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Abstract:

Introduction/purpose: This paper presents coincidence and common fixed
points of Suzuki type (a.—1)— multivalued operators on b-metric
spaces.

Methods: The limit shadowing property was discussed as well as the well-
posedness and the Ulam-Hyers stability of the solution for the fixed point
problem of such operators.

Results: The upper bound of the Hausdorff distance between the fixed
point sets is obtained. Some examples are presented to support the
obtained results.

Conclusion: The application of the obtained results establishes the
existence of differential inclusion.

Keywords: b-metric space, multi-valued mapping, fixed point problems,
Ulam-Hyers stability, initial value problem.

Introduction and preliminaries

Euclidean distance is an important measure of "nearness” between
two real or complex numbers. Fréchet (1905) introduced the concept of a
metric to obtain the distance between two arbitrary objects. Since then,
this notion has been generalized further in one to many directions, see
(An et al, 2015a), among which one of the most important generalizations
is the concept of a b-metric initiated by (Czerwik, 1993). For more details
of b-metric spaces see (Aleksi¢ et al, 2018), (Hussain et al, 2012), (Kirk &
Shahzad, 2014) and the references therein.

Definition 1.1 Let X be a nonempty set. A mapping d:X XX —
[0,4+) is said to be a b-metric on X if there exists some real constant
b > 1 such that for any x, y, z € X, the following condition holds:

a4): d(x,y) =0ifand only if x = y;

az): d(x,y) = d(y, x);

as): d(x,y) < bd(x,z) + bd(z,y)

The pair (X,d) is termed a b-metric space with b-metric constant b.
Every metric is b-metric for b =1 but the converse does not hold in
general (Ciri¢ et al, 2012), (Czerwik, 1993), (Singh & Prasad, 2008).

In the sequel, the letters, R*, R, N and Z* will denote the set of all
nonnegative real numbers, the set of all real numbers, the set of all
natural numbers and the set of all nonnegative integer numbers,
respectively.
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Let (X,d) be a b-metric space and P(X) a collection of all subsets of
X. Denote CI(X),CB(X), and K(X) by the collection of closed, closed and
bounded and compact subsets of X, respectively.

Let U,V € P(X). The gap functional D, the excess generalized
function p,the Pompeiu-Hausdorff generalized functional H,and the
functional § induced by a b-metric d on X are defined as:

infy ey peyd(u,v),ifU#V # @ # U,
(1) DU, V) = {o’ifU =V =0,
oo, otherwise.

Sup,eyD(W, V),ifU =V =0 # U,
(2) p(U, V)= {0, ifu =0,
0,ifV =0,U # (.

max{p(U,V),p(V,U)},if U #V + @ # U,
() HWU,V) = ¥O,ifU =V =09,
o0, otherwise.
supyeyverd(w, v),ifU #V = @ # U,
5(U,V) = {O,ifU =V=0,
o0, otherwise.

An et al (2015b) studied the topological properties of b-metric
spaces and stated that a b-metric is not necessarily continuous in each
variable. If a b-metric is continuous in one variable, then it is continuous
in other variable. A ball B(uy,€) ={v € X:d(uq,v) <€} in a b-metric
space (X, d) is not necessarily an open set. A ball is an open set if d is
continuous in one variable.

Let (X,d) be a b-metric space. We call (f,T) a hybrid pair of
mappings if f: X - X and T: X - CB(X).

A mapping f is called a contraction if there is some real constant
r € [0,1) such that for any u, v € X, we have d(fu, fv) < rd(u,v).

A point u in X is a fixed point of f, if u = fu, a fixed point of T, if
u € Tu, a coincidence point of (f,T) if fu € T, and a common fixed point
of (f,T) if u = fu € Tu. Denote F(f), F(T) by the fixed points of f and T,
respectively, and C(f,T) and F(f,T) by coincidence and common fixed
point of (f,T), respectively.
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Definition 1.2,compare with (Abbas et al, 2012). A pair (f,T) is w-
compatible if f(Tu) € T(fu) for all uwe€ C(f,T). The mapping f is T-
weakly commuting at some point u € X if f2(u) € T(fu).

Using an axiom of choice, Haghi et al (2011) proved the following
lemma.

Lemma 1.3 (Haghi et al, 2011) Let f: X — X be a self-mapping of a
nonempty set X, then there exists a subset E € X such that f(E) = f(X)
and f is one-to-one on E.

Lemma 1.4, compare (Rus et al, 2003). Let (X,d) be a b-metric
space, U,V € P(X). If there exists a A > 0 such that for each u € U, there
exists a v € V such that d(u,v) < 4, and for each v € V, there exists a
u € U such that d(u,v) < A4, then H(U,V) < A

We need following lemmas given in (Czerwik, 1993), (Singh &
Prasad, 2008).

Lemma 1.5 Let (X,d) be a b-metric space,u,v € X, {u,} a sequence
in X and U,V € CB(X). The following statements hold:

b.-: (CB(X),H) is a b-metric space and (CB(X),H) is complete
whenever (X, d) is complete;

bo-: D(u,V) < H(U,V) forallu € U;

bs-: D(u,U) < bd(u,v) + bD(v,U);

bs-: for h>1 and ue U, there is a veV such that d(u,v) <
hH(U,V);

bs-: for every h > 0 and u € U, there is a v € V such that d(u,v) <
H(U,V) + h;

be-: D(u,U) = 0 ifand only ifu € U = U;

b7 d(ug, uy) < bd(ug, u)+... +b™ 1 d Uy, Up—1) + D" 1d (Up_1, Up);

bs-: {u,} is a Cauchy sequence if and only if for € > 0, there exists
n(e) € N such that for each n,m > n(e) we have d(u,, u,,) < €;

be-: {u,} is a convergent sequence if and only if there exists u € X
such that for all € >0 there exists n(e) € N such that for all n >
n(e), d(u,,u) <e.

A sequence {u,} is convergent to ueX if and only if
lim,_, . d(u,, u) =0.
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A subset Y c X is closed if and only if for each sequence {u,} in Y
that converges to an element u, u €Y. A subset Y c X is bounded if
diam(Y) is finite, where diam(Y) = sup{d(u,v):u,v € Y}. A b-metric
space (X,d) is said to be complete if every Cauchy sequence in X is
convergentin X.

Following are some known classes of mappings given in (Berinde,
1993), (Berinde, 1996), (Berinde, 1997), (Bota et al, 2015), (Rus, 2001).

Let ¢, ¢: R* - R*, then

ci- W, = {1,[): Y is increasing, nlirf Y™(t) =0,forany t > 0}.

The elements in this class are called comparison functions. If
Y € W, then the n™ iterate of ¢ is a comparison function, i is continuous
att=0,and yY(t) <t foranyt > 0.

Co-t W, = {Y: X1 Y™ (t) < +ooforallt > 0 andyp is nondecreasing}.
Y: Y is increasing, there existsany € N,a € (0,1),
c3-: W, = {asequence u, > 0 such that };,_; u, < +ocand
Y1) < ap™(t) +uy foralln >ng, t >0
is called the class of (¢) —comparison functions.

b > 1,asequence u, > 0 such that },,_; u, < 4+oand
bt IyYnti(e) < ab™Pp(t) + u, foralln > ny, t >0
is known as the class of (b) —comparison functions.
Note that W, c W,.If b = 1, then ¥; = ¥,.

P: Y is increasing, there exists any € N,a € (0,1),
C4': LIJ4_ =

Lemma 1.6 (Berinde, 1993) If Yy € ¥, with b > 1, then the series
Y=o b™Y"(t) converges for all t € R*, and 1,(t) = Xn=o b™Y"(t) is
increasing and continuous at t = 0.

In the light of the above lemma, ¥, € W¥;.

Lemma 1.7 (Pé&curar, 2010) If Y € ¥, with b > 1, and {a,} € R* is
such that lim a, = 0, then

n-+oo
oo

lim pk-mpk="(a,) = 0.

k—+00 Lup =g

Example 1.8 Let y(t) = qt, where q € [0,1) and t € R*. Consider
Yr_o Uk(t), where uy(t) = b*yX(t) and b > 1. If t =0, then Yp_, ug(t)
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converges frivially. If t > 0, then by the generalized ratio test (Berinde,
1993), Y=o ux(t) is convergent for any t> 0. Hence for some n, €
N, b1+ 1(t) < ab®™P?(t) + u, for all n > n, and t > 0. Consequently,
we have y € WY,.

The Banach contraction principle (BCP) (Banach, 1922) states that a
contraction mapping on a complete metric space has a unique fixed
point.

Let a: X x X - R*. A mapping f: X - X is called an a —admissible if
for all u,v € X, a(u,v) > 1 implies that a(fu, fv) > 1. Samet et al (2012),
Theorem 1, obtained the following generalization of BCP.

Theorem 1.9 Let (X,d) be a complete metric space and f:X - X
an a —admissible mapping. Suppose that there is an element u, in X with

a(ug, fug) = 1. If for any u,v € X, there exists Y € ¥, such that
a(u,v)d(fu, fv) < Y(d(u,v)),then F(f) is nonempty provided that f is
continuous.

Suzuki (2008) provided an interesting generalization of BCP that
characterizes metric completeness.

For some other important generalizations of BCP, see (Berinde,
1993), (Berinde, 1996), (Berinde, 1997), (Bhaskar & Lakshmikantham,
2006), (Nieto & Rodriguez-Lopez, 2005), (Nieto & Rodriguez-Lopez,
2007), (Ran & Reurings, 2004) and references therein. A number of fixed
point theorems have been obtained in b-metric spaces (Aleksi¢ et al,
2019a), (Aleksic et al, 2019b), (Ali & Abbas, 2017), (An et al, 2015a), (An
et al, 2015a), (Ciric’: et al, 2012), (Chifu & Petrusel, 2014), (Czerwik,
1993), (Karapinar et al, 2020), (Latif, 2015), (Mitrovi¢, 2019), (Pacurar,
2010).

The development of the metric fixed point theory of multivalued
mappings was initiated by (Nadler, 1969). He introduced the concept of
set-valued contraction mappings and extended the Banach contraction
principle to set-valued mappings by using the Hausdorff metric as
follows.

Theorem 1.10 Let (X,d) be a complete metric space. If a
multivalued mapping T: X — CB(X) satisfies H(Tu,Tv) < rd(u,v) for all
u,v € X and for some r € [0,1), then F(T) is nonempty.

The fixed point theory of multivalued mappings provides a useful
machinery to analyze the problems of pure, applied and computational

443

Abbas, M. et al, Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on b-metric spaces, pp.438-487



i" VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2020, Vol. 68, Issue 3

mathematics which can be reformulated in the form of an inclusion for an
appropriate multivalued mapping.

For more results in this direction, we refer to (Abbas et al, 2012),
(Abbas et al, 2013), (Asl et al, 2012), (Rus et al, 2003), (Mitrovi¢ et al,
2020).

Khojasteh et al (2014) proved a new type of the fixed point theorem
for multivalued mappings in metric spaces as follows.

Theorem 1.11 Let (X,d) be a complete metric space. If a
multivalued mapping T: X — CB(X) satisfies

D(u,Tv) + D(v,Tu)
1+6w,Tu)+6(v,Tv)

H(Tu, Tv) < ( )d(u,v) (1.1)

for all u,v € X, then F(T) is nonempty.

Recently, Rhoades (2015) improved the result of Khojasteh for two
multivalued mappings as follows.

Theorem 1.12 (Rhoads, 2015) Let (X,d) be a complete metric
space. If multivalued mappings S,T:X — CB(X) satisfy H(Su,Tv) <
ngr(w, v)mgr(u,v) forallu,v € X, then F(T) n F(S) is nonempty, where

_ (max{d(w,v),D(u,Sw) + D(v,Tv),D(u,Tv) + D(v, Su)}
ngr(u,v) = ( 1+6w,Su)+6(w,Tv) ) (1.2)
D(u,Tv) + D(v,Su) '
mg (U, v) = max {d(u, v), D(u,Su), D (v, Tv), > }

If S =T in above theorem then we get the following result.

Theorem 1.13, (Rhoads, 2015). Let (X,d) be a complete metric
space. If a multivalued mapping T:X — CB(X) satisfiesfor all u,v €
X,H(Tu,Tv) < npr(u,v)mrr(u,v), then F(T) is nonempty.

Let a:X xX - Rt and U,V € P(X). Define
a.(U,V) = infyeypeva(u, v).

A multivalued mapping T:X — Cl(X) is called a,—admissible
mapping if for any u,v € X,a(u,v) > 1 implies that «a,(Tu,Tv) > 1. The
concepts of a, —admissible mapping coincides with « —admissible
mapping in case of a single valued mapping.
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Asl et al (2012), Theorem 1, defined (a,— ) — contractive
multifunctions and proved the following result.

Theorem 1.14 Let (X,d) be a complete metric space and T: X —
Cl(X) an a, —admissible mapping that satisfies a,(Tu, Tv)H(Tu,Tv) <
Y(d(u,v)) for all u,v € X and ¢ € ¥,. Moreover, if there exists a uy € X
and u, € Tuy such that a(ug,uq) > 1, then F(T) is nonempty provided
that if {u,} is a sequence in X such that a(u,,u,+;) > 1 for all n and

lim u, = u, then a(u,,u) > 1 for all n.
n—-+oo

In what follows, we assume that a b-metric d is continuous in one
variable.

Definition 1.15, compare with (Rus et al, 2003). Let (X,d) be a b-
metric space. A mapping T:X — Cl(X) is called a multivalued weakly
Picard operator (MWP operator), if for all u € X and for some v € Tu,
there exists a sequence {u,} satisfying (a1) uo =uw,u; = v, (a2) U1 €
Tu, for all n > 0, (as) {u,} converges to some z € F(T). The sequence
{u,} satisfying (a;) and (ay) is called a sequence of successive
approximations (ssa) of T starting from (u,v). If T is a single-valued
mapping, then we call it a Picard operator if it satisfies (a4) to (as).

Recently Bota et al (2015) proved the fixed point theorem for (a, —
1) — contractive multivalued mappings as follows.

Theorem 1.16 Let (X,d) be a complete b-metric space, a: X X X —
R* and T:X - CI(X) an a, —admissible multivalued operator that
satisfies

a,.(Tu, Tv)H(Tu, Tv) < Y(d(u,v))

for all u,v€X and y € ¥,. Assume that there exists a u, € X and
uy € Tug such that a(ug,uq) > 1. Then T is a MWP operator provided that
if there is a sequence {u,} in X such that u,, - u, then a(u,,u) > 1 for all
n € Nj.

A mapping T: X = Cl(X) is called (a, — f) —admissible mapping if
u,v € X,a(fu, fv) > 1 implies that a,(Tu, Tv) > 1.
Let (X,d) be a b-metric space, g: X - X and T: X - Cl(X). Set
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max{d(u,v),D(u,Tu) + D(v,Tv),D(u,Tv) + D(v,Tu)}
b(6(u,Tu) + 6(v, Tv) + 1) '

M7 (u,v) = max {d(u, v), D(w, Tw), D (v, Tv), D(u, Tv)z-:)D(v, Tu)},

Nr(u,v) =

and
N _ max{d(gu, gv), D(gu, Tu) + D(gv, Tv), D(gu, Tv) + D(gv, Tu)}
or (W v) = b(8(gw, Tw) + 6(gv, Tv) + 1)

D(gu,Tv) + D(gv,Tu)
My r(u,v) = max {d(gu, gv), D(gu, Tu), D(gv, Tv), T }

We now give the following definitions.
Definition 1.17 Let (X,d) be a b-metric space. A mapping T:X —

ClL(X) is called Suzuki type (a,. — ) — multivalued operator if there exists
ay € ¥, such that

%D(u, Tu) < bd(u,v) (1.3)

implies
a,(Tu, Tv)H(Tu, Tv) < max{1, Ny (u, v)}p (M (u, v)) (1.4)
forallu,v € X.

If in the above definition we replace a mapping T by a single valued
mapping f: X — X, then we call it a Suzuki type (a, — y) — operator.

Definition 1.18 Let (X, d) be a b-metric space. A hybrid pair (g,T) is
called a Suzuki type (a, — ) — hybrid pair of operators if there exists a
Y € ¥, such that

1
ED(gu, Tu) < bd(gu, gv) (1.5)
implies

a,(Tu, Tv)H(Tu, Tv) < max{l, Ny r(u, U)}Il)(Mg'T (u, v)) (1.6)

forallu,v € X.
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In case T is replaced by a single valued mapping f: X — X, we call it
a Suzuki type (a, — y) — pair of operators.

Fixed point of Suzuki type (a, — ) — multivalued
operators on b-metric spaces

In this section, we prove that Suzuki type (a, — ) — multivalued
operators are MWP operators.

Theorem 2.1 Let (X,d) be a complete b-metric space, a: X X X —
R* and T:X - Cl(X) a Suzuki type (a,— ) —multivalued operator.
Further, assume that T is a, —admissible mapping and there exists
X9 € X and x; € Tx, such that a(x,,x;) > 1. If for any sequence {x,}
converging to x in X, we have a(x,,x) > 1 foralln € Z*, then

d-: T is an MWP operator.

d,-: If there is some u € F(T) such that u # z and a(z,u) > 1, then

d(z,u) > 7 provided that 1 < Ny (x,y) for all x,y € X.

Proof. (d,) By the given assumption, there exists x, € X and
X1 € Tx, such that a(xg,x)>1. If xo =x,, then x, € Tx,. Define a
sequence {x,} in X by x,, = x; = x, for all n € Z*. Thus x,, € Tx,, for all
n >0 and {x,} converges to x =x, € F(T) and hence T is an MWP
operator. Let x, # x;. Since T is a, — admissible mapping, a.(xy,x;) > 1
implies that a,(Tx,, Tx;) >1. As T is a Suzuki type (a,—vy)—
multivalued operator and

1
ED(xo'Txo) < d(xp, x1) < bd(xg, x1), (2.1)

so from (1.4), we obtain

< D(x1,Tx1) < H(Tx,Txq) < a,(Txg, Tx1)H(Txg, Tx1)
< max{1, Nz (xo, x1)}¢p (Mr (o, x1))

1 max{d (xo, x1), D (xo, Txo) + D (x1, Tx1), D(xo, Tx1) + D(xy, TX)}
_ S b(1+ &8(xo, Txo) + 6(xq, Txy1))

P (max {d(xo, x1), D (xg, Txg), D(x1, Txy),

D(xq, Txy) + D (x4, Txo)}>
2b
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1 max{d(xq, x1), d(xg, %1) + D(x1, Tx1), bd(xg, %) + bD (x4, Tx1)}
B ma"{ ( b1+ d(xgx) + Dy, Tx) )}

P (max {d(xo, x1), D (x1, Txq), d(xp, x1) +2D (x4, TxJ})
(a0 70

1+ d(xg,%x1) +D(x1,Txy)

d(xo,x1) + D(x, Tx1)})

) P (max {d(xo,xl),D(xl,Txl), >

< Y(max{d(xo, x1), D (x1, Tx1)}).
That is
0 < D(x;, Txy) < Y(max{d(xo, x1), D(x1, Tx1)}). (2.2)
If max{d (xo, 1), D (1, Tx,)} = D (x5, Txy), then (2.2) implies that
0 < D(xy, Txy) < Y(D(xy, Txy)). (2.3)
As D(x;,Tx;) > 0 and ¢ € ¥, (2.3) give
0 < D(xy,Tx;) < Y(D(x1,Txy)) < D(x1,Txy),

a contradiction. Hence max{d(xy, x1), D(x1,Tx1)} = d(xq,x;1). From (2.3),
it follows that

0 < D(x1,Tx1) < P(d(x0,x1)). (2.4)
Let g > 1. We may choose x, € Tx; such that
0 < D(x1,Tx1) < d(x1,%2) < qD(xq, Tx1) < qp(d(x9,x1)).
That is
0 < d(x1,%2) < qD(x1,Tx1) < qip(d(xo, x1)). (2.5)
Since a(xy,x3) = a(Txy, Tx) >1, we get a(Tx,Tx,) > 1. Set

co = d(xg,x1) > 0, then from (2.5) we get x; # x, and d(xy,x;) < qy(cp).
Asy eV¥,, so

P(d(xy,x2)) < P(qyp(eo))- (2.6)
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_ p(ay(co)

If g = ————=, then by (2.6) g; > 1. Now, if x, € Tx, then the proof

P(d(x1,x2))
is finished. Let x, ¢ Tx,. Note that

1
ED(XLTXD < d(xq,x3) < bd(xq,x3).

By (1.4)

< D(x,,Txy) < H(Tx1,Txy) < a,(Txq, Txy)H(Txq, Txy)

< max{1, N (xy, x2) W (M7 (x4, x2))
max {1 (maX{d(xl’ xZ)' D(xl’ Txl) + D(xZ' sz)' D(x1, TXz) + D(Xz, Tx1)}

b(1 + 8(x;, Txy) + 8(x, Txy))

D (x4, Txy) + D(x5, Txq)
2b
max {1 (max{d(xl, x3),d(x1,%3) + D(x2, Tx3), b(d (%1, x3) + D (x5, Tx3))}
<

P <max {d(xl, x5), D(x1,Tx,), D (x5, Tx,),

b(1 + d(xq1,x5) + D(x3,Tx3))

d(x1,x;) + D(x,, sz)})

¥ (max{dCe, 1), d G, 1), D T2, ’

i (222G

Y <max {d(xl, %), d (%1, %), D (x5, Txy), d(x1,x2) +2D(x2, sz)}>

< Y(max{d(xy, x2), D(x3, Tx3)}).

That is

0 < D(xy, Txy) < Y(max{d(xy, x2), D (xz, Tx;)}). (2.7)
If max{d(x;,x5),D (x5, Tx;)} = D(x,, Tx,), then
0 < D(x3,Txy) < Y(D(xy,Txy)). (2.8)
Now D(x,,Tx,) > 0,y € ¥, and (2.8) give
0 < D(xy,Txy) < Y(D(x;,Txy)) < D(x,,Txy),
a contradiction. Hence

0 < D(x2, Txz) < P(d(x, x3)). (2.9)

)
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We may choose x; € Tx, such that
0 < D(xz, Txp) < d(¥z,%3) < q1D (%2, Tx,) < q1p(d(xy, X2)) = Y(qip(co))-
That is
0 <d(xp,x3) < q1D(x2,Txp) < 1P (d(xq,x3)) = 1/1(q1,[)(c0)). (2.10)

As a(xy,x3) > a(Txq,Tx,) > 1, so a(Tx,, Tx3) > 1. From (2.10), we
get x, # x5 and

W(d(xz,%3)) < P*(qp(co)). (2.11)
_ Y*(ay(co)
Set q, = TR > 1. If x3 € Tx3 then we are done. Suppose that

x3 & Tx3. Similarly, we obtain x, € Tx; such that

0 < d(x3,x1) < q1D(x3,Tx3) < g2 (d(x2,%3)) = wz(qw(c()))- (2.12)

Continuing this way, we can obtain a sequence {x,} in X such that
Xns1 € Txp, Xpy1 # Xn, (X1, Xne2) = 1, and it satisfies:

0 < D(xpt1, Txpt1) < P(A(Xn Xny1)) (2.13)

and

0 < d(¥n+1, ¥ns2) < P™(q(co)) (2.14)
for all n € Z*. From (2.14), for n,m € N with m > n, we have

d(xn' xm) < bd(xn' xn+1) + bzd(xn+1: xn+2)+- -
+b™ () Xm-1) + DA (X1, Xm)
< by (qy(co)) + b*Y™ (qip(co) ) +. -
+f’”‘”¢m‘3(q¢(60)) + b2 (q(co))
= 57z (0" (g (o)) + MY (g9 (o)) -

+b™ 22 (q(co)) )
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m-—2

1 o
=z . bi(av(e)

n-2
=1 biwi(qwo))—; bii(qp(eo) |
Thatis
1 m-—2 n-2
At ) <z | D DY ab(e) = ) b (ap(er) | (2.15)
i=0 i=0

Set S, = XLy by (qy(cy)). Then from (2.15) we obtain that

1
d(xn: xm) < bn__z(sm—z - Sn—z)- (2-16)

By Lemma 1.6, X2, b'i(t) converges for any t > 0. Hence
lim S,_, =S5 for some SeR* If b=1, then from (2.16) we get

n-+o
lim d(x,, xy) < lim S,y — lim S,,_; = 0.If b > 1, then from (2.16) we
n-+oo n—+oo n—-+o

have

=0

1 Sim—
F(Sm—l_sn—l) < lim ==

llr_Pood(xn: xm) < nl_l>m n—-+oo bn_l

n- +co

for all m,n € N. Hence {x,} is a Cauchy sequence in X. There exists
z € X such that

lim d(x,,z) =0. (2.17)

n—-+oo

Now we show that z € F(T). If D(z,Tz) > 0, then we claim that one
of the following two inequalities

1
5D Txy) < bl (37, 2) (2.18)
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1
ED(an,Tan) < bd(xp+41,2) (2.19)

holds for all n € Z*. Assume on the contrary that there exists an n, € Z*
such that

1
ED(xno'Txno) > bd(xp,, 2) (2.20)

and
1
5D Cng1, Tang1) > bd (g 11, 2). (2.21)

Now from (2.13), (2.20) and (2.21), we have

d(nys Xng+1) < bd (g, 2) + bd(Z, Xy 1)
< 2D (ng Tny) + 5 D (g1, T +1)

< 2 d (g Xnge1) +59(dCngs Xnge1))

< 2 d(Xng Xngr1) + 5 A (g, Xng 1)

= d(xno’ xn0+1)

a contradiction. Hence either (2.18) or (2.19) holds for an infinite subset
N; of Z*. By the given assumption, it follows that a(x,,z) > 1. As T is
a, —admissible, a(Tx,,Tz) > 1. Now if (2.18) holds for all n € Z*, then
from (1.4) we get

D(xp41,Tz) < H(Tx,,Tz) < a,(Tx,, Tz)H(Tx,, TZ)
< max{1, Ny (xp,, 2) (M7 (xy, 2))
1 max{d(x,, z), D (x,, Tx,) + D(z,Tz),D(x,,Tz) + D(2,Tx,)}
_ max{ ( b(1 + 8(xn, Txn) + 8(z,T2)) )}
P (max {d(xn, z),D(x,, Txy), D(z,TZ), D(xn T2) 22D < Txn)})

{ (max{d(xn,z), d(xp, Xp41) + D(2,T2),D(x,, TZz) + d(z, xn+1)})}
maxi 1,
<

b(1 + d(xp, xpe1) + D(2,T2))

D(x,,Tz) +d(z, xn+1)}> .

P (max d(x,,2),d(xp, Xps1), D(2,TZ), b
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On taking limit as n —» +o, we have

lim D(x,44,TZ)
n—-+oo

max{d(xn,2),d(Xn,Xn+1)+D(2,T72),D(Xn,TZ)+d(Z,Xn+1)}
max {1’ ( b(1+d(xXn,Xn41)+D(2,T2)) )}

< lim

St D(xn,TZ)+d(Z,Xn+1)
">+ (max {d (n, 2), d(n, Xns1), D (2, T2), el

As y is continuous at 0,9 € ¥, and D(z,Tz) > 0, we have

1 D(z,Tz)
"b(1+D(z,Tz))

D(z,Tz) < max{ }l/J(D(Z, Tz)) =y(D(z,Tz)) < D(z,Tz).

a contradiction. Consequently,z € Tz. Similarly, we obtain z € Tz when
(2.19) holds for an infinite subset N; of Z*.
To prove part (d ), let u € F(T) such that u # z and a(z,u) > 1.

Since T is a, —admissible, a,.(Tz, Tu) > 1. Now %D(z, Tz) =0<d(zu)
implies that

d(z,u) < bD(z,Tz) + bD(Tz,u) < bH(Tz,Tu)
< ba,(Tz, Tu)H(H(Tz, Tu))

{ (max{d(z, u),D(z,Tz) + D(u,Tu),D(z, Tu) + D(u, T z)})}
bmaxi1,

< b(1+6(z,Tz) + 8(u, Tu))

Y (max {d(z, W), D(z,Tz), D(u, Tw), D(z, Tu)z-:)D(u, Tz)})

max{d(z,u),d(z,z) + d(u,u),d(z,u) + d(u,z)}
b(1+d(z,2)+d(u,u)) )}
d(z,u) +d(u, z)})
2b

bmaxi{1, <
<

Y (max {d(z, u),d(z,z),d(u,u),

< bmax

Now, max{1, Nr(x,y)} = Nr(x,y)gives
d(z,u) < 2d(z,w)Y(d(z,w)) < 2d?(z,u)

and hence d(z,u) > %
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Corollary 2.2 Let (X,d) be a complete b-metric space, a:X X X —
R* and T: X — Cl(X) an a, — admissible mapping such that

1
ED(x, Tx) < bd(x,y)

implies that

a,(Tx,Ty)H(Tx,Ty) < max{1, Nr(x,y)}p(d(x,y))
for all x,y € X, € ¥,. Further, assume that there exists x, € X and
x1 € Txy such that a(x,,x,) > 1. If for any sequence {x,,} converging to x
in X, we have a(xy,,x) > 1 foralln € Z* then

eq-: T is an MWP operator
e,-: If there is some u € F(T) such that u # z and a(z,u) > 1, then

d(z,u) > %provided that

max{1, Ny (x,y)} = Nr(x,y) forall x,y € X.

Corollary 2.3 Let (X,d) be a complete b-metric space, a:X X X —
Rt and T: X — Cl(X) an a, — admissible mapping such that

1
3 D(x,Tx) < bd(x,y)

implies that

) d(x,y)
"b(1+6(x, Tx) + 5, Ty))

a,(Tx, Ty)H(Tx,Ty) < max { }lll(d (x,y))

for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
x1 € Txy such that a(x,,x;) > 1. If for any sequence {x,,} converging to x
in X, we have a(x,,x) > 1 for alln € Z* then

es-: T is an MWP operator.
es-: If there is some u € F(T) such that u # z and a(z,u) > 1, then
d(z,u) > 1 provided that
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. d(x,y) |- d(x,y)
"b(1+6(x,Tx) + 6(y, Ty)) B b(1+6(x,Tx) +8(y, Ty))

max{
forall x,y € X.
Proof. Follows from Corollary 2.3.

Corollary 2.4 Let (X,d) be a complete b-metric space, a: X X X —
R* and T: X — CI(X) an a, — admissible mapping such that

1
ED(x, Tx) < bd(x,y)

implies that

a.(Tx,Ty)H(Tx,Ty) < Nr(x, ) (Mr(x,))

for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
x1 € Txy such that a(x,,x;) > 1. If for any sequence {x,,} converging to x
in X, we have a(x,,x) > 1 foralln € Z* then

es-: T is an MWP operator.
e¢-: If there is some u € F(T) such that u # z and a(z,u) > 1, then

d(z,u) > .
Proof. Take max{1, Nr(x,y)} = Nr(x,y) in Theorem 2.1.

Corollary 2.5 Let (X,d) be a complete b-metric space, a: X X X —
R* and T: X — Cl(X) an a, —admissible mapping such that

1
ED(x, Tx) < bd(x,y)impliesthata, (Tx, Ty)H (Tx,Ty) (2.22)

< Nr(x, y)Y(d(x, y))
for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
x1 € Txy such that a(x,,x;) > 1. If for any sequence {x,,} converging to x
in X, we have a(x,,x) > 1 for alln € Z* then

er-: T is an MWP operator.
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eg-: If there is some u € F(T) such that u # z and a(z,u) > 1, then
d(z,u) > %

Proof. Take M;(x,y) = d(x,y) in Corollary 2.4.

The following Corollary is a Suzuki type generalization of (Asl et al,
2012), Theorem 2.1 (Bota et al, 2015), Theorem 1 (Mohammadi, 2013),
Theorem 3.1 (Samet et al, 2012), Theorem 2.2 and references therein in
the context of b-metric spaces.

Corollary 2.6 Let (X,d) be a complete b-metric space, a: X X X —
R* and T: X - CI(X) an a, — admissible mapping such that

1 o
ED(x, Tx) < bd(x,y) implies that (2.23)
a.(Tx, Ty)H(Tx,Ty) < ¢ (Mr(x,y))

for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
x1 € Txg such that a(xy,x;) > 1. Then T is an MWP operator provided
that for any sequence {x,} converging to x in X, we have a(x,,x) > 1 for
alln e Z*.

Proof. Take max{1, Nr(x,y)} = 1 in Theorem 2.1.

Corollary 2.7 Let (X,d) be a complete b-metric space, a: X x X -
R* and T: X — Cl(X) an a, — admissible mapping such that

a.(Tx, Ty)H(Tx,Ty) < Y(Mr(x,y)) (2.24)

for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
x; € Txy such that a(xy,x;) > 1. Then T is an MWP operator provided
that for any sequence {x,} converging to x in X, we have a(x,,x) > 1 for
alln € Z*.

Corollary 2.8 Let (X,d) be a complete b-metric space, a: X X X —
R* and T: X — CI(X) an a, — admissible mapping such that

%D(x, Tx) < bd(x,y)
implies that

a.(Tx, Ty)H(Tx,Ty) < ¥(d(x,y)) (2.25)
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for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
x, € Txy such that a(xg,x;) > 1. Then T is an MWP operator provided
that for any sequence {x,} converging to x in X, we have a(x,,x) > 1 for
alln e Z*.

Proof. Take M;(x,y) = d(x,y) in Corollary 2.6.

Now we state Theorem 2.1 in the context of single valued mapping
f:X - X, where X is a b-metric space. The existence of a fixed point
follows immediately from Theorem 2.1. To prove the uniqueness of the
fixed point, we need the condition H, given as follows:

(H): for all x,y € X, there exists a z € X such that a(x,z) > 1 and
a(y,z) > 1.

Corollary 2.9 Let (X,d) be a complete b-metric space and a: X x
X - R* and f: X - X an a — admissible mapping such that

1
> d(x, fx) < bd(x,y)
implies that

a(fx, fy)d(fx, fy) < max{1, Ny (e, y) b (M (x, ) (2.26)

for all x,y € X,y € ¥,. Further, assume that there exists x, € X and
X1 = fxo such that a(xg, x;) > 1 and for any sequence {x,,} converging to
x in X, we have a(x,,x) > 1 for all n € Z*. If the condition (H) is satisfied,
then f is a Picard operator and for an arbitrary z € X, the sequence {f"z}
converges to some w € F(f) and

eo-: F(f) = {w}if max{l, N¢ (x, y)} =1,
eq0-: d(u,w) >§ for any u € F(f) such that u #w provided that
max{l, N¢ (x, y)} = N¢(x,y).

Proof. Theorem 2.1, f is a Picard operator and F(f) is nonempty.
Let u,v € F(f) such that u # v. By the condition (H), there exists a z € X
such that a(u,z) >1 and a(v,z) > 1. Note that {f"z} is a Picard
sequence which converges to some w € F(f). As f is an a — admissible
mapping, so for alln > 1 we have a(u, f*z) > 1 and a(v, f*z) > 1. Since
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%d(u,fu) =0 < bd(u, f"'2),

by (2.26) we have

d(u, f"z) = d(fu, f"z)
a(fu, ff12)d(fu, ff"12)
max{1, Ny (w, f* ' 2) (M (w, f " 12))

| (maxldQu 171, dGu fu) + AUz ff 1), A £ 1) + A7 fu))
< max{ < b(1+d(u, fu) + d(f" 1z, ff"12)) )}
P (max {d(u, f"_lz), d(u, fu), d(fn—1z, ffn_lz), d(u, ff™ 1Z);)d(fn 1z, fu)})

1 max{d(u, f*12),d(u,w) + d(f" 1z, f"z),d(u, f"z) + d(f* 1z,u)}
< max{ < b(1 +d(u,w) +d(f*1z, fnz)) >}

VAN

n n-1
¥ (max {d(u: frtz),d(ww),d(f" 'z, f"2), 4w/ ;:(f z u)}>.

On taking limit as n — 4o, we obtain that

max{d(u,w),d(u,u) + d(w,w),d(u,w) + d(w,u)}
max{1’< b(1 + d(u,u) + d(w, w)) >}

" (max {d(u W), d(u, w), d(w, w), L) ;;d(w’ ”)})
= max{l (M>}¢(d(u w)).

That is

d(u,w) <

2d (u, w)

du,w) < max{l ( )}l/)(d(u w)). (2.27)

Now, If max{1, Ny(x,y)} = 1, and w # u, then we have
d(u,w) < Y(d(u,w)) < d(u,w). (2.28)
Also, if max{1, N¢(x,y)} = 1, and v # w, then we have

d(v,w) < Y(d(v,w)). (2.29)
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A contradiction in both cases. Thus w = u = v, and hence F(f) is
singleton. If max{1, N;(x,y)} = N¢(x,y) and u # w then from (2.27) we
get

2d(u,w) 2
d(u,w) < Tl/)(d(u, w)) < Edz(u, w)

and d(u,w) > 7.

Corollary 2.10 Let (X,d) be a complete b-metric space and
a:X XX - Rt and f: X - X an a — admissible mapping such that

%d(x, fx) < bd(x,y) implies that a(fx, fy)d(fx, fy) < Y (M (x,y))

for all x,y € X,¢ € ¥,. Further, assume that there exists x, € X and
X1 = fxo such that a(xg, x;) > 1 and for any sequence {x,,} converging to
x in X, we have a(x,,x) > 1 for all n € Z*. If the condition (H) is satisfied,
then f is a Picard operator and for an arbitrary z € X, the sequence {f"z}
convergestow € F(f) and F(f) = {w}.

Corollary 211 Let (X,d) be a complete b-metric space and
a:X x X - R*. Let f: X —» X be an a — admissible mapping that satisfies

1
> d(x, fx) < bd(x,y)
implies that

a(fx, fy)d(fx, fy) < max{1, Ny (x, )} (d(x, )

for all x,y € X,y € ¥,. Moreover, suppose that there exists x, € X and
X1 = fxo such that a(xy, x;) > 1 and if there is a sequence {x,,} in X such
that x,, —» x, then a(x,,x) > 1 for all n € Z*. Further, assume that there
exists x, € X and x; = fx, such that a(x,,x;) > 1 and for any sequence
{x,} converging to x in X, we have a(x,,x) > 1 for all n € Z*. If the
condition (H) is satisfied, then f is a Picard operator and for an arbitrary
z € X, the sequence {f"z} converges to w € F(f) and F(f) = {w}. Also,

d(u,w)>§ for any u€eF(f) such that u=#w provided that
max{l, N (x, y)} = N¢(x, ).
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Example 2.12 Let X = {x;,x,,x3,%4, x5} and d:X xX - R* be
defined as
d(xz,x5) = d(x3,%4) = d(x3,%5) = d(x2,%,) = 6,
d(x5,%x3) =9,d(xq,x4) = d(x1,x5) = 10,
d(x1,x2) = d(xq,x3) = 4,d(x4,x5) =1,
d(x,x) =0and d(x,y) =d(y,x) forall x,y € X.
As 9 =d(x,,x3) £ d(xy,x1) +d(x1,x3) =8, so d is not a metric on
X. Indeed, (X, d) is a b-metric space with b = Z > 1. Consider a mapping
T:X — Cl(X) defined by Tx;=Tx,=Tx3={x},Tx,={x,} and
Txs = {x3}. If we take yY(t) = %t for t € R*, then y € ¥, (see 1.8). If
mapping a:X x X » R* is defined as a(x;x;) =1 for all i,j € {1,2,3,4,5},
then T is an a, —admissible mapping. For x,y € {x1,x,,x3}, we have

H(Tx,Ty) =0 < max{1, Nr(x, WM (x,y)). For (x,y) when x¢€
{x1,x,,x3} and y € {x,, x5}, we obtain that

a(Txy, Txg)H(Tx1,Txy) = d(x1,%2) = 4 <9 = P(d(x1,%4))
< max{l, NT(xl,x4)1/J(MT(x1[,}x4)),

a(Txz, Tx )H(Txz, Txy) = d(x,x2) =4 < 10~ P (d(xz,x4))
< max{l, NT(x2:x4)1/’(MT(3SCZ X4)),

a(Tx3, Txg)H(Tx3, Txy) = d(xq,%2) =4 < 0°- Y(d(x3,x4))

< max{1, Ny (x3, x4 )Y (Mr(x3, x4)),
a(Txy, Txs)H(Txy,Txs) = d(x1,%3) = 4 <9 = P(d(x1,%5))
< max{1, Ny (xy, x5)Y (M7 (x4, Xs5)),

54
a(Txy, Txs)H(Txz, Txs) = d(xq,x3) =4 < 10~ Y(d(xz,x5))
< max({l, NT(lexs)lp(MT(?SCZ Xs)),
a(Tx3, Txs)H(Tx3,Txs) = d(xq,x3) =4 < 0°- Y(d(x3,x5))
< max{1, Ny (x3, x5)Y (Mr(x3, Xs5)).
Note that
1 1 9
ED(x4,Tx4) = Ed(x4, xX,)=3> i bd (x4, x5),

and

1 1 5
ED(xs,Tx5) = Ed(x5,x3) =3> i bd (x5, x4).
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Hence
1
5 (D@, Tx) < bd(x,7)) <0

implies
a(Tx, Ty)H(Tx,Ty) < max{1, Nr(x, y)}(Mr(x,y))

holds for all x,y € X. Thus all the conditions of Theorem 2.1 are satisfied.
On the other hand, if we take x=ux4,y=x5 then
a(Txy, Txs)H (T2, Txs) = d(xy,%3) = 9 > Y(d (x4, x5)) = (1) =5 and
a(Txy, Txs)H(Txy, Txs) % P(d(x4,x5)). Consequently, Theorem 1.16 in
(Bota et al, 2015) does not hold in this case.

The following example illustrates an assumption max{1, Nr(x,y)} >
1.

Example 2.13 LetX = {x;, x5, x3}andd: X x X - R*be defined as
d(x1,%2) = 4,d(x1,x3) = 1,d(x3,x3) = 2,
d(x,x) =0and d(x,y) = d(y,x) for allx,y € X.

As 4 =d(xq,x;) ¥ d(x1,x3) +d(x3,x,) =3, SO d is not a metric on
X. Indeed,(X,d) is a b-metric space with b = g > 1. Consider a mapping
T:X — CI(X) defined by
{x2}ifx = xy,
Tx =< {x }ifx = xp,
{x,}if x = x5.

If we take Y(t) = gt for t € R*, then y € ¥, (see Example 1.8). If
a:X x X - R* is defined as a(x;,x;) =1 for all i,j € {1,2,3}, then T is
a, — admissible. Note that

3max{d(xq,x;),D(x1,Tx1) + D(x3,Tx3),D(xq1, Txy) + D(x5, Tx1)}

N =
(X1, %2) 4(1+ 6(xq,Txy) + 6(x3,Txy))

_ 3max{d(xy, xz), d(x1, %3) + d(xz, %1), d (%1, 1) + d (%2, X5)}
4(1 4+ d(xq,x1) +d(x3,x3))

3max{4,8,0}
=—=6>1.
4(1+0)

Hence max{1, N;y(x,y)} = 6 > 1. Note that
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3max{d(xq,x3),D(x1,Tx1) + D(x3,Tx3), D(x1,Tx3) + D(x3,Tx,)}

Nr(x1, x3) = 4(1+ 6(xy, Tx3) + 6 (%3, Tx)
_ 3max{d(xq, x3), d(xq, X3) + d(x3,x3),d(x1,x3) + d(x3,%3)}
4(1 + d(xq,x3) + d(x3,x3))
_ 3max{1,4,3} B 3
T 4(14+1+2) 4
and
N _3max{d(x, x3), D(xz, Tx3) + D(x3,Tx3), D(x, Tx3) + D(x3,Tx3)}
r(¥2,%3) = 4(1 + 8 (xy Tx3) + (%3, Tx,))
_ 3max{d(x;, x3), d(x, x1) + d(x3,%3),d(x2,x3) + d(x3,%1)}
4(1 4+ d(xy, x3) + d(x3,%1))
_ 3max{2,4,3} B 3
T 4(1+24+1) 47
Also,

64
a(Txy, Txx)H(Tx1, Txy) = d(x2,%1) =4 < 3= N (g, %) (d (1, X2))
< max{1, Ny (xq, x2)Y (M7 (X1, X2)),

a(Txy, Tx3)H(Tx1,Tx3) = d(x2,%3) =2 < g = Nr(xq, x3)9(d (x1, Tx1))
< max{l, NT(xl'xS)lp(MT(xi' x3)),

a(Txz, Tx3)H(Txz, Txz) = d(xq,x3) = 1< 37 Nz (x2, x3)9(d (X2, x3))
< max{1, Nz (xz, x3) (Mg (xz, x3)).

Thus all the conditions of Theorem 2.1 are satisfied. On the other
hand, if we take x = x;,y = x,, then a(Tx,, Tx,)H(Tx1,Tx,) = d(xy,%3) =
4> P(d (e, xp) = Pp(4) =2 Hence a(Txy, Tx,)H(Txy, Tx,) £
Y(d(xq1,x,)). Consequently Theorem 1.16 in (Bota et al, 2015) is not
applicable in this case which is a generalization of Theorems 1.14 and
1.9.

For b = 1, Theorem 2.1 reduces to the following important Corollary.

Corollary 2.14 Let (X,d) be a complete metric space, a: X x X -
R* and T: X — Cl(X) satisfies the following implication
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1
5 D(x, Tx) < d(x, y)implies max{1, ny,r(x, )} (mr,r (x, ¥))

for all x,y € X and ¢ € ¥, where nrr(x,y) and myr(x,y) are the same
as given in (1.2), Further, assume that there exists x, € X and x; € Tx,
such that a(x,,x;) > 1 and for any sequence {x,} converging to x in X,
we have a(x,,x) > 1 foralln € Z*. Then

eq-: T is an MWP operator.
eq2-: If there is some u € F(T) such that u # z and a(z,u) > 1, then

d(z,u) > % provided that

max{1,nrr(x,y)} = nrr(x,y).

Next we present an example which shows that Corollary 2.14 is a
potential generalization of Theorems 1.14, 1.9, 1.11, 1.13.

Example 2.15 LetX = {x,x,,x3, %4, xs}andd: X x X - R*bedefined
by
d(xz,x5) = d(x3,x4) = d(x3,x5) = d(x2,%4) =5,
d(x1,x4) = d(xq,x5) = 9,d(x1,x3) = d(x1,%x3) = 4,
d(x4,x5) = 2,d(x2,x3) = 8,
d(x,x) =0and d(x,y) = d(y,x) forall x,y € X.

Note that d is a metric on X. Consider a mapping T:X — CI(X)
defined by Tx; = Tx, = Tx; = {x1}, Tx4 = {x,} and Txs = {x3}. If we take
Y(t) = gt for t € RY, then ¢ € ¥; for each i = 1,2,3,4 (see Example 1.8).
If a:X x X - R* is defined as a(x;,x;) =1 for all i,j € {1,2,3,4,5}, then T
is a, —admissible mapping. For x,y € {x1,x,,x3}, we have H(Tx,Ty) =
0 < max{1, Nr(x, )}y (Mr(x,y)). For (x,y), when x € {xq,x,,x3} and
vy € {x4, x5}, we obtain that

a(Txy, Txg)H(a(Tx1,Txy)) = d(x1,x2) = 4 <8 = P(d(x1,x4))

< max{1, nyr(xg, X)) (Mr (X1, X4)),
40
a(Txz, Txy)H(Tx3, Txy) = d(xq,%2) =4 < 9 = Y(d(xz,x4))

< max{1, nyr(xz, x4)P (Mg (X2, X4)),
40
a(Txs, Tx,)H(Tx3,Txy) = d(xq,%2) =4 < 9 = Y(d(x3,x4))
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< max{1, nyr(x3, x4)P (Mg r(x3,x4)),
a(Txy, Txs)H(Txq, Txs) = d(xy,%3) =4 < 8 =YP(d(x1,%5))
< max{1, nyr(xq, xs)Y (mr (X1, Xs5)),
40
a(Txy, Txs)H(Txy, Txs) = d(xq,x3) =4 < 9 = Y(d(x2,x5))
< max{1, nyr(xz, x5)P (Mg (X2, X5)),
4

0
a(Txs, Txs)H (Tx3, Txs) = d(x1,%3) = 4 < 5 = P(d(x3,%5))

< max{1, nyr(x3, x5)P (Mg r(x3, X35)).

Note that —D(x,Txy) = d(xx,) =2>1=d(x;x5), and
~D (x5, Txs) = 5d (x5, x3) =2 > 1 = d(xs, xs).

Hence

5 (DG T0) < dx,y)
implies
a(Tx, Ty)H(Tx, Ty) < max{1, Nr(x, Y)Y (Mrr(x,y))

holds for all x,y € X. Thus all the conditions of Corollary 2.14 are
satisfied. On the other hand, if we take x = x,,y = x5,
then

8
a(Txy, Txs)H(Txy4, Txs) = d(x5,%3) = 8 > P(d(xy,x5)) = ¢Y(1) = 5

Hence,
8
a(Txy, Txs)H(Tx,,Txs) =8 £ 5 = P(d(xy, x5)).

Consequently, Theorem 1.14 is not applicable in this case. Note that
Theorem 1.14 is a generalization of Theorem 1.9. Now
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max{d (x4, x5), D (x4, Tx,) + D(xs5,Tx5), D (x4, Txs) + D (x5, Txy)}
(X4, Xs) = 1+ 6(xg, TXg) + 6(xs, TX5)
_ max{d(xy, Xs), d(xX4, x) + d(xs, X3), d (x4, x3) + d(x5, %)}
1+ d(x4,x5) +d(x5,x3)
_ max{1,10,10} _ 10
a 11 TR

D(x4,Txs5) + D(x5,Txy)
M G, 5) = max fd (y, x5), D (s, Tx), D (s, T5), . |

= max{1,5,5,5} =5

implies that a(Tx,, Txs)H(Tx,,Txs) =8 £ % = npr(Xg, Xs)Mp (X4, Xs5).

Hence, Theorem 1.13 which is a generalization of Theorem 1.11 does
not hold in this case.

Coincidence and common fixed point results in b-metric
spaces

As an application of Theorem 2.1, we obtain the existence of
coincidence and common fixed point of Suzuki type (a, — 1) — hybrid
pair of operators in b-metric spaces.

Theorem 3.1 Let (X,d) be a b-metric space and (g,T) a Suzuki
type (a,—y)—hybrid pair of operators such that T an
(a. — g) —admissible mapping. Suppose that there exists x, € X and
gx, € Tx, such that a(gx,, gx;) > 1 and for any sequence {x,} in X with
gx, = gx, we have a(gx,, gx) > 1 for all n € Z*. Then there exists x in X
such that gx € Tx provided that T(X) € g(X) and g(X) is complete.
Moreover, if there is some gy € Ty such that gx # gy and a(gx,gy) > 1

then d(gx, gy) > % Further, F(g,T) is nonempty if any of the following
conditions hold:

f;-: The hybrid pair (g,T) is w — compatible, lir+n gt(x) =w for
n—->+oco

somew € X and x € C(g,T) and g is continuous at w.
f,-: The mapping g is T —weakly commuting at some x € C(g,T)
and g%x = gx.
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f;-: The mapping g is continuous at at some x € C(g9,T) and
lirp g"(w) = x for some w € X.
n-+oo

Proof. Lemma 1.3, there is a set E < X such that g: F — X is one-to-
one and g(E) = g(X). Define a mapping 7: g(E) - CB(X) by Tgx =Tx
for all g(x) € g(E). The mapping T is well defined because g is one—to-
one. Since (g,T) is a Suzuki type (a. —1) — hybrid pair of operators,
therefore

%D(gx, Tx) < bd(gx, gy))
implies
o, (Tx, Ty)H(Tx, Ty) < max{1, Ny (x, )} (Mg r (x,3))
ax { . max{d(gx, gy), D(gx,Tx) + D(gy,Ty), D(gx,Ty) + D(gy, T x)}}
_ ' b(1+8(gx,Tx) +8(gy, Ty))

D(gx,Ty) ZJ; D(gy,T x)})

A

| ¥ (max{a(gx,9v). Dgx. 720, D(gy, Ty)

forall x,y € X for some y € ¥, and ¢ € ®. Thus

(5D (9%, Tgx) < bd(gx, gy))
implies
Ja.(Tgx, Tgy)H(Tgx,Tgy) < max{l, Nr(x,y)}p(Mr(x,y))
max {1 max{d(gx,9y).D(gx,Tgx)+D(gy,.T9y),D(gx.Tgy)+D(gy,T gx)}}
_ ’ b(1+8(gx,Tgx)+8(gy.Tgy))

B D T +D T
L ¥ (max{d(gx, gy), D(gx, Tgx), D(gy, Tgy), "R L0U» 100 )

for all gx,gy € g(E). Since g(E) = g(X) is complete. By the given
assumption, there exists x, € X and gx; € Tx, such that a(gx,, gx1) > 1.
As T is (a, — g) — admissible, we have a(Tx,Ty) > 1 which implies that
a(Tgx,Tgy) > 1. Thus T is a, —admissible. Hence T satisfies all the
conditions of Theorem 2.1. Consequently, 77 is an MWP operator on
g(E), and we obtain a point u € g(E) such that u € Tu. Since u € g(E),
there is a point x in X such that gx = u. This implies that gx € Tgx = Tx.
By Theorem 2.1 if there is some w € Tw such that u #w and a(u,w) >

1, then we have d(u,w) > % if max{1, Ny r(x,¥)} = Ngr(x,y). For w € Tw
there is a y in X such that such gy=w and gyeTgy=
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Ty.Consequently, d(gx, gy) > % Now we prove that F(g,T) # @. First
consider the case when (C4) holds. Since the pair (g,T) is
w — compatible and lirP g"(x) = u for some u € X, the continuity of g at
n—>+oo
u implies that gu=u and lir)p g"(x) = gu. Now a(g"(x),gu) >1
n—+oco
and(a, — g) — admissibility of T imply that a(Tg™ !(x),Tu) > 1. By
w — compatibility of the pair (g,T), we have g"(x) € T(g" 1(x)), that is
g"(x) e C(g,T) for all n € N. Note that

1
5D(@" (), T (0))) < d(g"(x), g"(x)) = 0 < bd(gg™™* (x), ).

Since (g,T) is a generalized Suzuki type (a, —¥) — hybrid pair of
operators, therefore

D(g"x,Tu)
< H(Tg" 'x,Tu) < a(Tg™" 1(x), TwH(Tg" 'x, Tu)

max {1 max{d(g"x,gu),D(g"x,Tg"‘lx)+D(gy,Tu),D(gnx,Tu)+D(gu,Tg”_1x)}}
’ b(1+8(g"x,Tg" 1x)+8(gu,Tw))

x n n-1
max {d(g"x, gu),D(g"x, Tg" 'x),D(gu, Tu),D(g xTu)+Dgu.Tg x)}

2b
max{d(g™x,gu),d(g"x,g™"x)+D(gu,Tu),D (g"x,Tu)+d(gu,g"x)}}
b(1+d(g"x,g™x)+D(gu,Tu))
D(g"x,Tu)+d(gu,gnx)}
2b '

B max{l,

max {d(g"x, gu),d(g"x, g™"x), D(gu, Tu),

On taking limit as n — +oo0, we obtain that

D(gu, Tu)
"b(1 + D(gu, Tu))

D(gu, Tu) < max {1 }1,[)(D(gu, Tu)) = Y(D(gu, Tu)).

If D(gu,Tu) >0, then we have D(gu,Tu)<D(gu,Tu), a
contradiction. Consequently, u = gu € Tu. That is F(g,T) # @. Now let
(C,) hold, then g%x = gx for some x € C(g,T). By T — weakly commuting
of g, we have gx = g?x € Tgx. Hence gx € F(g,T). In case (C3) holds,

lim g"(u) = x for some ue€ X and x € C(g,T). By continuity of g, we

n—-+oo

obtain that x = gx € Tx.

Hence F(g,T) + @.
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Corollary 3.2 Let (X,d) be a b-metric space and (g, T) a hybrid pair
such that T is an (a, — g) — admissible. If there exists a ¢ € ¥, such that

1
5 D(gx,Tx) < bd(gx, gy)
implies that

a.(Tx, TY)H(Tx, Ty) < max{1, N, r(x, ) (d(x,y))

for all x,y € X. Suppose that there exists x, € X and gx; € Tx, such that
a(gxy, gx;) > 1 and for any sequence {x,} in X such that gx,, - gx, we
have a(gx,, gx) > 1 for all n € Z*. Then there exists x in X such that
gx € Tx provided that T(X) < g(X) and g(X) is complete. Moreover, if
there is some gy € Ty such that gx # gy and a(gx,gy) > 1, then
d(gx,gy) > % Further, F(g,T) is nonempty if the conditions (j1)-(j3)
Theorem 3.1 hold.

Corollary 3.3 Let (X, d) be a b-metric space and (g, T) a hybrid pair

such that T is an (a, — g) — admissible. If there exists a ¢ € ¥, such that

~D(gx,Tx) < bd(gx, gy)
implies

a.(Tx, Ty)H(Tx,Ty) < (d(x,¥))
for all x,y € X. Suppose that there exists x, € X and gx; € Tx, such that
a(gxy, gx1) > 1 and for any sequence {x,} in X such that gx,, - gx, we
have a(gx,, gx) > 1 for all n € Z*. Then there exists x in X such that
gx € Tx provided that T(X) € g(X) and g(X) is complete. Moreover, if
there is some gy € Ty such that gx # gy and a(gx,gy) > 1, then
d(gx,gy) >%. Further, F(g,T) is nonempty if the conditions (j1)-(jz) in
Theorem 3.1 hold.

Data dependence of fixed point sets and Ulam-Hyers
stability results

Consider the following class of functions
0 = {¢: Rt - R*such that ¢ is increasing and continuous at 0}.
Let (X,d) be a b-metric space and T:X — P(X). The fixed point

problem of T is to find an x € X such that
x € Tx. 4.1)
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Inequality (4.1) is also known as fixed point inclusion. The fixed point
inclusion is said to be generalized Ulam-Hyers stable if there exists a
function ¢ € © such that for each ¢ > 0 and for each solution u, of the
inequality

D(w,Tu) < ¢ (4.2)

there exists a solution z, of the fixed point problem (4.1) such that
d(u., z,) < §(e).

Further, if there exists a ¢ > 0 such that é(t) = ct for each t € R™,
then the fixed point problem (4.1) is said to be Ulam-Hyers stable. Let
F(T) and U be the sets of solutions of (4.1) and (4.2), respectively. For
more on Ulam-Hyers stability of fixed point problems, we refer the
interested reader to (Ulam, 1964), (Lazar, 2012), (Petru et al, 2011),
(Rus, 2009), (Hyers, 1941). Let (X,d) be a b-metric space and T: X —
Cl(X) be a multivalued mapping then E(T) = {x € X: {x} = Tx}.

Define a multivalued operator T*: G(T) — P(F(T)) by

T®(x,y) = {z € F(T): there is an ssa of Tat (x, y)converging to z}

where G(T) = {(x,y):x € X,y € Tx} is a graph of T.
A selection of T: X — P(X) is a single valued mapping t: X — X such
that tx € Tx for all x € X.

Definition 4.1 (Rus et al, 2003). Let (X,d) be a metric space and
¢ > 0. An MWP operator T: X — P(X) is called ac — multivalued weakly
Picard (briefly c —MWP) operator if there exists a selection t* of T® such
that d(x,t®(x,y)) < cd(x,y) for all (x,y) € G(T).

One of the main results concerning ¢ — MWP operators is the
following:

Theorem 4.2 (Rus, 2001). Let (X,d) be a metric space and
T, To: X = P(X). If T; is a c; —MWP operator for each i € {1,2} and there
exists A>0 such that H(Tx,T,x)<A for all xe€X. Then
H(F(T1), F(T2)) < Amax{cy, ¢z}

Now we prove the following result.
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Theorem 4.3 Let (X,d) be a complete b-metric space and a:X X
X - R*. Suppose that

g+-: for each i € {1,2},T;: X = Cl(X) are multivalued operators such
that

1
ED(x, Tix) < bd(x,y)

implies that
a,(Tix, Tiy)H(Tix, T;y) < max{1, Nr,(x, y) i (d(x,¥)) (4.3)

forall x,y € X,{; € ¥,.

g.-: foreach i € {1,2}, T; is a, — admissible mapping,

gs-: there exists xy, € X and x, € T;x, such that a(xy,,x;) > 1 for
eachi e {1,2},

d4-: if there is a sequence {x,} in X such that x, — x, then a(x,,x) >
1 forallneZt,

gs-: there exists A > 0 such that H(T,x,T,x) < A, forall x € X.

Then Fix(T;) € Cl(X),i € {1,2} and each T; is an MWP operator such
that

H(Fix(Ty), Fix(T,)) < bmax{1,1;}
where A; = Yw., b*y¥ (1) foreach i € {1,2}.
Proof. From Theorem 2.1, it follows that Fix(T;) # @ for each
i € {1,2}. Let {x,,} be a sequence in Fix(T;) such that x, - z as n = +oo.

This implies that a(x,,z) > 1. Since T, is a, —admissible mapping,
a(Tyx,, T1z) > 1. As

1
ED(x”' Tix,) = 0 < bd(z,x,),

so we get
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D(z,T,z)

< bd(z,x,) + bD(x,, T Z)

< bd(z,x,) + bH(T 2, Tyx,) < bd(z,x,) + ba(Tyx, T1z)H(T 2, Ty xy,)
< bd(z,xy) + max{1, Np, (x, y) 1 (d(x, y))

mESEERS Mo
<\ bmay L e S i) + (e o)) ( Pré& )
+bd (2, %))
et
S| Pmax L e D ) + dGen ) (L&)
+bd (2, %))

On taking limit as n — 4+, we obtain that D(z,T;z) <0, that is,
z € T,z and hence F(T;) is closed.

Similarly, F(T,) is a closed subset of X.

From Corollary 2.2, we conclude that T; for each i € {1,2} is an MWP
operator.

By a similar process as followed in Theorem 2.1 starting from
x1 € F(T,) and x, € T,x;, we obtain a sequence {x,} such that x,,; €

Tox, for all n>1, x,41 # X, a(Xni1, Xne2) = 1,0 < D(Xp4q, TXpeq) <
Y2 (d (X, Xn41)) and

0 < d(xps1,Xne2) < l/);l(qd)(co)) (4.4)

foralln > 1, where ¢, = d(xq, x3).

Following the arguments similar to those in the proof of Theorem 2.1, we
conclude that {x,} is a Cauchy sequence and there is an element u in X
such that x, - uasn - +o and u € T,u.

Note that
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d(xn:xn+p)

< bd(xp, Xpi1) + A (Xpg1, Xpa2)+ . +bp_1d(xn+p_2, Xn+p-1)
+bPd(Xp1p-1, Xn4p)

< b3 (qa(co)) + b2 (a2 (co))+... +bp—1¢;l+p_3(qll’2 (co))
+bP P (g2 (<o)

1 e
pn—2 (bn_ll/)g_l(qlpz(co)) + bnl/ﬂzl(qlpz(co))*‘- . +bn+p_21/); P 2(‘11/)2(00)))

n+p-2 n+p-2

1 1
= Y PUE(aa(e) S g ). DAY (ap, ()

k=n-1 k=n-1

<

n+p-2 n-1
1
=1 B LG 2I) RN CUAC) RNl CEA0)
k=0

k=0

That is,

n+p-2

n-1

1

Ao Xnip) S 7oz| DL DRE(ah) = D BFp(q.D)
k=0 k=0

(4.5)

+ bn_lll’g_l(ml’z(/l)) .
On taking limit as p — +o0, we get
1 co n-—1
At 1) < F(Z DA (qpo) = ) bk (a, (D)
k=0 k=0 (4.6)

+ b"'llPE‘_l(qwz(l)))

By Lemma 1.6, Y5, b*%(t) converges for any t > 0, there exists
A, > 0 such that Y7, b*¥p% (1) = 1, and hence

472




n—-1

1
A0 0) < g | A2 = ) BWE(ap ) + b" 8 (qp, () | (47)
k=0
For n =1, we get d(x;,u) < bA,. Thus for x, € F(T;), there exists
u € F(T,) such that d(x,,u) < bA,. Similarly for each z, € F(T,), we get
v € F(T;) and A; > 0 such that d(z,, v) < bA;. It follows from Lemma 1.4
that

H(F(T,),F(T,)) < bmax{4,1,}.
Now we discuss the Ulam-Hyers stability results.

Theorem 4.4 Let (X,d) be a b-metric space and T:X — CI(X).
Assume that all the hypotheses of Corollary 2.3 hold. Then we have

hs-: The fixed point inclusion (4.1) is {;* — generalized Ulam-Hyers
stable for i = 1,2, provided that for each x € F(T) there exists z € U such
that a(x,z) >1, where {,{,:Rt > R* defined by ¢ (t)=t—
b2y(t), {,(t) = t — btyp(t) are strictly increasing, onto and continuous at
t=0.

h,-: If E(T) # @, then the fixed point inclusion (4.1) is {7t —
generalized Ulam-Hyers stable for i = 3,4, provided that for x € E(T)
there exists z€ U such that a(x,z) >1,{3,{,: Rt > R* defined by
G(t) =t —DbyY(t),{,(t) =t —tyY(t) are strictly increasing, onto and
continuous at t = 0.

hs;-: (Estimate between the fixed point sets of two multivalued
mappings) If S: X — ClL(X) is such that for x € F(S) there exists z € F(T)
with a(x,z) > 1 and for x € F(T) there exists z € F(S) with a(x,z) > 1,
and H(S(x),T(x)) < A for all x € X, then H(F(S),F(T)) < mclzazc(i‘l(bzl)

where {; is same as in (hq) foreach i = 1,2.

hs-: (Estimate between the fixed point sets of two multivalued
mappings) If S: X — CL(X) is such that for x € F(S), there exists z € E(T)
with a(x,z) > 1 and for x € E(T) there exists z € F(S) with a(x,z) > 1,
and H(S(x),T(x)) <A for all x € X, then H(F(S),F(T)) < mgic(;l(bz)

where (; is same as in (hy) foreachi = 3,4.

hs-: (Well-posedness of the fixed point problem with respect to b-
metric d) If for any sequence {x,} in X, there exists a unique point
x* € E(T)such that a(x,,x*)>1 and lim,,,D(x, Tx,) =0, then
lim,;0d(x,, x*) = 0.
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he-: (Well-posedness of the fixed point problem with respect to
b-metric H) If for any sequence {x,} in X, there exists a unique point
x* € E(T) such that a(x,,x*) >1 and lim,_,H({x,}, Tx,) =0, then
lim,_100d(x,,x™) = 0.

hs-: (Limit shadowing property of the multivalued operators) If for
any sequence {x,} in X, there exists a unique point x* € E(T) with
a(x,,x*) > 1 and lim,_,,.D(x,, Tx,) = 0, then there exists a sequence
of successive approximations {y,} such that lim,,_, , .,d (xp, y,,) = 0.

Proof. (hy) From Corollary 2.3, T is an MWP operator and hence
F(T) is nonempty. If x* € F(T), then by given condition there exists a
y* €U such that a(x*,y*) > 1. The a, —admissibility of T gives that
a(Tx*,Ty*) > 1. Since y* € U, for any given € > 0, we have D(y*,Ty") <
¢. Note that

1
ED(x*,Tx*) =0 bd(x*,y").

Then

d(x*,y*) < bD(x*,Tx*) + bD(Tx",y*) = bD(Tx*,y")
b2(H(Tx",Ty") + D(Ty",y"))
b?(a(Tx*, Ty )H(Tx*, Ty*) + ¢)
d(x",y*) -

wa <P (o e e 1 aGrT Oy +)
1 d(x*,y")

"b(1+d(x*,x*) + D(y*, Ty*))

d(x*,y"

< b? (max 1,%}¢(d(x*,y*)) + e).

<
<

< b? (max

Jpaeeyy +e)

If max {1, 2520} = 1, then we have d(x",y") < b2($(d(x",y")) +&).
If ,(d(x"y") = d(x*,y*) — b2Y(d(x",y")), then from the above
inequality we get ¢;(d(x*,y*)) < b?c and hence d(x*,y*) < {;1(b%e).
Consequently, the fixed point inclusion (4.1) is ¢ — generalized Ulam-
Hyers stable, where & = ;1.

If max {1,‘1(’“;'3’*)} = d(";’y*), then d(x*,y*) > b. From (4.1) we obtain

that
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dix',y") < b2 (FEXp(dat,y)) +e)
< bA(r",y(A(x’,y7) + bZe
< ba(x",y p(d(x",y") + be.

Now if {,(d(x*,y*)) =d(x*,y*) —bd(x*, y)Y(d(x*,y*)), then from
the above inequality we get ¢,(d(x* y*)) < b%e and hence d(x*,y*) <
{;1(b%e). Consequently, the fixed point inclusion (4.1) is ¢ — generalized
Ulam-Hyers stable, where & = {1

(hy) Let E(T) # @, and x* € E(T) then

d(x",y") = D(Tx",y*") < b(H(Tx", Ty") + D(Ty",y")).

Following the arguments similar to those in the proof of (h,) the
result follows.

(h3) Let x* € F(S), then there exists a y* € F(T) such that a(x*,y*) >
1. By a, — admissibility of T we get a(Tx*,Ty") > 1. Note that

1
SDOLTY?) =0 < bd(x"y").
Then by the given assumption on T, we obtain that

d(x*,y*) < bD(x*,Sx™) + bD(Sx*,y")

= bD(Sx*,y*) < b?(H(Sx*,Tx*) + D(Tx*,y*))

< b2(H(Sx*, Tx*) + H(Tx*, Ty*)) < b2(A + H(Tx*,Ty*))
A+ a(Tx*, Ty")H(Tx*,Ty"))

2 d(X*ﬂy*) * *
b (A + max {1' b(1+6(x*,Tx*)+6(y*,Ty*))}lp(d(x 'y )))

d(x*,y*) * *
(/1 + max {1’ b(1+d(x*,x*)+D(y*,Ty*))} Yy )))
d(x*,y*) * *
(/1 + max {1’ b(1+d(x*,x*)+D(y*,Ty*))} Py )))
2+, y)).

VA
sy
N

N

N

2
2

b
b
b

VAN

If max{l,%} =1, and

G(d(x",y™) = d(x",y") — b2(p(d(x",y)),
then from the above inequality we get ¢; (d(x*,y*)) < b?A. Consequently,
for every x* € F(S), there exists a y* € F(T) such that d(x*,y") <
{71 (b%1). Similarly, it can be proved that for every y* € F(T), there exists
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a x* € F(T) such that d(x*,y*) < {{1(b?1). Hence by Lemma 1.4, we
obtain that
H(F(S), F(T)) < {7 (b*A).

If max{1,d(";y*)}=d(";y*>, then for ¢,(d(x*y") =d(x*y") —

bd(x*,y* )y (d(x*,y*)) we get
H(F(S),F(T)) < {31 (b%A).
Consequently,
H(F(S),F(T)) < magffl(bzl)-

=1,

(h4) This can be proved on the similar lines as in (h3) using the
definition of E(T).

(hs) If {x,,} is a sequence in X, there exists a unique x* € E(T) such
that a(x,,,x*) > 1 and lim,,_,, D (x,, Tx,) = 0. Then there exists u,, € Tx,
such that lim,,;D(x,, Tx,) =lim,,0d(x,,u,) =0. Since T is
a, —admissible, a(Tx,, Tx*) > 1. As %D(x*,Tx*) =0 < bd(x,,x*), by
given assumption we have

d(xp, x*) < b(D(xp, Txy) + D(Txy,, x*))

< b(D(x,, Txy) + H(Tx,, Tx™))

< b(D(xy, Txy) + a(Tx,, Tx*)H(Tx,, Tx™))

< b(D (xn, Txn)

d(xnx")
" b(1+D (xp,Txy)+D(x*Tx*))
< b(D (xn, Txn)

+max {1 }lp(d(xn,x*))>

d(xpx") *
tmax {1’ b(1+D(xn,Txn))} 1,[1(d (e, x D)

<b (D (xp, Txy) + max {1,‘1(x+'x*)}1,b(d(xn, x*))).

If max {1, dxnx’)

} = 1, then we have
d(xn, x*) — blp(d(xn'x*))) < bD (xy, Txp).

That is, {3(d(x,,x*)) < bD(xp, Txy,). Similarly, if maX{l,—d(xZ'x*)} -

22D \we get 7,(d(xn,x*)) < bD (xy, Txy). This implies for each i € {3,4)

we get d(x,,x*) < {71 (bD(x,, Txy)). On taking limit as n — +oo and
using the continuity of ¢; at 0, for each i € {3,4} we get the desired result.
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(he) follows from (hs) as D (x,, Tx,) < H({x,}, Txy,).

(h7) From (hs) it is clear that lim,_,d(x,, x*) = 0. Since x* € E(T),
so there exists a sequence of successive approximations defined by
yn = x* for all n such that lim,,, . ,d (X, ) = lim, 40 d(xp, x*) = 0.

Existence and stability of solutions of differential
inclusions

Let Cl.(R) be collection of nonempty closed and convex subsets of
R and F:R - Cl.(R) a lower semicontinuous multivalued mapping.
Consider the initial value problem

x'(t) € F(x(1)), fort €,
x(t) = xofort = ay, (4.8)
x €C()),

where | = [a4,a,] and C(J) is a Banach space of absolutely continuous
real valued functions defined on J. Since R with usual metric is
paracompact, F is a lower semicontinuous multivalued mapping with
F(u) closed and convex for each u € R, by Michael’s Theorem (Michael,
1956), there exists a continuous function f: R — R such that f(u) € F(u)
forallu € R.

Now consider the following initial value problem

x'(t) = f(x()),fort €],
x(t) = xofort = a4, (4.9)
x € C()).

Note that the solution of problem (4.9) is a solution of problem (4.8).
Integrating from a, to t, we obtain

t t

fx’(s)ds= ff(x(s))ds,

that is,

t
x(t) = xo + f f(x(s))ds,fort € ]. (4.10)
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On the other hand, if (4.10) holds then (4.9) holds. Thus (4.9) and
(4.10) are equivalent.
Suppose that f: R — Rsatisfies the following hypotheses:

f;lf(x(s))ds =0, for t € J if and only if x(t) = x,(¢t) forall t € J.

There exists a nonnegative real number L such that
Le(a; —ay) < biz, where b is b-metric constant and for all u,v € R, the
relation ||f (w) — f(W)Il < Lgllu(t) — v(t)|| holds.

Define T: X — X, where X:= C(J) by
t
T(x(t)) =x + f f(x(s))ds,fort €]. (4.11)

Let d: C(J) x C(J) —» R* be defined as
P _ 2
d(x,y)-—HQgJXIIx(t) y@®ll.
Then (C()),d) is complete b-metric space. Define a: C(J) x C(J) -
R* by

k forx # xy,y # Yo, wherek > 1,
0 otherwise.

a(x,y) ={

Let : R* - R* be defined as i (t): = L?(a, — a;)t. Clearly, i € ¥,.

First we show that mapping T is a,. —admissible. As a(x,y) > 1
implies that a(x,y) =k. For x #x, and y # x,, from (i;-) we have
Tx # xy and Ty # x, on J. It follows that a.(Tx,Ty) = k > 1 and hence T
is a, — admissible. Now, by (ix-) for all x,y € X,

2

t t
ar,7y) = max || | Fasnds = [ forsnds

< max f I f(x(s))ds = f(y(s))ds II?
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t

2 _ 2
< ngeajx f Ly Il x(s) —y(s) I ds

a;

t
2 _ 2
< Lfrgl&gﬂ]x j I’?Ea]X I x(s) —y(s) lI* ds

ai
t

= o ymax [ ds = (@, - a)d(ny) = p(dy))

a

By Corollary 2.3, we obtain the solution of problem (4.9) which
provides the solution of problem (4.8) as well. Define the mappings
{1,$2: R* > R* by

G1(6) = t —b2Li(az — a)t =t — b*P(t),
$,(t) = t = bL}(ay — ap)t* =t — bty (1),

where P(t) = L]%(a2 —ay)t. Clearly the mapping ¢, is strictly increasing
and onto. Consequently, all the axioms of Theorem 4.4 hold with
mapping {;. Hence the fixed point inclusion (4.8) is {;! — generalized

Ulam-Hyers stable. Now %(z(t) >0 if 1—- 2bL12c(a2 —a)t>0. As
bL%(a, —a;) <1, hence the fixed point inclusion (4.8) is
{31 — generalized Ulam-Hyers stable if t < %

Let F:JXxRx R - CI.(R) be a lower semicontinuous multivalued
mapping. Consider the initial value problem

x'(t) € F(t,x(t), x(t — h)), fort €],
x(t) = xyfort € [a; — h,a4], (4.12)
x €C()),

where h is a positive real number. Then there exists a selection f such
that f(s,u,v) € F(s,u,v) for all u,v€R and s€[a; —ha,], see
(Michael, 1956). Note that any solution of the problem

x'(t) = f(t,x(),x(t — h)),fort € ],
x(t) = xofort € a; — h,a4], (4.13)
x€C())

is a solution for problem (4.12). Further, (4.13) is equivalent to
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x(t) = xo + f;lf(s,x(s),x(s — h)ds, fort € J,
x(t) = xofort € a; — h,a4].

We suppose that f satisfies the following hypotheses:
f;lf(s,x(s),x(s —h))ds =0,fort € Jifand only if x = x, on J.
If (£, ug, v1) — f (& up, v)ll < Le(llug — uzll + llvg — v2lD),

for all uy, uy, v1, v, € R, where Le(a, —ag) < ﬁ and b is a metricconstant.
Define the operator T:Y — Y, where Y: = C[a; — h,a,] X R X R by

T(x(t) =

Xo + f f(s,x(s),x(s — h))ds, fort € ], (4.14)

x(t) = xyfort € a; — h,a4].

From the definition of a, the admissibility of T follows. Now by (i4-) for
all x,y € Y, we have

t t
d(Tx,Ty) = r?(gjx I f f(s,x(s),x(s —h))ds — j f(s,x(s),y(s — h))ds II?

¢
< rrtlgx f Il £(s,x(s),x(s —h))ds — f(s,x(s),y(s — h))ds |I?
ag ¢
< max f L7 1 x(s) = y(s) II* (2%)ds

ai

t
— 472 _ 2
_4Lfntléi]xf I x(s) —y(s) I ds
a

< 4Lf(az — a)P(d(x, ),

where Y(t) = 4LI%(a2 —ay)t. By Corollary 2.3, we obtain the solution of
problem (4.13) which is also being the selection is the solution for (4.12).
If ¢i(t) =t —4b%L}(a, — ay)t and {,(t) =t — 4bL%(ay — a;)t?, then the
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fixed point inclusion (4.12) is {;* — generalized Ulam-Hyers stable. Now
28,(t) >0 if 1—-8bL2(a, —a;)t > 0. As 4bL%(a; —ay) < 1, hence the
fixed point inclusion (4.12) is ¢;! — generalized Ulam-Hyers stable if
1
t<-.
2
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PELEHWA 1 YCTONYMBOCTb ONGOUPEHLMATIBHBIX
BKITFOYEHUW MO YNAMY-XAMEPCY, BKIMIOYAA
PA3HOBMOHOCTU MHOIO3HAYHbLIX OTOBPAXEHUI MO
CYO3YKN B b-METPUYECKNX NMPOCTPAHCTBAX

Mydxaxud A6ac®, bacum Ann®, Tanam Hasup®, He6otiwa M. [Oenosuy',
Bandap Bun-Moxcu®, CmosiH H. PageHosuy®

@ MpaBnUTENbCTBEHHLIN Konneax B Jlaxope - YHuBepcuTeT, kadeapa
matemaTuku, r. Jlaxop, Micnamckass Pecnybnuka MNakuctan;
MpeTopuiickuin yHBepcuTeT, kKadeapa MaTeMaTukm 1 NpuknagHomn
maTtemaTtukm, r. MNpeTtopus, KOxHo-AdpukaHckasa Pecnybnvka

® YHMBEpCUTET MEeHeIKMEHTa 1 TEXHOMOMWIA, kadeapa MaTeMaTyKy,
r. Jlaxop, icnamckass Pecnybnuka MNakuctaH

® YuusepcuteTr COMSATS B Ucnamabage, kadeapa matemaTuku,
Kamnyc B r. AGG6oTTaban, icnamckass Pecnybnuka MNakucTan;
YHuepcuteT KOxxHOM Adpukmn, kKadpeapa MaTeMaTUYECKNX Hayk,
Hay4Hbin kamnyc, r. MoxanHecbypr, KOxHo-AdpukaHckasi Pecrniybnuka

"Hosun-Capackuin yHusepenteT, CenbCKoX03ANCTBEHHbIN (akynbTeT,
[enapTameHT CenbCKOX035IMCTBEHHOTO MALLMHOCTPOEHWS,
r. Hoeu-Cap, Pecny6nuka Cepbus, koppecnoHaeHT

A Yuueepcutet nm. Kopons Cayga, Konnemx (manko-maTeMaTUHecknx Hayk,
kacegpa matemaTtuku, Ap-Pusia, Koponescteo CaygoBckas Apasus

© Benrpaackuii yHmsepeuTeT, MallMHOCTPOUTENbHBIN akynbTeT,
r. benrpag, Pecnybnuka Cepbus

PYBEPUKA TPHTW: 27.00.00 MATEMATUKA,;
27.25.17 MeTpuyeckas Teopusi pyHKLUN,
27.39.27 HenuHenHbI OYHKLMOHANbHbIA aHanmn3
BWO CTATbW: opuruHanbHas Hay4Has ctaTbs

Pe3some:

BeedeHue/uenb: B daHHOU cmambe rpedcmasrieHbl cognadeHusi u
obwue HernodsuUXHbIE MOYKU MHO203Ha4YHO20 OmobpaxkeHuUsi murna
Cyd3yKku 8 b-mempu4yeckux npocmpaHcmeax.

Memodbi: Obcyxdatomcs ripedesibHble c8olicmea, KOPPeKMmMHOCMb U
ycmou4ueocmb  peweHulizadaqyc  Hernod8UXHOU MOYKOU  makux
omobpasxkeHul o memoQdy Ynama-Xatiepca.

Pesynbmamel: [NonyyeHa 8epxHssi epaHuua paccmosiHusi Xaycoopgha
Mex0y  HernodBUXHbIMU  moOYKaMu  MHOXecms. B  kauyecmee
Ooka3zamersibcmea MoJly4eHHbIX Pe3ysibmamos, 8 cmambe npueedeHo
HECKOIIbKO puMepos.

Bbigodbl:  [NpumeHeHue rory4YyeHHbIX pesyribmamos OoKa3sbigaem
cyuwiecmeosaHue duggepeHyuanbHbIX 8KMIOYEHUU.

Knrouesbie crosa: b-mempuyeckue npocmpaHcmea, MHO203Ha4YHble
omobpaxeHusi, HernodsuwxHass moyka U 3adadyu, Ynam-Xaliepc
cmabusnbHoCmMb, HavyarnbHas 3adaya.

485

Abbas, M. et al, Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on b-metric spaces, pp.438-487



i" VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2020, Vol. 68, Issue 3

PELLEHA N YNIAM-XMEPOBA CTABUNHOCT
ANOEPEHLINJATTHNX MHKINY3WJA, YKIbYYYJY RN CY3YKUJEBE
BPCTE BULWE3HAYHOI NMPECNUKABAHA HA b-METPUYKNM
MPOCTOPVMA

Myuyaxud Abac®, bacum Anv®, Tanam Hasup®, He6ojwa M. [enosuh’,
Bandap BuH-Moxcu?, CmojaH H. PapeHosuh”

@ BnaauH konew — YHusepauteT, Ofcek MaTemMaTuke,
JNlaxope, Ncnamcka Penybnuka MNakuctan;
YHusepsuteT y lNpeTopuju, Oacek 3a matemaTnky U MPUMEHEHY
matematuky, MNpeTopuja, JyxxHoadpuyka Penybnuka

® YHMBEP3WUTET 3a MEHaLIMEHT 1 TexHororujy, Oficek 3a MaTemaTuKy,
Jlaxope, Ncnamcka Peny6nuka MakucTaH

® Yuueepsuter COMSATS y Ucnamabapay, Oacek 3a matemaTuky,
Kamnyc Abotabapg, Vicnamcka Peny6nuvka MNakucTan;
YHuBepautet JykHe Adpuke, Oacek 3a maTemMaTuyke Hayke,
Hay4yHu kamnyc, JoxaHecOypr, JyxHoadpudka Penybnvka

"YHusepauteT y Hosom Cagy, MorbonpuepeaHu dakynrer,
[enaptmaH 3a nosrbonpuepeay TEXHUKY,
Hoeu Cag, Penybnuka Cpbuja, ayTop 3a npennucky

AYHueepauTeT kparba Cayaa, Koneu npupogHo-mateMaTuykux Hayka,
Opcek 3a matematuky, Pujaa, KpamsesnHa Cayawjcka Apabuja,

n YHuBepautet y beorpagy, MawuvHcku cdakynTeT,
Beorpag, Penybnuka Cpbuja

OBNACT: matematuka
BPCTA YJ1IAHKA: opurMHanHm Hay4Hu pag

Caxemak:

Yeod/uurb: Y paly cy npedcmasrbeHe KOUHUUOeHMHe U 3ajeOHuUYKe
¢ukcHe mauke Cy3ykujege 8pcme 8ulIe3Ha4YHO2 MpecriuKasara Ha
b-mempuykum npocmopuma.

Memode: AHanusupaHa cy epaHu4Ha ceojcmea, 0obpa nocmasrbLeHocm
u Ynam-Xueposa cmabunHocm pewera 3a (OUKCHU rpobrem
8UWE3HaYHUX rpecsiuKasarba.

Pesynmamu: [obujeHa je 2opra 2paHuua Xay3dopghogoe pacmojar-a
usmeRy cbukcHUX mavaka cKyrioea. HaeedeHu cy npumepu Koju
rodpxasajy dobujeHe pe3ynmame.

Bakrbyyak: lNMpumeHoMm ripedcmassbeHUX pesynmama ycmaHo8/beHa je
ea3ucmeHyuja dughbepeHyujanHe UHKITy3uje.

Krbque peuu: b-mempuyku npocmopu, sULIE3HaYHO rpecriukasar-e,

gukcHa mayka u npobaemu, Ynam-Xueposa cmabunHocm, novyemHu
npobriem.
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