IMPROVING E-GOVERNMENT
SERVICES FOR ADVANCED SEARCH

Goran P. Simi¢

University of Defence in Belgrade, National Defense Shool, Department
for Simulations and Distance Learning, Belgrade, Republic of Serbia,
e-mail: goran.simic@va.mod.gov.rs, gshimic@gmail.com,

ORCID iD: https://orcid.org/0000-0002-7563-699X

DOI: 10.5937/vojtehg67-20356; https://doi.org/10.5937/vojtehg67-20356

FIELD: Computer Sciences, IT
ARTICLE TYPE: Original Scientific Paper
ARTICLE LANGUAGE: English

Abstract:

The E-government services depend on many archived documents mostly
scanned and partially described to be machine searchable in order to be
found fast and to offer appropriate responses to citizens and to the
government personnel as well. In order to improve the existing state, the
hybrid solution based on the previous research results is presented. This
paper presents an in-depth view of the Web solution that combines
different technologies on both the client and the server side thus improving
regular search services amd making them accessible to people with
dissabilities (e.g. blindness).

Key words: text search, text similarity, speach recognition, metadata
exploitation.

Introduction

Contemporary document management systems provide different
ways for storing and searching the archived content. However, there are
many documents used in government affairs, archived in formats that are
not appropriate for searching tasks. They are often in a paper format. To
make such archives digitalized, the offered software solutions include
scanning of documents, saving them mostly in PDF/A (portable
document format for archiving) and storing them on some shareable
repository, relational or non-normalized (NoSQL) database, as a core of
some CMS (content management system), or some more advanced
system (Asili & Tanriover, 2014, pp.57-67).

ACKNOWLEDGMENT: The author is grateful for the financial support from the Ministry of
Education, Science and Technological Development of the Republic of Serbia (project
code: 11144007).

307

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

For making them searchable, one has to make these documents
machine-readable first. Without converting scanned content into text, the
describing process is inefficient. Fortunately, there are many OCR
(Optical Character Recognition) solutions on the market designed for this
purpose (e.g. ABBYY Fine Rider as a commercial one, or FreeOCR as a
desktop solution, etc.). By using this software, the scanned content,
previously readable only for humans, becomes machine-readable. This is
a prerequisite for performing a text analysis and making a static footprint
for each document. In contemporary CMS, this is usually the last phase
in making their content searchable for further exploitation.

Sometimes this is not enough. Especially in e-government services
where the users (other Web based applications and services as well as
government staff and citizens) demand high reliability and accurate
response. There should be additional information that describes the
documents in a better and more efficient way. Adding this information
needs engagement of extra resources — people who should better
describe the meaning of a document than machines do. Unfortunately,
the personnel responsible for it are not always competent enough.
Moreover, introducing people into the process significantly slows it down.
Consequently, a document will be found only if there is a hundred
percent matching of the title, the key words, or some other specific
property within the search criteria. If IT designers try to make such a
system more flexible, another problem arises: flexibility causes too many
hits (results) that are not useful for further processing.

Overcoming the described situation represents one of the basic
motives for the project. It is not possible to perform advance search in
order to obtain fast fact finding (and offering appropriate responses to the
citizens and to the government personnel) based only on the document
features presented in some standard format (e.g. Dublin Core,
http://dublincore.org/documents/dces/). This paper presents the results,
collected experiences and considerations on this matter.

Problem Description and Existing Solutions

The previously described process for preparing archived content for
further search brings all types of documents to the same level of
complexity. These are text documents presented in different formats
(PDF, DOC, DOCX, ODT, etc.). Different formats include a lot of non-
informational content intended just to keep the content structure and
presentation. Practically, this part of a document does not contain
information interesting for users and introduces information noise

308

(Watson, 2009). On the other hand, removing the format data converts a
text from structured into a plain format, which can lead efforts in the
wrong way.

There are already implemented technologies for separating useful
document content from its formatting part. For instance, Apache Tika
(Mattmann & Zitting, 2012) represents a software solution for text
filtering. In other words, it extracts text and metadata from almost every
standard document format. It separates these two and enables their use
for further searching.

On the other hand, there are software solutions focused on grouping
a huge number of distributed documents, based on their similarity. A
good example for such a solution is a combination of Mohout (Owen et
al, 2011) (analyzing and clustering tool) and Hadoop (Sammer, 2012)
(top framework for large scale concurrent processing). Both are the
Apache projects dedicated for improving advanced search capabilities.
Besides open-source solutions, there are also commercial ones. Upon
purchase, contractors deliver released packages as unchangeable black
boxes (Asili & Tanriover, 2014, pp.57-67). Also on demand, they can
customize delivering for specific purpose, which consequently results in
extra costs of software products.

From the technology prospective, there are programming languages
that offer support for advanced search. For instance, the Python libraries
and especially the Natural Language Processing Toolkit (NLTK) (Bird et
al, 2009) have built-in, high-level linguistic functions that provide powerful
processing of linguistic data contained in different document formats
such as XML (xml.etree library), MS Word (pywin32 library), PDF (pypdf
library), RSS feed (feedparser library), email (imap and email libraries).
Moreover, there are libraries that represent interfaces for access to data
stored in DBMS (e.g. mysql-python library), or large document collections
(e.g. pylucene library). Different from other systems, the NLTK can
analyze the content semantically. It offers numerous functions providing
the rule-based inferring on textual content. On the other hand, there are
grammars (knowledge bases stored in fcfg files) that hold definitions of
rules. The NLTK recognizes the meaning of the content by trying to
match the patterns in content’s sentences with the patterns defined in the
rules. Sequentially, each matching produces a true or a false result and
finally, the system can find a meaning of the content analyzed. The NLTK
supports the rule-based grammars formalized by the Propositional Logic
as well as the First Order Logic.

The main disadvantage is that the Python libraries best fit the
content written in English and there is a lot of room for contributions for

309

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

other languages. For instance, one can translate grammars and adapt
them to a language other than English. For instance, there is Serbian
WordNet — the lexical database of Serbian language (Serbian-
dictionary.com/wordnet) [X], based on English WordNet designed by the
Princeton University. Consisting of almost 2500 records named synsets
(words in the basic form enriched with synonyms), it enables a
semantical analysis and translation of the content written in Serbian.
Alternatively, translating sentences into English and analyzing them
afterwards, represents another solution.

Going deeper into the problem domain, there are pure mathematical
solutions that can overcome the non-English content search problem and
avoid complex solutions based on lexical analyses. It depends on
similarity measures performed on statistically transformed text content
and query strings. TFIDF (Yang & Chute, 1994) represents one of the
most used statistical measures. This is a combination of term frequency
(hereinafter TF) and inverse document frequency (hereinafter IDF). TF
represents the number of term occurrences in the text modified in order
to express term significance (Simi¢, 2015). A term can be one word (any
part of speech), or a collocation (phrase, or a few words frequently
appearing together). IDF is another measure that expresses significance
of a term regarding to the whole (usually huge) set of documents
considered. This way, IDF acts as a corrective factor for each term
considered. In the further processing, the advanced search system
measures the documents’ similarity based on TFIDF, clustering them
based on their mutual similarity. Finally, the statistical model and indexes
represent the documents that are clustered and ready for search. Then
the system is ready for exploitation, which means it transforms the
search criteria in the same way as documents in order to measure the
similarity with them. The most similar documents represent the search
result. The statistical transformation of the content includes the term
normalization (part of speech should be put in single, neutral / infinitive
form — lemmatized) and elimination of so-called stop words (articles,
pronouns, propositions, conjunctions, and interjections). As it needs the
existence of an appropriate language knowledge base, the conclusion is
that there is no one pure mathematical solution which is language
neutral.

Proposed Solution

Although many technologies support advanced document search,
the results still depend on a search language. In other words, there

310

should be institutions responsible for forming textual and lexical
resources at the national level. These resources should be accessible for
advanced search services over the Internet.

On the other hand, if one tries to avoid language dependency by
implementing pure mathematical functions and by using only quantitative
values, without combining the semantical similarity in comparison with
document content and search criteria, the results can be below
expectations. Simplicity represents the biggest advantage of such
systems.

There are several ways for obtaining the communication between
software modules written in different programming languages. The oldest
one is by using language native interfaces. The results can be below
expectations as it can be very complex for implementation and inflexible
in case of language version changes. A more flexible and easier solution
is using already built modules (well known as bridges) that establish the
black — boxed, but reliable communication channel, free of a lot of coding
and cleaned from many implementation details. For instance, if one
wants to couple Java and Python clients, there is a bridge named Py4J
(https://www.py4j.org/) referenced from both clients as a gateway server
application. Several solutions use this approach (Svyatkovsky et al,
2016) for advanced text processing. Moreover, many flexible solutions
offer different ways for cross language communication. One of them is
Apache ActiveMQ (http://activemq.apache.org/) that represents cross
language support for information exchange between application clients
written in different programming languages offering many different
protocols for this purpose.

Considering the facts mentioned above, the proposed solution
should be a modular one, a flexible hybrid system that can establish the
connections with different resources useful for text processing and
information retrieval.

Frontend (Client) application

The basic components of the system are the HTML5 based client
application(s) on the frontend, RESTful based services as a fagade
(Facade design pattern) of the backend part, intermediate interfaces and
modules that provide different stages of processing user inputs (speech
to text transformation, text normalization), generating queries and making
searching request sent to different resources. By using HTML5 based
technologies (e.g. Angular and Typescript JS libraries and Bootstrap
frameworks), the client applications can adapt the user interface for any
kind of platform (smartphone, tablet, or laptop).

311

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

The server side delivers a client application on demand. On the
client side, the Web browser hosts it and takes the responsibility for
further data exchange. This way, the client application is platform
independent. The Fat client application performs all necessary
preparations on user input (query). The client application has a full
multimedia support (particularly multimedia recording) and therefore,
there are two possible scenarios of usage — voice and textual search. In
the first case (Figure 1), the client obtains the voice search that can be
especially useful for users on the move. The client application uses the
Google Cloud Text — to — Speech service (hereinafter the GCTtS service,
https://cloud.google.com/text-to-speech/) for this purpose. The client
application uses Web Speech API for recording the voice query, sends it
to the service and receives the textual query for further processing.

5 -

Js JSON
HTMLS -
client

Search Engine

©9 |00
Google Cloud @_p‘“‘ﬂ"%@
Text-to-Speech | — Vebran —

Figure 1 — Frontend — Backend communication with speech recognition
Puc. 1 — B3zaumodelicmaue ronb308amesibCKol U cepgepHol Yacmeli cucmeMsl
Cnuka 1 — KomyHukauuja usmely knujeHmckoz u cepsepckoa desnia cucmema

The GCTtS service supports almost 150 languages. Among others,
there is a support for Serbian language. On the other hand, the client
application has Serbian as a predefined language. As this is a
parametrized value, it is changeable on demand. The client side
application uses Web Speech API for establishing the communication
channel to the GCTtS service, preparing it for Serbian speech recognition
and for emitting the recorded voice query. On the other hand, the GCTtS

312

service is responsible for processing this request and for responding with
the voice query transcript as a result. The gRPC (https://grpc.io/) protocol
represents the flexible framework for this kind of communication. It
enables sending audio files as well as establishing audio streams in the
client—to—server direction. Transcriptions are the results in any case. In
the same time, they represent the queries that client sends to the server
side of the system.

Further, as the Serbian language has rich morphology, in both
scenarios the client application continues with the preparation of a query.
A particular module called ‘normalizer’ processes the query, preparing it
for comparison with the content on the server side of the system. This
‘preprocessing’ includes several transformations: converting verbs into
the infinitive form, nouns into the singular form, removing stop words,
converting nouns into the 1% case (nominative). The client application
uses the service named Vebran (hit.rgf.bg.ac.rs/VeBran) for this purpose.
This service provides all morphological forms for the term given as an
input in both Cyrillic and Latin letters. As a term can be one or more
words, the Vebran service expands the initial query with these forms. The
client application uses only the basic forms of the words consisted in the
initial query preparing the new one. Further, the client application sends
the transformed query as a RESTful service request to the search engine
on the backend side.

Backend architecture

Backend architecture supports three main functionalities of the
system: extraction of useful content and metadata from original
documents (accessible on the local repositories or over the network),
document indexing and clustering and advanced search (Figure 2).
Firstly, the system processes documents in order to clean all non-
information content and to extract metadata useful for searching. Such
content represents a searchable form of the original document and the
system stores it in the local document storage. There is not heavy load
for local storage as this is a pure textual representation.

Secondly, the system analyzes this searchable formatted content
and performs its indexing. Through this process, the system creates the
new data forms (files) that contain statistical information and indexes
necessary for fast finding and advanced search ability.

313

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

Indexing &
Advanced
Search

Figure 2 —Overall backend architecture
Puc. 2 — Apxumekmypa cepgepHoli Yacmu cucmembl
Cnuka 2 — Apxumekmypa cepgepckoe dena cucmema

The system is ready for advanced search only if it has previously
performed both of the operations described above. It accepts clients’
requests through the Web service forwarding them to the search engine
in the middle of the system. Further, the system returns the search
results in the form which consists of titles, short descriptions and links to
the original documents.

Backend Preparations

As mentioned in the previous section, to be ready for exploitation,
the proposed framework should have the content (documents) prepared
for searching. There are several phases necessary for this purpose. The
text filtering for both the information and the metadata found in different
types of documents is the first one - ‘Filtering’ phase (Figure 3). The
proposed solution uses the Apache Tika framework for this purpose. It
performs the extraction of useful content from many different document
formats (for instance, MS Word, Excel, PDF, various open document
formats etc.). Further, the system creates a JSON formatted plain
document representation from the extracted content and puts it in the
appropriate document storage.

314

o

———
- -
il

T S ‘
J/H
{ ; Tika
.._L___ . m._-_____ ; v _.---.- 5

! Flat text content

metadata

.

Content to be searched

Figure 3 — Framework Backend 1st phase - ‘Filtering’
Puc. 3 — lepebiti aman obpabomku OOKyMeHmMo8 Ha cepsepe - OQuucmka
Cnuka 3 — lNpea ghasa obpade dokyMeHama Ha Cep8epcKoj cmpaHu — npedyuwhasare

In other words, the proposed solution generates two separate flat
text documents for each document. As they differ in size and structure,
the solution uses the MongoDB (NoSQL document database,
docs.mongodb.com) as storage for non-normalized content. It enables
easy document manipulation. Moreover, it provides indexing and making
descriptive queries on documents. However, it does not have a support
for the Serbian language (only 15 languages are supported) and for this
reason, it is not appropriate for advanced search. Therefore, the solution
uses the Apache Solr (https://lucene.apache.org/solr) indexing and
search platform that can use the Python libraries for this purpose. It
happens in the next phase named ‘Indexing’ (Figure 4).

Documents storage

Figure 4 — Framework Backend 2nd phase - 'Indexing’
Puc. 4 — Bmopoti aman obpabomku 00KyMeHmos Ha cepsepe - IHOekcuposaHue
Cnuka 4 — [pyza ¢haza obpade 0oKymeHama Ha Cep8epcKoj cmpaHu — UHOeKcupare

315

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

There is a separate Solr core — the logical instance of the interface
created for indexing remote content (stored on the MongoDB). On the
other hand, the MongoDB setup enables the Solr indexing server to
access the documents stored in the database. The data exchange
happens over the Mongo Connector (created by Mongo Labs but
community maintained by YouGov, Plc). For safety reasons, the Solr
performs indexing on temporary created documents’ replicas delivered
through the connector instead the originals stored on the Mongo DB. The
Solr supports the indexing of documents written in Serbian (in both
Cyrillic and Latin letters). Moreover, the framework additionally improves
the indexing by using the Python library named SolrClient. Before
indexing, it enables full specification of particular fields that represent the
documents, mapping them to the appropriate stop-word, synonyms and
normalization filters. This way, it optimizes the indexing process and
improves the searching results. Next is the code fragment that points to
the important parts of the JSON request used for remotely setting up the
Solr server in order to perform the indexing of documents written in
Serbian (Figure 5).

3 {"add-field-type":{"name" :, "class":"solr.TextField", "positionIncrementGap™: "100",

[EX]

"filters": [{"class":"solr.StopFilterFactory”, "ignoreCase": "true" "words": "stopwords rs.txt"l},
{"class":"solr.SynonymFilterFactory", "synonyms":['index synonyms.txt|,
"ignorsCase":"true" "expand":"false"},
{"class":"solr.LowerCaseFilterFactory"},

{"class":|"solr.SerbianNormalizationFilterFactory” "haircut":"bald"}]}},
"add-field" : {"name":"tekst" ['type":"text rs"}"multiValued":"true",

Figure 5 — JSONized request that sets up the Solr server for indexing in Serbian
Puc. 5 — Hacmpotika cepbckozo si3bika Ha cepsepe Solr
Cnuka 5 — lNodewasar-e Solr cepeepa 3a CPricKu je3uk

The set up statement includes the document’s field to be indexed
(text_rs in the figure above), and links it with the appropriate content
analyzer. Further, the analyzer's set up consists of different types of
filters. In the example above, there are four different filters included. The
first one is for finding and excluding the Serbian stop words (see Problem
Description) from the indexing process. The second filter is for
recognizing synonyms in the Serbian dictionary. The third one converts
letters to the lower case. The last one preforms the text normalization.
After the customization through the set up request, the Solr is ready for

316

indexing. This process includes the text analysis in the same order as
the filters are enlisted in the set up statement.

The system performs indexing on the set of documents stored in the
MongoDB by importing the fields specified for indexing (the Solr uses
solr-mongo-importer and solr-dataimporthandler libraries for this
purpose). In other words, the MongoDB consists of whole documents
while the Solr stores only the fields, their statistical properties, important
for search and references to the documents of origin. This way, the
system keeps the data redundancy at the minimum level.

During the exploitation, if there is a new document stored in the
MongoDB (after passing the Tika extraction), the system updates the
indexes (simple add method call) immediately as the Solr is already set
up. Only if there is another field of interest in the searching process, the
Solr should explicitly reset before indexing.

Exploitation (Case Study)

When the user accesses the system URL, it delivers the reach client
searching application implemented in HTML5 and JS (Bootstrap)
technologies. This way, the client application has an adaptable layout
regarding the concrete display dimensions. The next illustration shows
the user interface adapted for a smartphone (Figure 6). The user
interface contains a text field for typing and showing the search criteria,
navigation buttons, the execution button and the voice search button.

assss Telenor = 07:18 < % 72% WL

HOBYaHa Ka3Ha

Figure 6 — Adaptable client applicaiton layout
Puc. 6 — AdanmusHsbili nonb3o8amersbcKuli uHmepaghelic
Cnuka 6 — lNpunazodrbue uHmMepghejc KnujeHmcke annukayuje

In the shown example, the user performed voice search. He can
start and stop recording by toggling the voice search button. The client
application uses simple mouse-over JavaScript to generate audio
descriptions of each button. It helps people with disabilities (e.qg.

317

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

blindness) to find the toggle button for start / stop recording. The next
illustration shows the most important code fragments for the voice search
implementation (Figure 6). As mentioned before, the client application
uses WebSpeech API for this purpose. The application firstly creates the
instance of the SpeechRecognition class. This class encapsulates
speech recognition functionality hiding implementation details such as
voice recording by microphone, sending the recorded voice as a byte
array to the Google Cloud Speech-to-Text service and receiving the
transcript responded from the service.

Recording starts by calling the start method on the
SpeechRecognition object (Figure 7). The application will render the talk
immediately after start, simultaneously sending it to the remote service.
The service also responds immediately. The client catches the results by
the onresult event handler. The service response is structured and it is
accessible over the event object. It consists of an array named results.
This array, among other properties, contains the transcribed text held in
the transcript object.

<textarea id="recognizedText" rows= cols=50></textarea>
<button id="k onclick="toggleStartStop () "></button>
<script type=" javascript">

var stat;

|var speschRecognition = new SpeechRecognition(); |

speechRecognition.onresult = function (event) {
for (var i = event.resultIndex; i < event.results.length; ++i)} {
if (event.results[i].isFinal) {
recognizedText.value += event.results[i][0].transcript;
}
}

}

</script>

Figure 7 — Fragment of the client application code for voice search
Puc. 7 — ®pazmeHm rnonb308amernbcKo20 Koda Orisi 201008020 roucKa
Cnuka 7 — ®pasmeHm KrujeHmcKoe Koda 3a er1acosHy rnpempazy

As described, the client application performs the normalization of the
transcript forwarding it to the Vebran service encapsulated in the class
named NormalizationService (Figure 8). The implementation of this
functionality is in the method named getNormalized. This method sends
the transcript previously changed into the query form to the service over
the http get request, and returns the service response.

318

import { Obserwvable } from 'rxjs/Chservable’

@Injectable()
export class NormalzationService {
private serviceUrl = 'http://....../vebran/../"

getNormalized(transcript: Solrguery): Chservable<string> {
let g = transcript.get() ;

var response = this.http.get(this.serviceUrl + q)
.map (response => response.json() as string)
.catch(this.handleError) ;

return response;

}

Figure 8 — Fragment of the client application code for the normalization of the search

query
Puc. 8 — ®pazmeHm nosnb3osamersnbckoeo Koda drnd Hopmanusayuu 3anpoca
Cnuka 8 — ®pazameHm KnujeHmckoe koda 3a Hopmarnusauyujy ynuma

The client application makes the services mutually synchronized by
defining the service call methods (in classes that encapsulate them)
Observable. The next code presents the important parts of the
performSearch method (Figure 9). This method uses the Vebran service
by calling the observable getNormalized method. Further, it
synchronously calls the Solr service and updates the user interface with
the search results.

rerformSearch(transcript:SolrQuery) :void{

let getDlfs = this.NormalzationService.getNormalized(transcript)
.map (query => this.storeResults(query),

) .mergeMap (response => this.SolrService.getResults (query)

) .subscribe (
response => this.updateSolrResults (response),

)

Figure 9 — Using the Vebran service
Puc. 9 — Ucnonb3osaHue cepesuca Vebran
Cnuka 9 — Kopuwhere Vebran cepsuca

319

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

The Vebran response represents the plain string of all search criteria
forms (singular, plural, in all cases) separated with a semicolon: HogyaHa
Ka3Ha;HO8YaHUM Ka3HaMa,HogYyaHa Ka3HO;HO84YaHOM Ka3HOM;HO84aHy
KasHy;novCana kazna;novCanim kaznama;novéana kazno;novéanom
kaznom;novéanom kaznom. Before calling the Solr service, the client
application composes the search query by using the normal forms of the
each word. Consequently, it calls the getResult service method passing
the query and waiting for the service response. Finaly, the returned result
is rendered thorough the synchronized (by the subscrybe function)
updateSolrResults method. The server side receives the search queries
in the pure text (JSON) format.

The server side RESTful controller service acts as a fagade [X] of
the backend system. It propagates the request to the Solr server for
searching the indexed fields. The Solr returns the result records that
contain references to the documents. Further, the server application uses
these references to find the documents stored in the MongoDB. Such
approach provides fast finding of the parts of documents large in size and
with a complex structure. Finally, the service returns the name and the
part of the text that matches the criteria for each resulting document
(Figure 10).

(Clan bt Reievanincat 100

Opste odredbe o novcanoj kazni (1) Novéana kazn:

iz koristoljublja novéana kazna kao sporedna kazna
novéanom kaznom, a sud kao glavnu kaznu izrekne

cErm Relevantnost:85.92 % |

Izvrsenje novéane kazne (1) U presudi se odreduje rc

sud moze dozvoliti da osudeni plati novéanu kaznu 1

Figure 10 — Search result
Puc. 10 — Pe3ynsmamesl noucka
Cnuka 10 — lNpuka3 pe3ynmama npempaze

The client application renders the JSON formatted returned result by
using the CSS specification of each returned field.

For evaluation, there were 100 different searching tasks performed.
The next chart (Figure 11) shows the results. There is a big difference

320

between server side processing and communication time. The server
side processing includes the activities: accepting search request, finding
the similar documents and preparing the responses. The measured
processing time is less than 10e-1 second (bottom part of the chart). The
communication time is measured on the client side from sending the
search request to receiving the search result from the server. The
communication time is more than ten times longer (upper part of the
chart).

100
i
BOD
70
(=i]
50
40
30
20
10 7 - e 7 Vi oy : Z

N]

1 5 9 1317212529333741454953576165629 7377 81858993897

Sl

Figure 11 — Processing vs. communication time
Puc. 11 — Bpewmsi o6pabomku OaHHbIX U 8peMsi obmeHa 0aHHbIMU
Cnuka 11 — Bpeme obpade u speme pasmeHe nodamaka

The other part of the evaluation includes the client side search query
preparations (speech-to-text as well as lexical transformations). The
measured values were similar to the client - server communication time.
During experimentation, the overall responding time of the search service
measured was 1.7 second in average.

Conclusion

The focus of the proposed solution is improving the Serbian e-
government searching service in order to provide advanced search of
huge documents corpuses in an efficient way as well as to enable this
service for people with disabilities. Focusing on the Serbian language
was a big challenge due to its grammar complexity and rich vocabulary of
words, terms, synonyms and homonyms. We tried to overcome these
difficulties on both sides — client and server applications. The client side
application uses the Vebran service that performs an in—depth lexical
analysis of the text responding with the all-possible forms of the sentence
given as the search criteria. The client application uses the normalized
one and sends it to the search engine on the server side.

321

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

The solution uses the Google Cloud Speech-to-Text service as an
appropriate one to obtain searching by voice. As typing is complex for
drivers or passengers and impossible for people with disabilities, this
service is included in the solution. By setting it up in the proper way, this
service presents a high level of accuracy and satisfactory responding
time in both cases - during the evaluation and exploitation.

On the other hand, there are other languages of interest in Serbia
(Albanian, Hungarian, Bulgarian, etc.). Owing to the flexibility, modularity
and low coupling of components of the proposed solution, as well as to a
lot of supporting libraries in the frameworks included, these requests are
feasible on both the client and the server side application. The Google
Cloud Speech-to-Text service supports 120 languages (including the
above enlisted) while the Solr can provide indexing for 36 languages.
Moreover, the Python libraries incorporate an advanced analysis and the
processing features for more than 50 languages.

There are experimentations presented in the paper. Their results
demonstrate respectable processing power of all the services used. The
network speed still represents the main factor for slowing down the
service response.

As document storage, the MongoDB is a flexible solution for holding
non-normalized content. It fits well a great number of documents that
differ in size and content structure. This way, it is appropriate for storing
short content such as messages, comments and emails as well as
books, laws, magazines and similar ones, much greater in size and more
complex in structure. Also, a well-supported communication between the
MongoDB and the Solr (solr-mongoimporter library) provides high
performances in both indexing and searching processes.

The Vebran service authors suggest query expansion with the
sentence returned by it service (Stankovi¢ et al, 2016, pp.112-123) in
order to obtain results that better fit the initial query. On the other hand,
the more terms and forms supported by the service, the better results
returned. For instance, if the user changes the query above with one
more word “eguHuuuja Hog4yaHux ka3Hu” (Definition of amercements), it
practically changes the term. If the service does not support a concrete
collocation of the words in the criteria, the query will not have expected
expansion and consequently, it will not produce the proper search result.
Therefore, the client application uses the service firstly to find
collocations (the terms that represent the ordered sequences of two
words) and secondly, to find forms of the rest of the words contained in a
query. Based on the previous example, it means that the word ‘definition’
will be treated separately from the term ‘criminal acts’. This way, the

322

client application prepared the query for searching the documents written
in Serbian.

The proposed solution is scalable. As the MongoDB and the Solr
hold different information of documents, the system is flexible for
distribution. There can be more than one MongoDB and Solr instances. If
these instances can hold the same documents translated into different
languages, the solution can provide the same searching improvements
for each one. Moreover, both MongoDB and Solr have support for cloud
solutions. The MongoDB offers the Atlas
(https://lwww.mongodb.com/cloud) commercial cloud solution while the
SolrCloud () solution is free of charge. Nevertheless, migration on the
cloud should depend on the size of the document base as well as on the
number of requests (users). If these numbers arise rapidly, the service
providers should start planning in time.

References

Asili, H., & Tanriover, O.0. 2014. Comparison of Document Management
Systems by Meta Modeling and Workforce Centric Tuning
Measures. International Journal of Computer Science, Engineering and
Information Technology, 4(1), pp.57-67. Available at:
https://doi.org/10.5121/ijcseit.2014.4106.

Bird, S., Klein, E., & Loper, E. 2009. Natural Language Processing with
Python.O'Reilly Media.

Mattmann, C., & Zitting, J. 2012. Tika in Action.Greenwich, USA: Manning
Publications.

Owen, S., Anil, R, Dunning, T., & Friedman, E. 2011. Mahout in
Action.Greenwich, CT, USA: Manning Publications Co.

Sammer, E. 2012. Hadoop Operations.O'Reilly Media.

Stankovi¢, R., Krstev, C., Vitas, V., Vulovi¢, N., & Kitanovi¢, O. 2016.
Keyword-Based Search on Bilingual Digital Libraries. LNCS, 10151, pp.112-123.

Svyatkovsky, A., Imai, K., Kroeger, M., & Shiraito, Y. 2016. Large Scale
Text Processing Pipeline with Apache Spark. In Big NLP Workshop, IEEE Big
Data conference.

Simié, G. 2015. E-Government Documents and Data Clustering. In Z.
Mahmood, C. Doliéanin, E. Kajan, D. Randjelovi¢, & B. Stojanovié
Eds., Handbook of Research on Democratic Strategies and Citizen-Centered E-
Government Services.IGl Global, pp.164-191. Available at:
https://doi.org/10.4018/978-1-4666-7266-6.ch010.

Watson, M. 2009. Scripting Intelligence: Web 3.0 Information Gathering
and Processing.Apress, pp.29-32.

Yang, Y., & Chute, C.G. 1994. An example-based mapping method for text
categorization and retrieval. ACM Transactions on Information Systems, 12(3),
pp.252-277. Available at: https://doi.org/10.1145/183422.183424.

323

Simi¢, G. Improving E-government services for advanced search, pp.307-325

VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2019, Vol. 67, Issue 2

YNYYWEHNE CEPBUCA 3JIEKTPOHHOIO NMPABUTENBLCTBA AJTA
PACLUMPEHHOIO NMONCKA

lopan M. Wumny
YHuepcuTeT 060poHbI B I. benrpag, LLkona HaumnoHanbHon o6opoHbl, OTaen
CUMYNSALMK 1 AMCTaHUMOHHOro obyyenus, r. benrpag, Pecnybnvka Cepbus

PYBPUKW: 20.23.00 NHOPpMaLMOHHBLIN MOUCK;

20.23.25 NHdhopMaLumMoHHbIe cuctembl ¢ 6aszammu 3HaHUN
BWO CTATbW: opuruHansHas Hay4Has ctaTes
A3bIK CTATbW: aHrnuinckun

Pe3some:

Ycrnyau anekmpoHHO20 npasumeribcmea 3asuUcsim om apxusuposaHusi
OOKYMEeHmMOo8, KOMOpble 8 OCHOBHOM CKaHUPYOMCS U 4YacmuyHO
onuckigaromcsi € Uenblo obecrieyeHuss MawUHHO20 roucka U
bbiICMpPO20 Haxox0eHUs COOMEEemCcmeyrWuUX 0meemos Kak Orns
rnonb3oeamersnel, mak u 0na compyOHUKO8 3JIEKMPOHHO20
npasumernscmea. [ns ynydweHus cyuwecmsyrouweli cumyauyuu 6b1r10
paspabomaHo 2ubpudHoe peweHuUe, OCHOBaHHOE Ha pe3yrbmamax
npedbidywux uccriedosaHuli. B daHHoU pabome npedcmasneHo
onucaHue Beb-cepsepa, KoMbUHUPYOWE20 pa3nuyHble mexHosoauu,
HarpaesieHHo20 Ha yny4duleHue cmaHOapmHbIX ycry2 roucka u
obecriedeHuss ux QocmynHocmu Ons model € OepaHUYeHHbIMU
B803MOXHOCMSIMU.

Knrodeeble crosea: mekcmoebili MOUCK, CXOXeCmb MeKcmos,
pacrnosHagaHue peyu, Ucrosb3osaHue MemadaHHbIX.

YHATMPEBEHE CEPBUNCA E-BJTAAE 3A HAMPEOHY NMPETPAIY

lopan M. Wumuh
YHuBepauteT oabpaHe y beorpagy, LLikona HaunoHanHe oabpane, Oacek 3a
cvMmynauuje n yyerwse Ha garouHy, beorpag, Peny6nvka Cpbuja

OBNACT: nHdopmatumka
BPCTA UJIAHKA: opyruHanHu Hay4Hu pag
JE3UK YJTIAHKA: eHrnecku

Caxemak:

Ycnyee e-ynipase 3asuce 00 apxusckux OOKymMeHama Koju cy
yanasHOM CKeHupaHu U OefluMUYHO ornucaHu Kako bu ce Moeanu
MawuHcKU npempaxusamu u 6p30 npoHanasumu odeoeapajyhu
o0zoeopu 3a epahaHe u cnyxbeHuke. [a 6u ce nobosbwarsno
rnocmojehe cmare, npedcmassbeHo je XUbpUuOHO peweHe 3acHO8aHO
Ha npemxo0HUM pe3ynmamuma ucmpaxueara. Oeaj pad
npedcmassba onuc 8eb coghmeepckoe peuwera Koje KOMOUHyje
pasnuyume MmexHoso2uje Kako Ha cmpaHu KiujeHma mako U Ha

324

cmpaHu cepeepa, robosbwasajyhu pedosHe ycriyee npempaxueara
U yuHehu ux npucmynadyHum 3a ocobe ca uHeanuoumMemom.

KrbydHe peyu: npempaza mekcma, CHUYHOCM — MEKCMOea,
npeno3Hagare 2080pa, ekcriioamauyuja Memanodamaka.

Paper received on / [lata nonyyeHus pabotsl / JaTtym npujema unaxka: 30.01.2019.
Manuscript corrections submitted on / lata nony4eHus ucnpaeneHHo Bepcumn paboTbl /
[atym goctaBrbana ncnpasku pykonuca: 23.02.2019.

Paper accepted for publishing on / [lata okoH4YaTenbHOro cornacoBaHus pabotsl / Jatym
KOHa4HOr npuxeaTana YnaHka 3a objasrbmBamne: 25.02.2019.

© 2019 The Author. Published by Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2019 ABsTop. Ony6nukoBaHo B «BoeHHo-TexHu4eckuii BecTHUK / Vojnotehnicki glasnik / Military
Technical Courier» (www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). [lJaHHas cTaTbsl B OTKPLITOM 4OCTYynNe n
pacnpocTpaHaeTcst B COOTBETCTBUM C nueH3nen «Creative Commons»
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2019 AyTtop. O6jaBuo BojHoTexHuukmn rnacHuk / Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). OBo je YunaHak oTBOpeHor Npuctyna n auctpudyupa ce y
cknagy ca Creative Commons nuueHuom (http://creativecommons.org/licenses/by/3.0/rs/).

325

Simi¢, G. Improving E-government services for advanced search, pp.307-325

