VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

FIWARE: A WEB OF THINGS
DEVELOPMENT PLATFORM

Ivan A. Tot?, Dusan Lj. Bogi¢evic®, Mladen B. Trikos®,
Komlen G. Lalovi¢®
& University of Defence in Belgrade, Military Academy, Department for
information systems and telecommunication engineering,
Belgrade, Republic of Serbia,
e-mail: ivan.tot@va.mod.gov.rs,
ORCID iD: @http://orcid.org/0000-0002-5862-9042
® Serbian Armed Forces, General Staff, Department for
Telecommunication and Informatics (J-6), Command Information
Systems and IT Support Centre, Belgrade +
University of Ni§, Faculty of Electronic Engineering,
Ni§, Republic of Serbia,
e-mail: dusan.bogicevic@gmail.com,
ORCID iD: “http://orcid.org/0000-0002-4300-2490
¢ University of Defence in Belgrade, Military Academy, Department for
information systems and telecommunication engineering,
Belgrade, Republic of Serbia,
e-mail: mladen.trikos@va.mod.gov.rs,
ORCID iD: @http://orcid.org/0000-0002-5243-1326
d Faculty of Management, Economy and Finance,
Belgrade, Republic of Serbia,
e-mail: komlen@mef.edu.rs,
ORCID iD: “http://orcid.org/0000-0002-4590-2185

DOI: 10.5937/vojtehg66-17063; https://doi.org/10.5937/vojtehg66-17063

FIELD: Computer Sciences, IT
ARTICLE TYPE: Professional Paper
ARTICLE LANGUAGE: English

Abstract:

As an extension to the concept of the Intemet of Things (loT), Web of Things
(WoT) represents a step towards connecting smart things to the existing web
environment while considering issues such as heterogeneity, scalability, and
usability. This paper is dedicated to current opportunities as well as
challenges for development in the concept of WoT. The theoretical
foundations of the Internet of Things concept, such as architecture, protocols,
services, and things themselves, which form the basis of both concepts, are
described in the paper. The paper deals with the necessary preconditions for
developing the concept of Web of Things. The main contribution of the paper
is a proposal of architecture based on the FIWARE platform as the basis for
the development of Web of Things.The demonstration of the proposed
architecture is described by a real case scenario.

Key words: Internet of Things (loT), Web of Things (WoT), FIWARE.

ACKNOWLEDGMENT: The authors thank the Ministry of Defence of the Republic of
Serbia through projects VA-TT/3/18-20 and VA-TT/1/17-19.

880

Introduction

Although the term Internet of Things (loT) was quite accidentally
conceived in 1999 as an idea that, at the time, the new technology
Radio-Frequency IDentification (RFID) was presented as something new
and needed, Kevin Ashton called his lecture Internet of Things, when
even the Internet was also considered as new technology. The name he
gave is considered to be the beginning of a new era in the Internet world.
That era is characterized by communication between devices, that is
machine to machine (M2M) communication (Internet of Things History).

With the development of computer networks, we have come to the
era where the social network of devices is created. With the IoT concept,
Things are able to use the Internet as a communication medium with
services for exchanging data. When a large number of Things are
connected, which will be able to be part of the World Wide Web (WWW),
we come to the term Web of Things (WoT), which is the next step in the
development of 10T, that is the successor to the 10T concept.

The development of IoT did not stop with M2M communication. It is
still developing in different directions such as smart cities, agro-culture,
animals, etc. Some of the research papers go a step further, where the
big data and the web of things are connected, thus achieving the
integration of humans, Things, and computers (Zhong et al, 2016).

loT architecture

The loT architecture is not based on one device. It is about sets of
devices that collect information in different ways. When talking about loT,
the most considered topic are environments. The prefix “smart” is often
found like e.g. smart homes, smart streets, smart parking lots, smart
garbage cans, smart cities, etc. Smart environments can be defined as
sets (federations) of sensors and actuators designed for house, building,
city, transport etc. (Gubbi et al, 2013). Mark Weiser, who is considered
as the founder of ubiquitous computing, has defined smart environments
as a world of physical objects that are connected with sensors, actuators,
displays, other environments over a network that allows interlaced
connectivity (Perera et al, 2013).

From the highest level, IoT consists of three parts as shown in
Figure 1 (Gubbi et al, 2013):

Part of devices: Devices or actuators with their communication
components integrated with them.

Middleware part: The most complex part that implements data
processing logic, stores data and provides access to data to users in

881

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

such a way that they do not care about the architecture of individual
devices (actuators). This layer is made up of several parts (Object
Abstraction, Service Management, Service Composition) (Botta et al,
2015).

Presentation part: This part adjusts to a specific application and
performs data display, data management, etc.

presentation part

IH ﬁ i dilditdaun

middleware

&

hardware part

= 8.

Figure 1 — IoT architecture
Puc. 1 — Apxumexkmypa uHmepHema geujeli
Cnuka 1 — Apxumekmypa uHmepHema cmeapu

The purpose of the device layer is to process collected mostly
analogue data and to send it in the digital form over the network layer to
the server layer.

The number of connected devices exceeds the number of human
population. In 2010, the number of devices was almost twice the number
of human population.

The architecture of the device (Things) layer should consist of three
parts as shown in Figure 2 (Wortmann & Flichter, 2015):

Middleware component, parts of software that will allow device
management,

loT component, which will collect data such as sensors (actuators),
and the components through which communication with the server will
occur (communication modules such as Ethernet, Wi-Fi, Bluetooth,
ZigBee etc.),

882

Hardware part, on which the software will be executed and to which
the sensors (actuators) will be connected.

IeT DEVICE

Software of device
Embedded software running on a physical
device that provides management and execution
of its funcionalities

IoT parts
Built-in sensor, actuator, processor and
comectivity (port/antena)

Hardware of device
Hardware components of physical device

Figure 2 — Architecture of IoT device
Puc. 2 — Apxumekmypa ycmpoticmea uUHmepHema geujel
Cnuka 2 — Apxumekmypa ypehaja uHmepHema cmeapu

As the IoT concept evolved, the protocols that were used for M2M
communication were designed and improved. In addition to the Hypertext
Transfer Protocol (HTTP) protocol that found application in the loT
concept, other protocols have been also designed, such as:

Extensible Messaging and Presence Protocol (XMPP):

The first version of the XMPP protocol appeared in 2000. This
protocol uses a Transmission Control Protocol(TCP) protocol on the
transport layer, and supports two message exchange models, both a
request/response (synchronous) model and an advertiser/subscriber
(asynchronous) model. The protocol is designed for short messages that
are used in fast real-time applications that require small delay, or in
presence-based applications. The disadvantage of this protocol is a
relatively large overhead (Saint-Andre et al, 2009).

Advanced Message Queuing Protocol (AMQP Advanced Message
Queuing Protocol Specification, Cisco Systems, 2018):

AMQP is an application protocol developed in 2003 by John O'Hara,
for the needs of banks, and it was officially adopted in 2012 by OASIS
(Organization for the Advancement of Structured Information Standards).

AMQP uses the TCP protocol on the transport layer, and has an
overhead of 8 bytes. It is based on message exchange on the principle of

883

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

an advertiser/subscriber. This protocol achieves great reliability and
ensures that the message is delivered even when the network breaks
down. There are three mechanisms that can be used to send messages:
at most once, at least once and exactly once (AMQP Advanced Message
Queuing Protocol Specification, Cisco Systems, 2018).

Message Queuing Telemetry Transport (MQTT)

MQTT is an application protocol designed in 1999 by IBM and
standardized in 2013, which has a relatively small overhead, thus
providing a possible application on devices with limited resources
(memory, processor etc.) such as loT devices. This protocol, like the
HTTP protocol, uses TCP on the transport layer, but has a smaller
overhead of 2 or 4 bytes. The protocol uses the principle of advertisers
and subscribers. Facebook Messenger application uses this protocol. In
terms of security, this protocol uses Transport Layer Security(TLS).
Brokers may require a username and a password (Stanford-Clark &
Truong, 2013).

Constrained Application Protocol (CoAP)

The main goal of this protocol is to reduce the overhead to a
minimum and provide a mechanism that would be used on a large
number of devices that have limitations in terms of power, resources and
network considerations (low-range networks such as |IEEE 802.15.4,
Bluetooth, Low Power Wi-Fi). The HTTP protocol was uses as a model
for development. It is important to note that CoAP is not a reduced HTTP,
but it is a protocol optimized for M2M communication, which supports
basic REpresentational State Transfer (REST) functionalities, common
with the HTTP protocol. Also, CoAP in some things represents a step
forward in comparison to HTTP. It supports multicast, asynchronous
messaging and has a mechanism for finding resources (Sharma, 2014),
(Shelby, 2014).

CoAP is an application protocol that uses two messaging models. It
supports the request/response model, as well as the
advertiser/subscriber model. Unlike HTTP, it relies on the User Datagram
Protocol (UDP) protocol, but above UDP the DTPLS protocol can also be
used to increase the security.

The most important part of the loT architecture is the middleware
part, because in that part there are services that mediate the
communication with devices. In addition, the services provide the
necessary data abstraction, storing and exchanging data with other
services.

In order to provide the ability of communication between different
platforms (hardware, computer), Web services use platform independent

884

data formats such as EXtensible Mark-up Language (XML) and
JavaScript Object Notation (JSON).

Two basic types of services are:

SOAP (Simple Object Access Protocol) is a standard for exchanging
structured information using HTTP and XML. It is platform independent,
so it can be used on all computer platforms, as well as in all
programming languages. The most common way to call the service
method is through RPC (Remote Procedure Call) messages, where the
client calls the server method and awaits its response. The SOAP
protocol is based on WSDL (Web Services Description Language) and
UDDI (Universal Description, Discovery, and Integration) technologies.

REST (REpresentational State Transfer) is an architectural style that
was designed by Roy Thomas Fielding. Although not a protocaol, it uses
multiple protocols in its work, such as: HTTP, Uniform Resource
Identifier(URI), JSON, and XML. The basis of this style is the HTTP
protocol, which is used as a data transfer mechanism, with a limited
number of commands such as: GET, POST, PUT, DELETE, etc. It is
RESTfull in sense of performance, scalability, simplicity, modularity,
visibility, portability and reliability.

Regarding the applicability in the loT architecture, although both
types provide similar services, in the specific constraints that are present
in the loT concept, primarily in device constraints, it is more convenient to
use the RESTfull architecture (Zeng et al, 2011).

Web of Things

The foundation of Web (World Wide Web) is the Internet. The initial
idea Tim Berners-Lee had for the development of the Web was to enable
the interrelationships mechanism between documents in order to exploit
and improve the Internet. The Web developed very rapidly and became
much more than the exchange of documents. Now the Web is the largest
platform that allows the development of Web applications in different
domains. It has evolved from static pages, through applications, social
networks to the latest stage, which is the social network of the devices, or
Web of Things (Raggett, 2015).

WoT is a continuation of the loT concept, which represents its
starting point. loT deals with access modes and communication protocols
between Things and services, that is, loT deals with the vertical structure.
Unlike 10T where it is possible to send data from Things to the server and
vice versa, WoT deals with the integration of Things into Web, that is,
with the horizontal structure (Figure 3).

885

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

IoT

ToT Platform

HTTP

O

ID
(2

ToT Platform
CoAP

WoT

D i e i API D =
IoT Platform & IoT Platform

HTTP CoAP

0 ==

Figure 3 — Moving from IoT to WoT
Puc. 3 — lNepexod om uHmepHema gewiel Kk 8eb sewel
Cnuka 3 — lNpena3 ca uHMepHema cmeapu Ha 8eb cmeapu

From Things, we now expect to be accessible through a web
protocol such as HTTP, which represents a ticket for the web. The next
step that needs to be done is to define a mechanism for using the loT
resources. This mechanism should be Open Source, it must take care of
security and needs to be API (Application Programming Interfaces).
Things will represent virtual objects that machines and people will be
able to access and communicate with them.

With the development of the loT platform, where each platform has
its own mechanism, without interaction with other platforms, we will take
a step backwards compared to the initial idea that Tim Berners-Lee had
when designing the Web. The problem of the development of royalty-free
and platform-independent standards has been discovered and there are
currently working groups under the World Wide Web Consortium (W3C)
that deal with the standardization and development of the WoT API since
2015 (White Paper for the Web of Things, 2016).

886

In terms of WoT architecture, the idea is that devices are directly
linked to Cloud or through their proxies (Figure 4).

Figure 4 — Connecting Things to Web
Puc. 4 — CesisbigaHue eeuyell Ha 8eb
Cniuka 4 — lNose3usar-e cmeapu Ha 8eb

Challenges in interconnection loT

It is necessary to create a service architecture that will not be too
much demanding for Things, so it would be possible to implement such
services with the existing restrictions on Things. Such services should be
able to work without an operating system, and with a limit of 8KB of
memory. Such restrictions exclude the use of heavyweight Web services
such as, for example, SOAP/WSDL (Guinard et al, 2011).

A protocol that meets the mentioned restrictions is the HTTP
protocol, that is RESTfull architecture, which has basic access methods
such as: GET, POST, PUT, DELETE. In addition to this protocol, it is also
possible to use the CoAP protocol, which is similar to the HTTP protocol.

In order to make the data understandable for machine processing,
they need to be in one of the languages that are understandable from the
machines perspective, such as XML or JSON.

In most existing scenarios, IoT applications coincide, but are not
interoperable among themselves. The goal is to harmonize the used data
models as well as frameworks to minimize the human interaction in their
communication. It is necessary to find an approach so that the data
collected from the sensor will be reusable. It is also necessary to ensure
that data can be shared (Gyrard, 2015).

In order to make Things capable of building complex systems, we
need to enable certain APIs that will allow communication with each

887

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

other through HTTP or CoAP protocols or other protocols, and in this way
we will create the WoT (Jara et al, 2014).

Currently in Europe, according to Google statistics, most countries
have IPv6 present less than 34%, which means that it is still not possible
to use all the IPv6 addressing capability (Google IpV6 Statistics). In
addition, it is still not possible to expect Things to work as servers that
will be able to process all the requests that come to them in terms of
resources. These constraints imply the need to think about other ways to
access the resources of Things (Barnaghi et al, 2013).

In terms of architecture used in the integration of Things, we
encounter two types of architectures. The first is Direct Integration that
for every Thing assigns an address, and has its own small embedded
service. Another architecture is Indirect Integration that refers to Things
that are not able to run their own services, but use other services as their
proxy, often referred to as the smart gateway (Zeng et al, 2011).

Using the CoAP protocol, it is possible to reduce overhead, but the
problem of finding resources using the web browser remains. This
problem can be solved in several ways (Castron et al, 2016).

For Emmanuel Baccelli and Dave Raggett, there are two basic
challenges to be solved in the development of the 10T concept. The first
is the implementation of the IPv6 protocol at the hardware level of the loT
device. The second problem is providing end-to-end security (Baccelli &
Raggett, 2015).

In summary, we can conclude that WoT's software architecture
should enabile:

- development of services on devices with limited resources,

- M2M communication,

- the creation of a data model that will be suitable for processing and

reuse,

- an API that will allow resources to be visible from other services,

- secure communication.

In order to be able to implement these requirements independently
(without using the loT platform), we need to have a team of at least
several people, who will work for several years (IoT Platforms The central
backbone for the Internet of Things, 2015). This points to the need to use
existing platforms, or middleware. Using middleware, which implements
the mentioned requirements, we can save the time it takes to create our
own applications.

There are currently a large number of loT platforms, and most of
them are commercial. Large companies such as Amazon, Google,

888

Microsoft, IBM etc. are present in the field of IoT platforms. One of the
Open Source platforms that provides these requirements is FIWARE,
which can be used in different scenarios, using open and free APIs.

Open Source FIWARE platform

FIWARE is a platform that has a layer of infrastructure, and provides
the laaS service. In addition to laaS, the platform also provides PaaS
service features. These service functionalities that the platform offers
enable the development of our own loT applications. The platform is also
possible to host on your own hardware, but this feature is out of scope of
this paper.

The FIWARE platform allows the creation of virtual machines in
which we can create our own architecture for the loT application. Also,
the platform frees us from taking care of hardware, which makes it easier
for developers to create a service for a specific application. In terms of
security, it is possible to define the security police, which will take care of
security and access to the application. Security of frontend and backend
parts is achieved using the OAuth2 protocol.

The basis for the functioning of the FIWARE platform is the Open
API Next Generation Service Interface (NGSI). NGSI defines data model,
context data interface, context availability interface. Currently, two
versions of this interface have been implemented, NGSI9 and NGSI10.
(FIWARE-NGSI v2 Specification).

A particularly important part for the functioning of the interface is the
data model. It consists of three parts:

Context Entities: It is an entity that can represent any Thing like a
sensor, an actuator, a human, an animal, a car, etc. Each entity must
have its own ID. To enable later search by type, you need to assign a
type attribute.

Context Attributes: These are attributes that make up an entity.
These attributes, besides their name, have additional attributes that
describe the entity. These attributes are value, type and metadata that
further describe the attribute.

Context metadata: As mentioned before, it is an optional attribute. It
consists of the basic three parts (name, type, value).

The NGSI interface allows the data to be accessed through the
REST method, whereby the data can be displayed in the JSON or XML
format. The developers are free of concern about the communication
protocols IoT uses, thanks to the loT Generic Enablers (GE), which

889

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

translate all data that comes from Things into the NGSI form, with which
developers can then work.

The software architecture of the platform is based on Generic
Enablers (GE), which are elements that build the FIWARE platform. GEs
can be added depending on the needs of a specific application, and a list
of all GEs is available through the FIWARE catalogue.

The FIWARE platform enables integration of more services. Data
can be exchanged using the NGSI API. The service architecture is based
on the REST style, where resources are accessed based on their names,
using URI. In this way, the horizontal interaction with other systems is
achieved, hence we come to the infrastructure that can provide the
development of Web of Things. Also, the infrastructure has mechanisms
for generating and using Big Data. By using additional metadata
attributes, we can achieve the infrastructure for semantic web
development (Start Using FIWARE Right Now, 2018).

Example of using the FIWARE platform

An example that will serve us for testing the FIWARE platform is
based on reading the values from the sensor, and the actuation of the
DC motor depending on the values from the sensor. The goal we want to
achieve by this example is to connect the hardware of some Thing with
the service, which will be used for management, and that part will
represent the loT domain. The next functionality we want to explore is the
ability to access Things over the Web browser and gain value in order to
check the possibility to integrate into the Web. In this way, we want to
test the functionalities that the FIWARE platform provides in the WoT
domain.

In the testing stage, we will use the ATMega2560 microcontroller,
through which we will collect data from the sensors, as well as starting
the activity to check the communication on both sides. Communication
between hardware and services will be achieved over the Internet. To
connect the hardware to the Internet, we will use the Wi-Fi module
ESP8266 (Figure 5).

Both virtual sensor, as well as a virtual actuator, will be described
using the JSON format. We will describe the sensor with the basic
attributes such as ID, type, owner, hardware, location, temperature,
humidity. When creating a virtual sensor, we can enter the default values.
The sensor description is shown in Figure 6.

890

Internet
WiFi Router

‘-—
FIQ-/ Platform
ESP8266 y 3

‘Web browser
o \\
€€l

Data from sensor

Figure 5 — Components of the example
Puc. 5 — KomnoHeHmbI npumepa
Cnuka 5 — KomnoHeHme npumepa

The state attribute refers to the status of the actuator, whether it is
turned on or not, while the speed attribute represents the current motor
speed. In the later physical realization, for easier display, the speed
attribute will be represented by the number of LEDs that will signal the
speed at which the motor is currently running.

The listed attributes will allow us to map real Things into virtual ones
that will live on the Web as separate entities (Figure 7).

When the entities are created, using the NGSI API, we have to
connect hardware (Things) to them, and then use the virtual sensor or
actuator.

A physical sensor should send data to a virtual sensor in order to
have an image of the device in real time. The virtual sensor is located at
the following address: http://130.206.xxx.xxx:1026/v2/entities/Sensor-01/.

891

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

2 nid™s "Sensor-0LT,
3 "type": "DHT11",
4 "ouner™: {
5 "wvalue": "Userl”,
6 "Etwpe™: TSstring™
}!
8 "hardware": {
9 "yalue™: "ArduinoDHT11"™,
10 "twpe™: TString”
1 bes
12 "location": {
13 "walus®:z "44_7866, 20.44897,
14 "type": "geo:point"
15 3
16 "temperature c": {
17 "valus®™t 0;
18 "Lype™: "Elaat™

|

"humidity": {
"wvalue": 0,
"Lype™: "Elagt™

30

{8 T S T o T % T % T)
3 N

P L
—

Figure 6 — Model of a sensor
Puc. 6 — Modesnb 0amyuka
Cnuka 6 — Moden ceHsopa

Unlike the sensor that updates the virtual sensor, the actuator
monitors the state of its virtual entity, and, depending on its condition,
adjusts its state. The virtual actuator is located at the following address:
http://130.206.xxx.xxx:1026/v2/entities/Actuator-01/.

After connecting, the data on the server represent the real state of
the device, and are available through the Web browser in the JSON
format. Figure 8 shows the virtual actuator data. Based on the data, we
can conclude that our motor is started and running at speed 2.

892

Sensor Actuator
JSON-format JSON-format

Web

. — - :

id browser oo
*type type
*owner *owner
“hardware “hardware

*location, *location,
*temperature *max-speed
*humidity *state
*speed

‘ FiWare platform ‘
WiFl WiF!
module module
ESPg266 ESP8266
hitp:/130. 20600000 1026 M2fenfities/Sensor-0 hitp:#130.206 000 ooc 1026 2/entities/Actu ator-01
' E— |
Microcontroler Microcontroler
ATMega2560 ATHega2560
\)
P
Sensor Actuator
DHT1 DC-
\mak}r
Spee

Figure 7 — Architecture of the example
Puc. 7 — Apxumekmypa npumepa
Cnuka 7 — Apxumekmypa npumepa

As the data is available via the Web browser, it is possible to
manage actuators, or read values from the sensors using our own
applications, and to connect with other sources.

In our case, the idea is that when the temperature exceeds a certain
value, the actuation of a small motor at a certain speed is carried out.
Another advantage of the FIWARE platform is the use of GE, such as the
CEP (Complex Event Processing)., We will use this GE to monitor the
state of the sensor, and to start the actuator. A practical example is given
in Figure 9.

893

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

id: "Actuator-81"

type: "DCmotor”
¥ hardware:
type: "String”
value: "ArduinoDCmotor™
metadata:
location:
type: "geo:point”
value: "44.7866, 20.4489"
metadata:
" max-speed:
type: "Integer”
value: 3
metadata:
¥ owner:
type: "String”
value: "User2”
metadata:
speed:
type: "Integer”
value: 2
metadata:
state:
type: "Boolean"
value: true
metadata:

Figure 8 — JSON model of the actuator
Puc. 8 — JCOH modenb akmyamopa
Cnuka 8 — JCOH mopen aktyaTopa

Figure 9 — Practical example
Puc. 9 — Npumep u3 npakmuku
Cnuka 9 — lNpakmuy4aH npumep

894

Conclusion

Based on the presented theory and a practical example, we can
conclude that the FIWARE platform allows us to create virtual devices
(Things) that will reflect the state of the physical devices (Things), which
have computational constraint (8KB memory). This virtual representation
of the devices (Things) is displayed in a platform independent JSON
format that allows later processing, and is available using the REST
methods.

This system architecture allows us to manage devices (Things), that
is, to use their resources by looking at them as services. The most
important feature is that these resources are available using the Web
protocol. The developers are free from concern about the complexity of
device management (Things), using a virtual representation of the
devices (Things). This functionality enables easier use in future
applications.

The FIWARE platform is based on an open API, so when WoT API
is created by the W3C some time in the future, it will probably be
implemented on the FIWARE platform as well. Until then, the FIWARE
platform provides the ability to create and test WoT applications, using
the APIs that provide the necessary functionality for implementing the
WoT concept.

References

AMQP Advanced Message Queuing Protocol Specification, Cisco Systems.
2018. [Internet]. Available at: https://www.rabbitmg.com/resources/specs/amqp0-
9-1.pdf. Accessed: 2018 Mar 23.

Baccelli, E., & Raggett, D. 2015. The Promise of the Internet of Things and
the Web of Things. In Special theme The Internet of Things and The Web of
Thing, ERCIM, pp.8—11. [Internet]. Available at: https://ercim-
news.ercim.eu/images/stories/EN101/EN101-web.pdf. Accessed: 2018 Mar 28.

Barnaghi, P., Sheth, A., & Henson, C. 2013. From Data to Actionable
Knowledge: Big Data Challenges in the Web of Things [Guest Editors'
Introduction]. IEEE Intelligent Systems, 28(6), pp.6-11. Available at:
https://doi.org/10.1109/M1S.2013.142.

Botta, A., Donato, W., Persico, V., & Pescapé, A. 2015. Integration of
Cloud computing and Internet of Things: A survey. Future Generation Computer
Systems, 56, pp.684-700. Available at:
https://doi.org/10.1016/j.future.2015.09.021.

895

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

Castron, M., Jara, A., & Skarmeta, A. 2016. Enabling end-to-end CoAP-
based communications for the Web of Things. Journal of Network and Computer
Applications, 59, pp.230-236. Available at:
https://doi.org/10.1016/j.jnca.2014.09.019.

FIWARE-NGSI v2 Specification. [Internet]. Available at:
http://docs.orioncontextbroker.apiary.io/#introduction/specification/introduction,
Accessed: 2018 Mar 12.

Google IpV6 Statistics 2018. [Internet]. Available at:
https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-
adoption&tab=per-country-ipv6-adoption, Accessed: 2018 Mar 12.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. 2013. Internet of
Things (loT): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7), pp.1645-1660. Available at:
https://doi.org/10.1016/j.future.2013.01.010.

Guinard, D., Trifa, V., Mattern, F., & Wilde, E. 2011. From the Internet of
Things to the Web of Things: Resource Oriented Architecture and Best
Practices. Architecting the Internet of Things, pp.97-129. Available at:
https://doi.org/10.1007/978-3-642-19157-2_5.

Gyrard, A., Bonnet, C., Boudaoud, K., & Serrano, M. 2015. Assisting loT
Projects and Developers in Designing Interoperable Semantic Web of Things
Applications. In 2015 IEEE International Conference on Data Science and Data
Intensive Systems. Institute of Electrical and Electronics Engineers (IEEE),
pp.659-666. Available at: https://doi.org/10.1109/DSDIS.2015.60.

Internet of Things (loT) History. [Internet]. Available at:
https://www.postscapes.com/internet-of-things-history. Accessed: 2018 Feb 5.

loT Platforms The central backbone for the Internet of Things. 10T Analytics
GmbH. 2015. [Internet]. Available at: http://iot-analytics.com/wp/wp-
content/uploads/2016/01/White-paper-loT-platforms-The-central-backbone-for-
the-Internet-of-Things-Nov-2015-vfi5.pdf. Accessed: 2017 Dec 23.

Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., & Skarmeta,
A.F. 2014. Semantic Web of Things: an analysis of the application semantics for
the lIoT moving towards the loT convergence. International Journal of Web and
Grid Services, 10(2/3), p.244. Available at:
https://doi.org/10.1504/IJWGS.2014.060260.

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. 2014.
Context Aware Computing for The Internet of Things: A Survey. IEEE
Communications Surveys & Tutorials, 16(1), pp.414-454. Available at:
https://doi.org/10.1109/SURV.2013.042313.00197.

Raggett, D. 2015. The Web of Things: Challenges and Opportunities.
Computer, 48(5), pp.26-32. Available at: https://doi.org/10.1109/MC.2015.149.

Saint-Andre, P., Smith, K., & Trongon, R. 2009. XMPP: The Definitive
Guide. O'Reilly Media, pp.3-27.

Sharma, V. 2014. Understanding Constrained Application Protocol. Exilant
Technologies Pvt, pp.7-18. [Internet]. Available at:
www.coapsharp.com/wordpress/?wpdmdI=504, Accessed: 2017 Dec 11.

896

Shelby, Z. 2014. Constrained Application Protocol (CoAP), Internet
Engineering Task Force. Internet Engineering Task Force (IETF). [Internet].
Available at: https://tools.ietf.org/html/rfc7252, Accessed: 2017 Nov 10.

Stanford-Clark, A., & Truong, H.L. 2013. MQTT for Sensor Networks
(MQTT-SN) Protocol. International Business Machines Corporation (IBM).
[Internet]. Available at: http://mqtt.org/new/wp-content/uploads/2009/06/mqtt-
sn_spec_v1.2.pdf. Accessed: 2016 Aug 20.

Start Using FIWARE Right Now. 2018. [Internet]. Available at:
http://fiwaretourguide.readthedocs.io/en/latest/, Accessed: 2018 Jan 31.

White Paper for the Web of Things. 2016. [Internet], Available at:
http://w3c.github.io/wot/charters/wot-white-paper-2016.html, Accessed: 2017
Nov 14.

Wortmann, F., & Flichter, K. 2015. Internet of Things. Business &
Information Systems Engineering, 57(3), pp.221-224. Available at:
https://doi.org/10.1007/s12599-015-0383-3.

Zeng, D., Guo, S., & Cheng, Z. 2011. The Web of Things: A Survey (Invited
Paper). Journal of Communications, 6(6). Available at:
https://doi.org/10.4304/jcm.6.6.424-438.

Zhong, N., Yau, S.S., Ma, J., Shimojo, S., Just, M., Hu, B., Wang, G., Oiwa,
K., Anzai, Y. 2016. Brain Big Data in Wisdom Web of Things. In N. Zhong, J.
Ma, J. Liu, R. Huang, & X. Tao Eds., Wisdom Web of Things. Cham: Springer
Nature., pp.339-349. Available at: https://doi.org/10.1007/978-3-319-44198-
6_15.

FIWARE: PA3BUTWE NNAT®OPMbI ANA MHTEPHETA BELLEN

UsaH A. Tot?, Adywar JN. Eormqesmqﬁ, MnadeH B. Tpukow?®, KomrneHT.
Nanosuy®

@ YunsepcuteT 06opoHel B r. Benrpag, BoexHas akagemus,
Kadenpa nHhOpMaLMOHHBLIX CUCTEM Y TENEKOMYMHUKALMOHHOW UHXEHEpUN,
r. benrpag, Pecnybnuka Cepbus
6 BoopyxéHHble Cunbl Pecnybnukm Cepbus, MeHepanbHbiii WITab,
YnpaBneHne nHopMaTrKn U TENEKOMMYHUKaLmi (J-6),
LleHTp koMaHOHO-MHOPMAaLUMOHHBIX cucTem, r. benrpag +
YHusepcuTeT B I. Huww, ®akynbTeT aneKTPOoHNKY,
r. Huw, Pecnybnuka Cepbus
® dakynbTeT NPUKNaAHOTO MEHEPKMEHTA, 9KOHOMMUKN 1 (DUHAHCOB,
r. Benrpag, Pecnybnuka Cepbus

OBJIACTb: kOMMbIOTEPHBIE HAYKW, UHOPMALMOHHBLIE TEXHOIOMMM
B CTATbW: npogeccroHanbHas ctaTbs
A3bIK CTATbW: aHrnuickmin

Pe3swome:

lNpedmemom daHHOU cmambu sierisiemcsi Beb gewiel, kak npoOosmKeHuUe
passumusi KoHuenma ViHmepHema eeweli. Beb sewel npedcmasnssem
coboli waz K CeA3bI8aHUI0 YMHbIX geweld ¢ cyuwecmesyrouwum Beb

897

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2018, Vol. 66, Issue 4

OKPY>KeHUEM, rpu pacCMOMPEHUU akmyarsbHbIX MpobreM, makux Kak:
e2emepoeeHHOCMb, Macwmabupyemocmbs U NPUMEHSEMOCMb, MO eCMb
ydobcmeo ucnone3oe8aHust. [JaHHas cmambsi ocesueHa co8peMeHHbIM
B803MOXHOCMSIM U 8bl308aM Ori1 pa3sumusi KoHuenma Beb seuwel. B
cmambe rnpedcmasrneHbl Meopemuyeckue ocmynamsi KoHuernma
HHmepHema eeuwiell, 8 YaCmMHOCMU: apXumeKmypa, fpomoKosibkl, ycryau
u cobcmeeHHO 8ewl, Komopble U 58rsmMcsi 0CHO8olU 0boux
KOHUernmos. B pabome orucaHbl He06x00uMble ycriogusi Orisi pa3sumusi
KoHuyenma Beb eewel. [nasHbiM Hay4YHbIM 6KiladoM Hacmoswel
cmambu s1e51siemcsi npedrioxkeHue paspabomaHHOU apXumeKmypal,
OocHoeaHHoOU Ha nnamgopme FIWARE, e kadyecmee OCHo8bl Ons
passumusi Beb seuwjel. [pednazaemasi apxumeKkmypa OCHO8aHa Ha
pearbHOM rpumepe.

Knovessie crosa: VMiHmepHem seuweli (loT), Beb esewel (WoT),
FIWARE.

FIWARE: PASBOJHA MJTIAT®OPMA 3A BEE CTBAPU

Wear A. Tot®, fywar I'b. Boruhesuh®, MradeH B. Tpukow?,
KomneHr I. Nanosuh®

@ YHuBepanteT onbpaHe y Beorpaay, BojHa akanemuia,
KaTenpa nHdopMaumoHnx cuctema u TeNeKOMYHUKaLMOHOT UHXeHepCTBa,
Beorpag, Penybnuka Cpbuja
®Bojcka Cpbuije, MeHepaniuTab,
YnpaBa 3a TenekoMyHukauuje n nicopmatumky (J-6),
LleHTap 3a komaHaHO-MHhopmaumoHe cucteme, beorpag +
YHuBepanteT y Huwy, EnektpoHckn doakyntet, Huw, Peny6nvka Cpbuja
® dakynTeT 3a NPUMEHEHN MEHALIMEHT, EKOHOMU]Y 1 dMHaHCHe,
Beorpag, Penybnuka Cpbuja

OBNACT: uHdopmatuka, AT
BPCTA YJ1IAHKA: cTpy4HuM unaHak
JESNK YJTAHKA: eHrneckm

Caxemak:

Kao Hacmaeak KoHuernma uHmepHem cmeapu, 6eb cmeapu
rnpedcmaerbajy Kopak Ka roee3usarsy UHMESU2eHMHUX cmeapu ca
rocmojehum 8eb OKpyxer-eMm, y3 pasmamparbe rpobsiema Kao wmo cy
XxemepoeeHocm, ckanabunHocm u yrompebrbusocm. Oeaj pad je
rnioceeheH mpeHymHumM Mo2yhHocmuma, Kao U u3asosuma 3a pa3seof y
KoHuennmy eeb cmeapu. Y pady cy ornucaHe meopujcke OCHO8e
KOHUENma UHmepHem cmeapu, Kao Wimo Cy apXumeKmypa, rpomoKosiu,
ycriyae u came cmeapu, Koje cy ocHosa oba KoHuenma. Pad ce basu
nompebHum ripedycriogsuma 3a paseoj KoHuernma eeb cmeapu. [nasHu
doripuHoc pada je npedrnoe apxumekmype 3acHoeaH Ha FIWARE

898

nnamgopmMmu Kao OcHoeu 3a pa3eoj eeb cmeapu. [lemoHcmpauyuja
rpedrioxeHe apxumeKkmype ornucaHa je peasHuM criydajem.

KmbyyHe peyu: uHmepHem cmeapu (loT), eeb6 cmeapu (WoT),
FIWARE.

Paper received on / lata nonyyeHus pabotbl / aTtym npujema ynaxka: 04.04.2018.
Manuscript corrections submitted on / lata nony4eHus ucnpaeneHHo Bepcumn paboThbl /
Hatym goctaBrbana ncnpasku pykonuca: 03.07.2018.

Paper accepted for publishing on / [lata okoH4YaTenbHOro cornacoBaHus pabotsl / Jatym
KOHaYHOT NpuxBaTaka YnaHka 3a objaBrbmBare: 05.07.2018.

© 2018 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2018 AsTopbl. OnybnukoBaHo B «BoeHHo-TexHu4eckmin BecTHuk / Vojnotehnicki glasnik / Military
Technical Courier» (www.vtg.mod.gov.rs, BTr.mMo0.ynp.cpb). [laHHas ctaTbsi B OTKPLITOM 4OCTYNE U
pacnpocTpaHaeTcs B COOTBETCTBUM C nueH3nen «Creative Commons»
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2018 Aytopu. O6jaBuno BojHoTexHuukm rmacHuk / Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). OBo je YunaHak oTBOpeHOr Npuctyna n auctpudyupa ce y
cknagy ca Creative Commons nuueHuom (http://creativecommons.org/licenses/by/3.0/rs/).

899

Tot, I. et al, Fiware: A Web of things development platform, pp.880-899

