

307

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25IMPROVING E-GOVERNMENT

SERVICES FOR ADVANCED SEARCH

Goran P. Šimić
University of Defence in Belgrade, National Defense Shool, Department
for Simulations and Distance Learning, Belgrade, Republic of Serbia,
e-mail: goran.simic@va.mod.gov.rs, gshimic@gmail.com,
ORCID iD: https://orcid.org/0000-0002-7563-699X

DOI: 10.5937/vojtehg67-20356; https://doi.org/10.5937/vojtehg67-20356

FIELD: Computer Sciences, IT
ARTICLE TYPE: Original Scientific Paper
ARTICLE LANGUAGE: English

Abstract:

The E-government services depend on many archived documents mostly
scanned and partially described to be machine searchable in order to be
found fast and to offer appropriate responses to citizens and to the
government personnel as well. In order to improve the existing state, the
hybrid solution based on the previous research results is presented. This
paper presents an in-depth view of the Web solution that combines
different technologies on both the client and the server side thus improving
regular search services amd making them accessible to people with
dissabilities (e.g. blindness).

Key words: text search, text similarity, speach recognition, metadata
exploitation.

Introduction
Contemporary document management systems provide different

ways for storing and searching the archived content. However, there are
many documents used in government affairs, archived in formats that are
not appropriate for searching tasks. They are often in a paper format. To
make such archives digitalized, the offered software solutions include
scanning of documents, saving them mostly in PDF/A (portable
document format for archiving) and storing them on some shareable
repository, relational or non-normalized (NoSQL) database, as a core of
some CMS (content management system), or some more advanced
system (Asili & Tanriover, 2014, pp.57-67).

ACKNOWLEDGMENT: The author is grateful for the financial support from the Ministry of
Education, Science and Technological Development of the Republic of Serbia (project
code: III44007).

308

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 For making them searchable, one has to make these documents
machine-readable first. Without converting scanned content into text, the
describing process is inefficient. Fortunately, there are many OCR
(Optical Character Recognition) solutions on the market designed for this
purpose (e.g. ABBYY Fine Rider as a commercial one, or FreeOCR as a
desktop solution, etc.). By using this software, the scanned content,
previously readable only for humans, becomes machine-readable. This is
a prerequisite for performing a text analysis and making a static footprint
for each document. In contemporary CMS, this is usually the last phase
in making their content searchable for further exploitation.

Sometimes this is not enough. Especially in e-government services
where the users (other Web based applications and services as well as
government staff and citizens) demand high reliability and accurate
response. There should be additional information that describes the
documents in a better and more efficient way. Adding this information
needs engagement of extra resources – people who should better
describe the meaning of a document than machines do. Unfortunately,
the personnel responsible for it are not always competent enough.
Moreover, introducing people into the process significantly slows it down.
Consequently, a document will be found only if there is a hundred
percent matching of the title, the key words, or some other specific
property within the search criteria. If IT designers try to make such a
system more flexible, another problem arises: flexibility causes too many
hits (results) that are not useful for further processing.

Overcoming the described situation represents one of the basic
motives for the project. It is not possible to perform advance search in
order to obtain fast fact finding (and offering appropriate responses to the
citizens and to the government personnel) based only on the document
features presented in some standard format (e.g. Dublin Core,
http://dublincore.org/documents/dces/). This paper presents the results,
collected experiences and considerations on this matter.

Problem Description and Existing Solutions
The previously described process for preparing archived content for

further search brings all types of documents to the same level of
complexity. These are text documents presented in different formats
(PDF, DOC, DOCX, ODT, etc.). Different formats include a lot of non-
informational content intended just to keep the content structure and
presentation. Practically, this part of a document does not contain
information interesting for users and introduces information noise

309

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25(Watson, 2009). On the other hand, removing the format data converts a

text from structured into a plain format, which can lead efforts in the
wrong way.

There are already implemented technologies for separating useful
document content from its formatting part. For instance, Apache Tika
(Mattmann & Zitting, 2012) represents a software solution for text
filtering. In other words, it extracts text and metadata from almost every
standard document format. It separates these two and enables their use
for further searching.

On the other hand, there are software solutions focused on grouping
a huge number of distributed documents, based on their similarity. A
good example for such a solution is a combination of Mohout (Owen et
al, 2011) (analyzing and clustering tool) and Hadoop (Sammer, 2012)
(top framework for large scale concurrent processing). Both are the
Apache projects dedicated for improving advanced search capabilities.
Besides open-source solutions, there are also commercial ones. Upon
purchase, contractors deliver released packages as unchangeable black
boxes (Asili & Tanriover, 2014, pp.57-67). Also on demand, they can
customize delivering for specific purpose, which consequently results in
extra costs of software products.

From the technology prospective, there are programming languages
that offer support for advanced search. For instance, the Python libraries
and especially the Natural Language Processing Toolkit (NLTK) (Bird et
al, 2009) have built-in, high-level linguistic functions that provide powerful
processing of linguistic data contained in different document formats
such as XML (xml.etree library), MS Word (pywin32 library), PDF (pypdf
library), RSS feed (feedparser library), email (imap and email libraries).
Moreover, there are libraries that represent interfaces for access to data
stored in DBMS (e.g. mysql-python library), or large document collections
(e.g. pylucene library). Different from other systems, the NLTK can
analyze the content semantically. It offers numerous functions providing
the rule-based inferring on textual content. On the other hand, there are
grammars (knowledge bases stored in fcfg files) that hold definitions of
rules. The NLTK recognizes the meaning of the content by trying to
match the patterns in content’s sentences with the patterns defined in the
rules. Sequentially, each matching produces a true or a false result and
finally, the system can find a meaning of the content analyzed. The NLTK
supports the rule-based grammars formalized by the Propositional Logic
as well as the First Order Logic.

The main disadvantage is that the Python libraries best fit the
content written in English and there is a lot of room for contributions for

310

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 other languages. For instance, one can translate grammars and adapt
them to a language other than English. For instance, there is Serbian
WordNet – the lexical database of Serbian language (Serbian-
dictionary.com/wordnet) [X], based on English WordNet designed by the
Princeton University. Consisting of almost 2500 records named synsets
(words in the basic form enriched with synonyms), it enables a
semantical analysis and translation of the content written in Serbian.
Alternatively, translating sentences into English and analyzing them
afterwards, represents another solution.

Going deeper into the problem domain, there are pure mathematical
solutions that can overcome the non-English content search problem and
avoid complex solutions based on lexical analyses. It depends on
similarity measures performed on statistically transformed text content
and query strings. TFIDF (Yang & Chute, 1994) represents one of the
most used statistical measures. This is a combination of term frequency
(hereinafter TF) and inverse document frequency (hereinafter IDF). TF
represents the number of term occurrences in the text modified in order
to express term significance (Šimić, 2015). A term can be one word (any
part of speech), or a collocation (phrase, or a few words frequently
appearing together). IDF is another measure that expresses significance
of a term regarding to the whole (usually huge) set of documents
considered. This way, IDF acts as a corrective factor for each term
considered. In the further processing, the advanced search system
measures the documents’ similarity based on TFIDF, clustering them
based on their mutual similarity. Finally, the statistical model and indexes
represent the documents that are clustered and ready for search. Then
the system is ready for exploitation, which means it transforms the
search criteria in the same way as documents in order to measure the
similarity with them. The most similar documents represent the search
result. The statistical transformation of the content includes the term
normalization (part of speech should be put in single, neutral / infinitive
form – lemmatized) and elimination of so-called stop words (articles,
pronouns, propositions, conjunctions, and interjections). As it needs the
existence of an appropriate language knowledge base, the conclusion is
that there is no one pure mathematical solution which is language
neutral.

Proposed Solution
Although many technologies support advanced document search,

the results still depend on a search language. In other words, there

311

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25should be institutions responsible for forming textual and lexical

resources at the national level. These resources should be accessible for
advanced search services over the Internet.

On the other hand, if one tries to avoid language dependency by
implementing pure mathematical functions and by using only quantitative
values, without combining the semantical similarity in comparison with
document content and search criteria, the results can be below
expectations. Simplicity represents the biggest advantage of such
systems.

There are several ways for obtaining the communication between
software modules written in different programming languages. The oldest
one is by using language native interfaces. The results can be below
expectations as it can be very complex for implementation and inflexible
in case of language version changes. A more flexible and easier solution
is using already built modules (well known as bridges) that establish the
black – boxed, but reliable communication channel, free of a lot of coding
and cleaned from many implementation details. For instance, if one
wants to couple Java and Python clients, there is a bridge named Py4J
(https://www.py4j.org/) referenced from both clients as a gateway server
application. Several solutions use this approach (Svyatkovsky et al,
2016) for advanced text processing. Moreover, many flexible solutions
offer different ways for cross language communication. One of them is
Apache ActiveMQ (http://activemq.apache.org/) that represents cross
language support for information exchange between application clients
written in different programming languages offering many different
protocols for this purpose.

Considering the facts mentioned above, the proposed solution
should be a modular one, a flexible hybrid system that can establish the
connections with different resources useful for text processing and
information retrieval.

Frontend (Client) application
The basic components of the system are the HTML5 based client

application(s) on the frontend, RESTful based services as a façade
(Façade design pattern) of the backend part, intermediate interfaces and
modules that provide different stages of processing user inputs (speech
to text transformation, text normalization), generating queries and making
searching request sent to different resources. By using HTML5 based
technologies (e.g. Angular and Typescript JS libraries and Bootstrap
frameworks), the client applications can adapt the user interface for any
kind of platform (smartphone, tablet, or laptop).

312

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 The server side delivers a client application on demand. On the
client side, the Web browser hosts it and takes the responsibility for
further data exchange. This way, the client application is platform
independent. The Fat client application performs all necessary
preparations on user input (query). The client application has a full
multimedia support (particularly multimedia recording) and therefore,
there are two possible scenarios of usage – voice and textual search. In
the first case (Figure 1), the client obtains the voice search that can be
especially useful for users on the move. The client application uses the
Google Cloud Text – to – Speech service (hereinafter the GCTtS service,
https://cloud.google.com/text-to-speech/) for this purpose. The client
application uses Web Speech API for recording the voice query, sends it
to the service and receives the textual query for further processing.

Figure 1 – Frontend – Backend communication with speech recognition

Рис. 1 – Взаимодействие пользовательской и серверной частей системы
Слика 1 – Комуникација између клијентског и серверског дела система

The GCTtS service supports almost 150 languages. Among others,

there is a support for Serbian language. On the other hand, the client
application has Serbian as a predefined language. As this is a
parametrized value, it is changeable on demand. The client side
application uses Web Speech API for establishing the communication
channel to the GCTtS service, preparing it for Serbian speech recognition
and for emitting the recorded voice query. On the other hand, the GCTtS

313

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25service is responsible for processing this request and for responding with

the voice query transcript as a result. The gRPC (https://grpc.io/) protocol
represents the flexible framework for this kind of communication. It
enables sending audio files as well as establishing audio streams in the
client–to–server direction. Transcriptions are the results in any case. In
the same time, they represent the queries that client sends to the server
side of the system.

Further, as the Serbian language has rich morphology, in both
scenarios the client application continues with the preparation of a query.
A particular module called ‘normalizer’ processes the query, preparing it
for comparison with the content on the server side of the system. This
‘preprocessing’ includes several transformations: converting verbs into
the infinitive form, nouns into the singular form, removing stop words,
converting nouns into the 1st case (nominative). The client application
uses the service named Vebran (hlt.rgf.bg.ac.rs/VeBran) for this purpose.
This service provides all morphological forms for the term given as an
input in both Cyrillic and Latin letters. As a term can be one or more
words, the Vebran service expands the initial query with these forms. The
client application uses only the basic forms of the words consisted in the
initial query preparing the new one. Further, the client application sends
the transformed query as a RESTful service request to the search engine
on the backend side.

Backend architecture

Backend architecture supports three main functionalities of the
system: extraction of useful content and metadata from original
documents (accessible on the local repositories or over the network),
document indexing and clustering and advanced search (Figure 2).
Firstly, the system processes documents in order to clean all non-
information content and to extract metadata useful for searching. Such
content represents a searchable form of the original document and the
system stores it in the local document storage. There is not heavy load
for local storage as this is a pure textual representation.

Secondly, the system analyzes this searchable formatted content
and performs its indexing. Through this process, the system creates the
new data forms (files) that contain statistical information and indexes
necessary for fast finding and advanced search ability.

314

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2

Figure 2 –Overall backend architecture

Рис. 2 – Архитектура серверной части системы
Слика 2 – Архитектура серверског дела система

The system is ready for advanced search only if it has previously
performed both of the operations described above. It accepts clients’
requests through the Web service forwarding them to the search engine
in the middle of the system. Further, the system returns the search
results in the form which consists of titles, short descriptions and links to
the original documents.

Backend Preparations

As mentioned in the previous section, to be ready for exploitation,
the proposed framework should have the content (documents) prepared
for searching. There are several phases necessary for this purpose. The
text filtering for both the information and the metadata found in different
types of documents is the first one - ‘Filtering’ phase (Figure 3). The
proposed solution uses the Apache Tika framework for this purpose. It
performs the extraction of useful content from many different document
formats (for instance, MS Word, Excel, PDF, various open document
formats etc.). Further, the system creates a JSON formatted plain
document representation from the extracted content and puts it in the
appropriate document storage.

315

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25

Figure 3 – Framework Backend 1st phase - 'Filtering'

Рис. 3 – Первый этап обработки документов на сервере - Очистка
Слика 3 – Прва фаза обраде докумената на серверској страни – пречишћавање

In other words, the proposed solution generates two separate flat

text documents for each document. As they differ in size and structure,
the solution uses the MongoDB (NoSQL document database,
docs.mongodb.com) as storage for non-normalized content. It enables
easy document manipulation. Moreover, it provides indexing and making
descriptive queries on documents. However, it does not have a support
for the Serbian language (only 15 languages are supported) and for this
reason, it is not appropriate for advanced search. Therefore, the solution
uses the Apache Solr (https://lucene.apache.org/solr) indexing and
search platform that can use the Python libraries for this purpose. It
happens in the next phase named ‘Indexing’ (Figure 4).

Figure 4 – Framework Backend 2nd phase - 'Indexing'

Рис. 4 – Второй этап обработки документов на сервере - Индексирование
Слика 4 – Друга фаза обраде докумената на серверској страни – индексирање

316

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 There is a separate Solr core – the logical instance of the interface
created for indexing remote content (stored on the MongoDB). On the
other hand, the MongoDB setup enables the Solr indexing server to
access the documents stored in the database. The data exchange
happens over the Mongo Connector (created by Mongo Labs but
community maintained by YouGov, Plc). For safety reasons, the Solr
performs indexing on temporary created documents’ replicas delivered
through the connector instead the originals stored on the Mongo DB. The
Solr supports the indexing of documents written in Serbian (in both
Cyrillic and Latin letters). Moreover, the framework additionally improves
the indexing by using the Python library named SolrClient. Before
indexing, it enables full specification of particular fields that represent the
documents, mapping them to the appropriate stop-word, synonyms and
normalization filters. This way, it optimizes the indexing process and
improves the searching results. Next is the code fragment that points to
the important parts of the JSON request used for remotely setting up the
Solr server in order to perform the indexing of documents written in
Serbian (Figure 5).

Figure 5 – JSONized request that sets up the Solr server for indexing in Serbian

Рис. 5 – Настройка сербского языка на сервере Solr
Слика 5 – Подешавање Solr сервера за српски језик

The set up statement includes the document’s field to be indexed

(text_rs in the figure above), and links it with the appropriate content
analyzer. Further, the analyzer’s set up consists of different types of
filters. In the example above, there are four different filters included. The
first one is for finding and excluding the Serbian stop words (see Problem
Description) from the indexing process. The second filter is for
recognizing synonyms in the Serbian dictionary. The third one converts
letters to the lower case. The last one preforms the text normalization.
After the customization through the set up request, the Solr is ready for

317

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25indexing. This process includes the text analysis in the same order as

the filters are enlisted in the set up statement.
The system performs indexing on the set of documents stored in the

MongoDB by importing the fields specified for indexing (the Solr uses
solr-mongo-importer and solr-dataimporthandler libraries for this
purpose). In other words, the MongoDB consists of whole documents
while the Solr stores only the fields, their statistical properties, important
for search and references to the documents of origin. This way, the
system keeps the data redundancy at the minimum level.

During the exploitation, if there is a new document stored in the
MongoDB (after passing the Tika extraction), the system updates the
indexes (simple add method call) immediately as the Solr is already set
up. Only if there is another field of interest in the searching process, the
Solr should explicitly reset before indexing.

Exploitation (Case Study)
When the user accesses the system URL, it delivers the reach client

searching application implemented in HTML5 and JS (Bootstrap)
technologies. This way, the client application has an adaptable layout
regarding the concrete display dimensions. The next illustration shows
the user interface adapted for a smartphone (Figure 6). The user
interface contains a text field for typing and showing the search criteria,
navigation buttons, the execution button and the voice search button.

Figure 6 – Adaptable client applicaiton layout

Рис. 6 – Адаптивный пользовательский интерфейс
Слика 6 – Прилагодљив интерфејс клијентске апликације

In the shown example, the user performed voice search. He can

start and stop recording by toggling the voice search button. The client
application uses simple mouse-over JavaScript to generate audio
descriptions of each button. It helps people with disabilities (e.g.

318

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 blindness) to find the toggle button for start / stop recording. The next
illustration shows the most important code fragments for the voice search
implementation (Figure 6). As mentioned before, the client application
uses WebSpeech API for this purpose. The application firstly creates the
instance of the SpeechRecognition class. This class encapsulates
speech recognition functionality hiding implementation details such as
voice recording by microphone, sending the recorded voice as a byte
array to the Google Cloud Speech-to-Text service and receiving the
transcript responded from the service.

Recording starts by calling the start method on the
SpeechRecognition object (Figure 7). The application will render the talk
immediately after start, simultaneously sending it to the remote service.
The service also responds immediately. The client catches the results by
the onresult event handler. The service response is structured and it is
accessible over the event object. It consists of an array named results.
This array, among other properties, contains the transcribed text held in
the transcript object.

Figure 7 – Fragment of the client application code for voice search

Рис. 7 – Фрагмент пользовательского кода для голосового поиска
Слика 7 – Фрагмент клијентског кода за гласовну претрагу

As described, the client application performs the normalization of the

transcript forwarding it to the Vebran service encapsulated in the class
named NormalizationService (Figure 8). The implementation of this
functionality is in the method named getNormalized. This method sends
the transcript previously changed into the query form to the service over
the http get request, and returns the service response.

319

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25

Figure 8 – Fragment of the client application code for the normalization of the search

query
Рис. 8 – Фрагмент пользовательского кода для нормализации запроса

Слика 8 – Фрагмент клијентског кода за нормализацију упита

The client application makes the services mutually synchronized by

defining the service call methods (in classes that encapsulate them)
Observable. The next code presents the important parts of the
performSearch method (Figure 9). This method uses the Vebran service
by calling the observable getNormalized method. Further, it
synchronously calls the Solr service and updates the user interface with
the search results.

Figure 9 – Using the Vebran service

Рис. 9 – Использование сервиса Vebran
Слика 9 – Коришћење Vebran сервиса

320

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 The Vebran response represents the plain string of all search criteria
forms (singular, plural, in all cases) separated with a semicolon: новчана
казна;новчаним казнaма;новчана казнo;новчаном казном;новчану
казну;novčana kazna;novčanim kaznama;novčana kazno;novčanom
kaznom;novčanom kaznom. Before calling the Solr service, the client
application composes the search query by using the normal forms of the
each word. Consequently, it calls the getResult service method passing
the query and waiting for the service response. Finaly, the returned result
is rendered thorough the synchronized (by the subscrybe function)
updateSolrResults method. The server side receives the search queries
in the pure text (JSON) format.

The server side RESTful controller service acts as a façade [X] of
the backend system. It propagates the request to the Solr server for
searching the indexed fields. The Solr returns the result records that
contain references to the documents. Further, the server application uses
these references to find the documents stored in the MongoDB. Such
approach provides fast finding of the parts of documents large in size and
with a complex structure. Finally, the service returns the name and the
part of the text that matches the criteria for each resulting document
(Figure 10).

Figure 10 – Search result

Рис. 10 – Результаты поиска
Слика 10 – Приказ резултата претраге

The client application renders the JSON formatted returned result by

using the CSS specification of each returned field.
For evaluation, there were 100 different searching tasks performed.

The next chart (Figure 11) shows the results. There is a big difference

321

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25between server side processing and communication time. The server

side processing includes the activities: accepting search request, finding
the similar documents and preparing the responses. The measured
processing time is less than 10e-1 second (bottom part of the chart). The
communication time is measured on the client side from sending the
search request to receiving the search result from the server. The
communication time is more than ten times longer (upper part of the
chart).

Figure 11 – Processing vs. communication time

Рис. 11 – Время обработки данных и время обмена данными
Слика 11 – Време обраде и време размене података

The other part of the evaluation includes the client side search query

preparations (speech-to-text as well as lexical transformations). The
measured values were similar to the client - server communication time.
During experimentation, the overall responding time of the search service
measured was 1.7 second in average.

Conclusion
The focus of the proposed solution is improving the Serbian e-

government searching service in order to provide advanced search of
huge documents corpuses in an efficient way as well as to enable this
service for people with disabilities. Focusing on the Serbian language
was a big challenge due to its grammar complexity and rich vocabulary of
words, terms, synonyms and homonyms. We tried to overcome these
difficulties on both sides – client and server applications. The client side
application uses the Vebran service that performs an in–depth lexical
analysis of the text responding with the all-possible forms of the sentence
given as the search criteria. The client application uses the normalized
one and sends it to the search engine on the server side.

322

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 The solution uses the Google Cloud Speech-to-Text service as an
appropriate one to obtain searching by voice. As typing is complex for
drivers or passengers and impossible for people with disabilities, this
service is included in the solution. By setting it up in the proper way, this
service presents a high level of accuracy and satisfactory responding
time in both cases - during the evaluation and exploitation.

On the other hand, there are other languages of interest in Serbia
(Albanian, Hungarian, Bulgarian, etc.). Owing to the flexibility, modularity
and low coupling of components of the proposed solution, as well as to a
lot of supporting libraries in the frameworks included, these requests are
feasible on both the client and the server side application. The Google
Cloud Speech-to-Text service supports 120 languages (including the
above enlisted) while the Solr can provide indexing for 36 languages.
Moreover, the Python libraries incorporate an advanced analysis and the
processing features for more than 50 languages.

There are experimentations presented in the paper. Their results
demonstrate respectable processing power of all the services used. The
network speed still represents the main factor for slowing down the
service response.

As document storage, the MongoDB is a flexible solution for holding
non-normalized content. It fits well a great number of documents that
differ in size and content structure. This way, it is appropriate for storing
short content such as messages, comments and emails as well as
books, laws, magazines and similar ones, much greater in size and more
complex in structure. Also, a well-supported communication between the
MongoDB and the Solr (solr-mongoimporter library) provides high
performances in both indexing and searching processes.

The Vebran service authors suggest query expansion with the
sentence returned by it service (Stanković et al, 2016, pp.112-123) in
order to obtain results that better fit the initial query. On the other hand,
the more terms and forms supported by the service, the better results
returned. For instance, if the user changes the query above with one
more word “Дефиниција новчаних казни” (Definition of amercements), it
practically changes the term. If the service does not support a concrete
collocation of the words in the criteria, the query will not have expected
expansion and consequently, it will not produce the proper search result.
Therefore, the client application uses the service firstly to find
collocations (the terms that represent the ordered sequences of two
words) and secondly, to find forms of the rest of the words contained in a
query. Based on the previous example, it means that the word ‘definition’
will be treated separately from the term ‘criminal acts’. This way, the

323

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25client application prepared the query for searching the documents written

in Serbian.
The proposed solution is scalable. As the MongoDB and the Solr

hold different information of documents, the system is flexible for
distribution. There can be more than one MongoDB and Solr instances. If
these instances can hold the same documents translated into different
languages, the solution can provide the same searching improvements
for each one. Moreover, both MongoDB and Solr have support for cloud
solutions. The MongoDB offers the Atlas
(https://www.mongodb.com/cloud) commercial cloud solution while the
SolrCloud () solution is free of charge. Nevertheless, migration on the
cloud should depend on the size of the document base as well as on the
number of requests (users). If these numbers arise rapidly, the service
providers should start planning in time.

References
Asili, H., & Tanrıover, O.O. 2014. Comparison of Document Management

Systems by Meta Modeling and Workforce Centric Tuning
Measures. International Journal of Computer Science, Engineering and
Information Technology, 4(1), pp.57-67. Available at:
https://doi.org/10.5121/ijcseit.2014.4106.

Bird, S., Klein, E., & Loper, E. 2009. Natural Language Processing with
Python.O'Reilly Media.

Mattmann, C., & Zitting, J. 2012. Tika in Action.Greenwich, USA: Manning
Publications.

Owen, S., Anil, R., Dunning, T., & Friedman, E. 2011. Mahout in
Action.Greenwich, CT, USA: Manning Publications Co.

Sammer, E. 2012. Hadoop Operations.O'Reilly Media.
Stanković, R., Krstev, C., Vitas, V., Vulović, N., & Kitanović, O. 2016.

Keyword-Based Search on Bilingual Digital Libraries. LNCS, 10151, pp.112-123.
Svyatkovsky, A., Imai, K., Kroeger, M., & Shiraito, Y. 2016. Large Scale

Text Processing Pipeline with Apache Spark. In Big NLP Workshop, IEEE Big
Data conference.

Šimić, G. 2015. E-Government Documents and Data Clustering. In Z.
Mahmood, Ć. Dolićanin, E. Kajan, D. Randjelović, & B. Stojanović
Eds., Handbook of Research on Democratic Strategies and Citizen-Centered E-
Government Services.IGI Global, pp.164-191. Available at:
https://doi.org/10.4018/978-1-4666-7266-6.ch010.

Watson, M. 2009. Scripting Intelligence: Web 3.0 Information Gathering
and Processing.Apress, pp.29-32.

Yang, Y., & Chute, C.G. 1994. An example-based mapping method for text
categorization and retrieval. ACM Transactions on Information Systems, 12(3),
pp.252-277. Available at: https://doi.org/10.1145/183422.183424.

324

 V
O

JN
O

T
E

H
N

IČ
K

I G
LA

S
N

IK
 /

M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L

C
O

U
R

IE
R

, 2
01

9,
 V

ol
. 6

7,
 Is

su
e

2 УЛУЧШЕНИЕ CЕРВИСА ЭЛЕКТРОННОГО ПРАВИТЕЛЬСТВА ДЛЯ
РАСШИРЕННОГО ПОИСКА

Горан П. Шимич
Университет обороны в г. Белград, Школа национальной обороны, Oтдел
симуляции и дистанционного обучения, г. Белград, Республика Сербия

РУБРИКИ: 20.23.00 Информационный поиск;
 20.23.25 Информационные системы с базами знаний
ВИД СТАТЬИ: оригинальная научная статья
ЯЗЫК СТАТЬИ: английский

Резюме:

Услуги электронного правительства зависят от архивирования
документов, которые в основном сканируются и частично
описываются с целью обеспечения машинного поиска и
быстрого нахождения соответствующих ответов как для
пользователей, так и для сотрудников электронного
правительства. Для улучшения существующей ситуации было
разработано гибридное решение, основанное на результатах
предыдущих исследований. В данной работе представлено
описание Веб-сервера, комбинирующего различные технологии,
направленного на улучшение стандартных услуг поиска и
обеспечения их доступности для людей с ограниченными
возможностями.

Ключевые слова: текстовый поиск, схожесть текстов,
распознавание речи, использование метаданных.

УНАПРЕЂЕЊЕ СЕРВИСА Е-ВЛАДЕ ЗА НАПРЕДНУ ПРЕТРАГУ

Горан П. Шимић
Универзитет одбране у Београду, Школа националне одбране, Одсек за
симулације и учење на даљину, Београд, Република Србија

ОБЛАСТ: информатика
ВРСТА ЧЛАНКА: оригинални научни рад
ЈЕЗИК ЧЛАНКА: енглески

Сажетак:

Услуге e-управе зависе од архивских докумената који су
углавном скенирани и делимично описани како би се могли
машински претраживати и брзо проналазити одговарајући
одговори за грађане и службенике. Да би се побољшало
постојеће стање, представљено је хибридно решење засновано
на претходним резултатима истраживања. Овај рад
представља опис веб софтверског решења које комбинује
различите технологије како на страни клијента тако и на

325

Š
im

ić
, G

. I
m

pr
ov

in
g

E
-g

ov
er

n
m

en
t s

er
vi

ce
s

fo
r

ad
va

nc
e

d
se

ar
ch

, p
p.

3
07

-3
25страни сервера, побољшавајући редовне услуге претраживања

и чинећи их приступачним за особе са инвалидитетом.

Кључне речи: претрагa текста, сличност текстова,
препознавање говора, експлоатација метаподатака.

Paper received on / Дата получения работы / Датум пријема чланка: 30.01.2019.
Manuscript corrections submitted on / Дата получения исправленной версии работы /
Датум достављања исправки рукописа: 23.02.2019.
Paper accepted for publishing on / Дата окончательного согласования работы / Датум
коначног прихватања чланка за објављивање: 25.02.2019.

© 2019 The Author. Published by Vojnotehnički glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2019 Автор. Опубликовано в «Военно-технический вестник / Vojnotehnički glasnik / Military
Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и
распространяется в соответствии с лицензией «Creative Commons»
(http://creativecommons.org/licenses/by/3.0/rs/).

© 2019 Аутор. Објавио Војнотехнички гласник / Vojnotehnički glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово је чланак отвореног приступа и дистрибуира се у
складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/).

