x,y € X. Then f has a unique fixed pointin X .
Putting w(t)=g(t)=1,F(s,t)=p(s), where ¢:[0,00) —>[0,00) is
upper semicontinuous from the right, satisfying (o(t)<t for t >0 as well

as (0(0): 0,g =1, the identity mapping of X in Theorem 1 we get the

following well-known Boyd and Wong result (Boyd & Wong, 1969,
pp.458-464).

Corollary 2 Let (X d ) be a complete metric space. Suppose that a
mapping f X — X satisfies the following condition

d(fx, fy)< pld(x.y)) (6)
for all x,ye X. Then f has a unique fixed point, say ue X and
f"x —>u as n—> oo foreach x e X.
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Putting y(¢)= ¢(t)=t,F(s,t)= s —p(s), where ¢:[0,00) —[0,0) is a
continuous function such that ¢(¢#) =0 if and only if =0, g=1, the

identity mapping of X in Theorem 1 we get the following well-known
B.E. Rhoades result (Rhoades, 2001, pp.2683-2693).

Corollary 3 Let (X ,d ) be a complete metric space. Suppose that
the mappings f: X — X satisfies the following condition

d(fx, )< d(x,y)-old(x,y)) (7)
for all x,ye X. Then f has a unique fixed point, say ue X and

f"x—>u as n— o foreach x e X.

In the sequel of this section we shall consider two results which
provide the existence of a coincidence point and a common fixed point

for three mappings satisfying the generalized (F,t//,gé)—contractive
condition. These results are addressed in the following theorems.

Theorem 2 Let (X,d) be a metric space, and let f,g,S: X - X
be three mappings such that for all x,y e X

w(d(fi, gv))< Fly (m(x, y)). ¢lom,(x, y))) ®)
forsome y € ¥, ¢ ® and F €C, where

N| -

m(x,y>:max{d(Sx,Sy>,d<Sx,ﬁc>,d<Sy,gy>, <d<5x,gy>+d<Sy,ﬁc>>}

and
my(x, ) = max{d(Sx, Sy), d( fx, Sx), d(gy, Sy)}.
If fXUgXcSX and S(X) is a complete subspace of (X ,d),
then f,g and S have a unique point of coincidence. Moreover, if (f,S)

and (g,S) are weakly compatible, then f,g and S have a unique

common fixed point.
The proof of the following theorem is similar to that of Theorem 1.

Theorem 3 Let (X ,d) be a complete metric space, and let
f,2,5: X > X be three mappings such that for all x,y e X
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w(d(fi, gv))< Fly(m(x, y)). ¢lm,(x, y))) )
forsome y € ¥, ¢ ® and F €C, where

()= s (56,51). 3 (a5 1)+ (5 ) 3 0.+ 59, )
and
my(x, y) = max{d(Sx, Sy).d(fx, Sx).d(gy, Sy)}
If fXugX cSX and S(X) is a complete subspace of (X ,d),
then f,g and S have a unique point of coincidence. Moreover, if ( f ,S)

and (g,S) are weakly compatible, then f,g and S have a unique

common fixed point.
The following results represent one other version of Altun Theorem

(Altun et al, 2010, pp.310-316) in the terms of (F,t//,¢)—contractive
mappings.

Theorem 4 Let (X ,d) be a complete metric space, and let
f,g:X > X be two mappings such that for some y € ¥, ¢ € ® and
F eC andforall x,y e X there exists

N |-

u(x,y)e {d(x,y),d(x,fx),d(y,gy),

such that

<d<x,gy>+d<y,fx»}

w(d(fx,gv) < Fly (u(x, y)) glulx, y))) (10)
then f and g have a unique fixed point.
Let (X ,<) be a partially ordered set. A pair (f,g) of self-maps of

X is said to be weakly increasing if fx < gfx and gx < fgx for all xe X.
There are examples (see Altun et al, 2010, pp.310-316) when neither of
such mappings f,g is nondecreasing w.r.t < In particular the pair

(f,iX), (i, is the identity mapping on X ) is weakly increasing if and
only if x < fx for each x € X.

Theorem 5 Let (X, <) be a partially ordered set and let there exist a
metric d on X such that (X,d) is a complete metric space. Let (f,g)
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be a weakly increasing pair of self-maps on X. Suppose that there exists
weW¥,ped and F eC such that for every two comparable elements

x,yelX,
w(d(fx, gv)< Flw(M(x, ) ¢(M(x, y))) (11)

where

M ()= max{ (s, ) (s, )l ) 5 s )+ D)

Then in each of the following two cases the mappings f and g
have at least one common fixed point:

(i) f or g is continuous, or

(i) if a nondecreasing sequence {xn} converges to x € X, then x,<x
for all n.

Proof. Using that the pair of functions (f,g) is weakly increasing,

we can construct inductively, starting with an arbitrary x,e X, a
Namely, denote:

n+l*
X1 = fixg < gfo = gxy,
X2 = gx1 < fgx; = fxo,
x3 = fio < gfcr = gxs,

sequence {xn} such that x, < x

and in general, x,,., = fx,, and x,,., = gx,,.;.
Suppose first that x, = x,,, for some k. Then, the sequence {xn} is

constant for n > k. Indeed, let k =2m. Then x,, =x,,,, and we obtain

from (11) that
'//(d(xum’ Xoms2 )) = (d(fom 1 8Xomi1 )) < (12)
< F('//(M(xzm ' x2m+l))’ ¢( (x2m ' x2m+l)) )

where
M(x2m ' x2m+l) = max{d(‘XZm ' x2m+l )’ d(XZm ! f'jCZm )’ d('x2m+1’ gx2m+l )’

1
E (d(‘x2m ! gx2m+l)+ d(x2m+l’ fXZm ))}
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1
= maX{0,0, d(x2m+1' Xome2 )’ E (d(me 1 X212 )+ 0)}

1
= max{d(x2m+1 1 Xome2 )' E (d(x2m 1 Xoms2 ) + O)}

= d(x2m+l’ Xome2 )

Now further from (12) we get that

‘//(d(xzmw Xome2 )) < F(’/’(d(xz,nw Xome2 ))’ ¢(d(x2m+l’ Xome2 ))) < ‘//(d(xzm+1’ Xomi2 ))’
that is,

l//(d(‘x2m+1’ Xom+2 )) = F(l//(d(x2m+1’ Xom+2 ))7 ¢(d('x2m+l’ Xom+2 )))'

or equivalently either y(d(x,,,.,,%,,.,))=0 or ¢(d(x,,.,,%,,.,))=0,
ie., d(x,,.,%,,.,)=0 Hence, if x, =x,,k=2m we obtain that
X,y = X, Similarly, if k=2m+1, one easily obtains that x,, = x,,,,
and so the sequence {xn} is constant (starting from some k) and x, is a
common fixed point of f and g.

Suppose now that x, #x for each n. We shall prove that

n+l

d(xn,xn+1)—>0 as n — . Using condition (11) (which is possible since
x, and x,,, are comparable for all n), we obtain

l//(d(x2n+2 ! x2n+1 )) = l//(d(gXZiHl’ fx2n ))

= w(d(fon , gx2n+l)) < F(W(M(xzn ) x2n+1))7 ¢(M(x2n ; xzm)))’
where

M(xzn ) x2n+l) = max{d(XZn 1 X241 )’ d(xzn  fXa, )’ d(x2n+l’ 8X2011 )’

1
E (d(x2n ! gx2n+1)+ d(x2n+l’ fx2n ))}

1
= max{d(xzn 1 X201 )’ d(x2n 1X2041 )’ d(x2n+l’ Xons2 )’ E d(x2n 1 X2n12 )}

N |-

(d(x2n ’ x2n+l ) + d(x2n+l’ x2n+2 ))}

= maX{d(in 1 X041 )’ d(x2n+l’ Xont2 )}

< maX{d(xzn ' x2n+1 )’ d(x2n+17 x2n+2 )’
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If d(x,,.1,%,,,,)>d(x,,,x,,.,)> 0, then it follows

‘//(d(x2n+2 1 X204 )) < F(‘//(d(xzn+11 Xon+2 ))’ ¢(d(x2n+l’ Xon+2 ))) = l//(d(xzn+1' Xon+2 ))’
or equivalently, either t//(d(x2m+1,x2m+2)) =0 or ¢(d(x2m+l, x2m+2)) =0.

This is a contradiction, because d(xzm, x2n+2)> 0. Hence,
M(x2n , xzﬁl) d(x2n,x2n+l) Now, we further easily get that
d(x,,.x,,,)<d(x,,x,,) for al neN {0} This means that

d(x,,x,,)¥ r>0 as n—ow. Let »>0. Passing to the limit in the last
inequality, when n — o, we get

w(r)< Fly(r).g(r))<w(r),

i.e., Fly(r)¢(r)=w(r) or equivalently, either w(r)=0 or ¢(r)=0. A
contradiction. Hence, d(x,,x,.,)—0 as n—> .

n? " n+l
In order to prove that { n} is a Cauchy sequence in (X,d) we shall

use the ideas from (Radenovi¢ et al, 2012, pp.625-645).
It is enough to prove that {xz,l} is a Cauchy sequence. Suppose the

contrary. Then, for some ¢ >0 there exist subsequences {xz,n(k)} and
{xz,,(k)} of {xz,z} such that n(k) is the smallest index satisfying
n(k)>m(k)>k and d(xm(k),xn(k))zg. In partiCUIar, d(xm(k),xn(k)72)< &.
Now, using Lemma 1 and putting in (11) X = X0 Y = Xop(i)a (x and
y are obviously comparable) we have

V/(d(xzn( )1, X 2m (k » ( (fxzn 1 8% 2m( )1»S

< F(‘//(M(xzn(k)' x2m(k)—1))’ ¢(M('x2n(k)' x2m(k)fl)))’ (13)
where

M(x2 (k) me( ) )
= max{d(XZiz(k)’XZm() ) (xan fxzn ) (x2m( )l'gx2m(k)—l)’

%(d(xZn( )1 8% 2m(k) 1)+d(x2m fx2n ))}

= max {d ('x2n(k) 1 Xom(k)-1 )’ d(x2n(k) 1 Xon(k )41 ), d(XZm(k 1 x2m(k))’
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%(d(xbl(k)’ me(k))+ d(x2m(k)—1’ x2n(k)+l»}

- max{g,0,0,%(s + 5)} =c.

Passing to the limit in (13) when k£ — oo, we obtain that
w(e)< Flwle) le) <wle),
that is £ =0, which is a contradiction. Hence, the sequence {xn} is a

Cauchy sequence. Since (X,d) is a complete metric space it follows
that x, — u for some element u € X.

(i) Suppose that the mapping g is continuous. Since x,,,, = u,
we obtain that x,, , = gx, ., = gu. On the other hand, x,,., >u (as a

subsequence of {x,, }). It follows that gu =u. To prove that fu =u, using
u sSuwe canput x =y =u in (11) and obtain that
vl (fir, gu)) < Fly (M (u,u)), §(M (e,u)) = Fly(d o, fir)), pld(u, fir)),
because M (u,u)=d(u, fit). We further have,
p(d(fie,u) < Fly (du, fir)) ¢ld(u, fu)))
from which follows (as in the previously cases) that u = fu.
The proof is similar if f is continuous.

(i) Suppose now that the condition (ii) of the theorem holds. The
sequence {xn} is nondecreasing w.r.t < and it follows that x, < u. Take

X = X2,, and y = u (which are comparable) in (11) to obtain that

p(d(fry, gu)) < Fly(M(x,, ,u)) ¢(M (x,,, 1))

where

0 0)= i) )l )5 @) )|

N max{0,0,d(u, ) dlu gu)} = . )

Hence, we further obtain

w(d(fiy, gu))< Fly(d(u, gu)) ¢ld(u, gu)))
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or passing to the limit, we get

wld(u, gu))< Fly(d(u, gu)) ¢ld(u, gu)))
From the last relation we get that gu = u.
The fact that u = fu is now derived in the same way as in the case

(). The theorem is proved.

Finally, we address the following definitions as well as maybe a new
result.

Consider the following classes of functions from [0, %) into itself:

o, = {;/ . 7 |is nondecreasing and lower semi - contlnuous},
@, = {a: a|is upper semi - continuous },
@ , = {f: B]is lower semi - continuous },

Also by using Ansari’s method, one can prove that the following
Theorem genuinely generalizes recent results from (Karapinar & Salimi,
2012) in several directions. Its proof is omitted.

Theorem 6 Let (X, <) be a partially ordered set and let there exist a
metric d on X such that (X ,d) is a complete metric space and let
f:X —> X be a nondecreasing selfmap. Assume that there exist
ye®,acd,,fecd, and F €C such that forall s,t>0,

t>0and(s =¢ or s =0)implies y(t)- F(als), B(s)) > 0,
and

Hd(fx, 7)< Fla(M(x, ) B(M(x, )

for all comparable x,y € X, where

M(x, y)= max{d(x,y),d(x,fx),d(y,ﬁ),

Suppose that, either

N |-

(d<x,m+d<y,ﬁc»}.

(i) f is continuous, or

(i) if a nondecreasing sequence {xn} converges to xe X, then
x,sxforall ne NU{O}.

If there exists x, € X such that xy<fxy, then f has a fixed point.
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MPUMEHEHVE METOLOA AHCAPU B OBOBLLUEHUN PAOA
PE3YJIbTATOB B PAMKAX TEOPUW HEMOABVM>XHOW TOYKW:
OB30P

TambsiHa M. OoweHosn4®, CmosH H. Pa,ﬂ,eHOBVI‘-IG

? YuusepceuTeT B r. Hosn-Capl, TexHonornyeckuin pakynster,
r. Hoeu-Cag, Pecny6nuka Cepbus,

o Benrpaackuii yHnsepcuteT, MalwmHocTpouTenbHbIn dakynbTeT,
r. benrpag, Pecnybnuka Cepbus

OBJIACTb: maTemaTuka
BWO CTATbW: opurmHanbHasa Hay4YHas ctaTbs
A3bIK CTATbW: aHrnuickmin

Pe3swome:

Llens 0daHHOU cmambu 3aKk/mo4Yyaemcss 8 HaMepeHuUU roka3ame,
Hackonbko yHkyusi C-knacca, esedeHHass A. X. AHcapu, sensemcsi
MOWHbIM cpedcmeom Orisi 060OWEHUST MHO2UX 8aXHbIX Pe3y/ibmamos 8
meopuu Hernoo8LXKHOU MOYKU.

Kniouesble  criogsa:  «C»  knacc  ¢yHKyul,  Mempuyeckoe
npocmpaHcmeo, rnocnedosamenbHocms Kowu, obwas HernodsuxxHas
modyka, Herod8uXxHasi mouyka.

NMPUMEHA AHCAPWJEBOIr METOJA Y TEHEPANU3ALNIN HEKNX
PESYINTATA N3 TEOPWUJE HEMOKPETHE TAYKE (MPEITEN)

Tamjana M. JoweHosuh®, CmojaH H. Pa,quOBI/IﬁG

¥ YuusepauteT y Hosom Capy, TexHonowku dakynTer,
Hoeu Cap, Penybnuka Cpbuja,

6 YHusepautet y beorpagy, MawmnHckn hakynTter,
Beorpag, Penybnuka Cpbuja

OBNACT: maTematuka
BPCTA UJTAHKA: opurMHanHn Hay4YHu YnaHak
JE3UK YJTIAHKA: eHrnecku

Caxemak:

Lurb osoe pada jecme Oa ce nokaxe 0Oa je C knaca ¢byHKUuja Koja je
yeedeHa y pady A. X. AHcapuja MOhHO cpedcmeo y eeHepanusauyuju
MHO_2UX 8aXKHUX pe3ysimama y meopuju HEMOKPEMHe mauke.

KbyuHe peyu: C knaca ¢yHKUuja, mempu4dku npocmop, Kowujes HU3,
3ajedHuUYKa HernokKpemHa madka, HernokpemHa madvka.
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