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Abstract:

Introduction/purpose: The paper presents a designed procedure for
solving a class of nonlinear programming (NLP) tasks with the nonlinear
and differentiable objective function, linear natural constraints (intervals of
possible arguments values - variables) and the normalization condition for
arguments. The procedure was applied to determine the partial stability of
the solution of the problem of multi attibute decision-making (MADM).

Methods: The basis of the procedure is to define the nodes of argument
pairs and their parameters for the allowable multidimensional points. The
parameters are implemented in the gradient method, the favorable
directions method and the line search method. In the development of the
procedure, the basics of the TOPSIS method for MADM with interval-
given criteria weights were used, primarily due to the nonlinearity of the
reference function.

Results: The paper elaborates the procedure of determining extreme and
other admissible solutions of the reference function (boundary and basic
solutions) and all vertices of the convex set of the function definition. This
forms a complete graph of the function, i.e. the required solutions from the
allowable set can be determined. A procedure for determining a set of
solutions for defining a separating hyperplane of a set of function values
has been developed; in this way, as a specific case, a set of solutions of
partial stability of the variant is defined as MADM solutions. Adequate
procedures have been proposed to eliminate the degeneration of the
procedure (wedging and oscillation of the solution).

Conclusions: The most significant contribution of the paper is the definition
of the nodes of argument pairs and their parameters which ensure the

488




normalization condition in each node and for each allowable point, non-
negativity of variables and independence of argument changes in nodes,
within active constraints. An original procedure for determining function
graphs has been developed. An appropriate real numerical example is
given.

Keywords: criteria weights, nodes of argument pairs, gradient method,
favorable direction method, system of basic solutions, multi attribute
decision-making, partial stability of solutions.

Introduction

Problems of nonlinear programming (NLP) with the nonlinear
objective function, linear natural constraints of arguments (intervals of
possible values of arguments) and the normalization condition for
arguments cannot be solved by applying classical NLP methods. The
normalization condition implies a constant sum and positive values of
arguments in each multidimensional point from the admissible convex set
of the function definitions. Relying on the knowledge and procedures
from the classical NLP methods (Petric, 1979), (Hadley, 1964),
(Zangville, 1969), (Bazaraa et al, 2006), (Luenberger & Ye, 2016),
developed for problems with or without limitations, the procedure
developed in this paper can be applied for the development of the
procedure for solving this class of NLP tasks. At the same time, the
necessary procedures based on the introduced concept of nodes of
arguments (or nodes of criterion) for the problem of multi attribute
decision-making (MADM) have been developed, thus transforming the
criterion function and constraints and creating a new NLP model based
on node parameters. The new model does not contain a singled out
normalization condition, because it is built into each feasible point
through the node parameters.

As the aim of the paper is conceived on two bases - to show a
possible procedure for solving this class of NLP tasks while including
consideration of partial stability of MADM solutions - a complex method
TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
was chosen as an example (Hwang & Yoon, 1981), (Yoon, 1987). The
chosen method is based on multiple distances of quantitative indicators
of quality of variants (values according to the established criteria - criteria
values from the best and most unfavorable existing ("perceived") criteria
values. The method was chosen solely because of the nonlinearity of the
reference function, since in most other methods this function is linear
(VIKOR, MABAC, COPRAS, AHP), and not because of preference over
some other methods. The above procedure can also be applied to these,
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as well as other methods with a continuous reference function. The
function of partial stability of one variant in relation to the another one
represents a set of weight points for which the difference of the reference
TOPSIS values of these variants is positive. Feasible weight points are
given to components whose values are within a certain interval, which
can be the result of determining the value of weights using group
methods, combining multiple methods, incomplete or unreliable
information, uncertainty of decision makers and the like.

By applying the TOPSIS method, a reference nonlinear objective
function is obtained, the constraints of the variables are linear, and their
values must meet the normalization condition, which limits the application
of standard NLP methods for conditional optimization. Based on the
constraints and possible changes in the values of the weight components
(variables), the nodes of the pairs of criteria (arguments) are formed.
They ensure the normalization condition, non-negativity of variables and
independence of weight changes in one node from changes in other
nodes, under active constraints. The Cauchy gradient method of the
fastest fall (growth) (Vujici¢ et al, 1980, pp.89-92) and the line search
method, adapted to the conditional optimization and characteristics of the
nodes of the pairs of criteria, were applied as a basis for the proposed
procedure for solving the NLP problem. The first part of the paper defines
the function of similarity of a variant to an ideal solution, the nodes of
criteria pairs and their characteristics for one variant, and also presents
the procedure for determining the extremum of a function (exact and
approximate solutions). The way of solving a possible occurrence of
degeneration of the procedure (wedging or oscillation of the solution in
the "vicinity" of the boundary of the set of feasible solutions) is also
shown. In the second part of the paper, the partial stability of one variant
in relation to the other ones is defined and the already performed
parameter relations for one variant are applied to the partial stability
function. Based on the introduced system of basic solutions for the
required value of the reference TOPSIS function (separating the
hyperplane of the values set of the function), a set of solutions was
determined for which one variant is better in relation to the other selected
variant. The paper does not explicitly deal with the analysis of the
influence of criteria weights on the values of quantitative indicators of
variant quality, but with the procedure of determining weight points from
the set of admissible points, for which the stability of one variant in
relation to the other one from the set of available variants can be
determined. As an illustration of the procedure, a corresponding real
numerical example is given.
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The objective function (the similarity function of the
variant to the ideal solution)

An_MADM problem: There are m variants V,;i=Lme| available
and each of them is described with n attributes that are used as criteria
K;:J=LneJ in the decision-making process: the MADM problem is

defined as a requirement to determine the variant v ,; pel that is best
according to all criteria K ;, as well as a ranking list of all variants. In the
decision matrix C ={cj;i =1,m; j =1,_n} (cije R are criteria values), the
criteria are associated with numerical values of weights w;je(01) with
the normalization condition Z}ifwj =1 and the operators - min/max
criteria: Lj=-1 (min)or |;=+1 (max).

The TOPSIS method: It is based on compromise decision making
and Lp metrics (Hwang & Yoon, 1981), (Zeleny, 1982), (Yoon, 1987) and
can be displayed in several steps, when determining:

- Normalized criteria values:

a) aijzcij/,/ 7'y, forza |j=+1 (maximum),
b) ay =cl/ySiT el cf=ci+ci—cy) for Lj=-1 (minimum), (1)

where c’} are the best and ¢; are the most unfavorable criteria

("perceived" ideal and anti-ideal)’, when all criteria become
maximizing(L;=+1).
- Distances of Lp metrics for p=12,0 according to the normalized
values of the "perceived" ideal V" =(a)=max;{a;}) and the anti-ideal
V™ =(aj=minj{a;}:

a) t*p,i = Lp(V* ;Vi) = [Z}jW?(a*J — ajj )p ]l/p )

b) thi=Lp(V 5Vi)= [Z}wajp(aij -aj)’ 1Y7, p=12,0. (2)
- Unified distances of variants from ideals and anti-ideals:

1 . . . . . . . .
It is possible to apply linear normalization a =(Cij_cjf)/(cj_clf) which increases the range
of normalized criteria values 0<g;<1. The decision maker can determine both the

absolute best (desirable) and the worst (undesirable or critical) values of the criteria
functions that are outside the perceived best and worst criterion values, thus forming a
secondary ideal and anti-ideal.
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= 2p X p,tpis i =2p 2, thi(i); P=12,0; (3)
where y i 2,7, =1 are the coefficients of the linear combination in

the system of three metrics (t;,t,,t,), which represent the relative
reliability of the function t, for the dimension y (e.g. yis the number of
criteria, variants, class, rankings, etc.) (Yoon, 1987, pp.283-284) or are

chosen depending on the nature of the problem i.e. on what is required: a
greater overall benefit (p=1), geometric proximity to the ideal (p=2) or

smaller individual maximum deviations of the criteria values (p=x)
(Opricovic, 1986, pp.45-48).
- |deal similarity vector S ={s;} - similarity (closeness) of the variant Vv

to the ideal solution Vv~ with elements (ideal similarity coefficients):

si=ti/(ti +17); 0<si<L. (4)
- Rank of variants according to the criterion:
R(i)=maxi{si}- (5)

The coefficient of similarity of ideal (4) is a quantitative indicator of the
quality of the variant \/; at the same time according to all criteria and in

relation to the ideal and the anti-ideal (or the degree of "goodness" of the
variant). For s >05 (when i t;>t;) the variant v; has a greater
influence on the variant and the variant is considered to be under the
"control" of the ideal (the opposite is also true for t; <t; the anti-ideal).

The similarity function of the variant to the ideal (similarity function)
(4), for the constant criterion values ¢;eR (1) and one variant V;

(hereinafter the index "i" is implied), can be represented as a real
function of n variables - weight w; € (0;1) foreach jeJ:

s(w)=s;(w); w={w;e(0)}; Xw;=1 forieli jel, (6)
where Z}j{‘wjzl is the normalization condition. For the solved MADM
problem, the weight components w are given in the intervals
w=(w;)e[w;.wi]l, where wj are the lower limits and w§ the upper

limits of the interval of the values of the weight components (some
components can be specified as discrete values). Interval weight
estimates can be obtained in the process of group decision making on
weights, when applying several objective methods of determining
weights, as a consequence of incomplete information or uncertainty of
decision-makers and the like. A set of initial weights is formed for each
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criterion w; and the lower wj" and upper limit values w5" are

separated. The starting point of the weight w’" =(w{") has components

wiP<wiP<wj® that can be the arithmetic means of several obtained

weights (either modal or medial values) or at will chosen weight and for

which it is generally ¥ !17'wS” #1. By normalizing these values, the basic

point of weights w’=(w})e[w}.w$] and X]=w}=1 is obtained, with
the limit weights wf and w} whose sums are Z}Z{‘wfd and
Z}jfw?>1. According to the basic point of weights w’=(w}) and
expressions (1-5), a basic TOPSIS solution of the MADM problem
(W’sp=s,(w")) is obtained or a variant Vv, pel for
sp(W")=max{si(w’);i=Lm}.

The function definition set s(w) is a compact (closed and bounded)

and convex set of points we E = g", such that ECF cR". A set F is
an n-dimensional set bounded by 2n hyperplanes, W? and W?, and
w=(w;)e[w).w’] is an n-dimensional point. The point weF , with the
components ;>0 for each jeJ, not connected by the normalization

condition Z}i{‘w(} =1, is the vertex of the set F only if each component

has a value of w;=w} or w;=w} . The vertex of the set F must contain
n components: p components W?A >0 for j,eJ,cJ and g components
w5, >0 for jpely <, sothat 0<p<n, 0<qg<n, p+q=n, JyuJg=J,
and J,nJg=9; the total number of vertices is 2" (variations with

repetition). Since itis >; wj, +2;, W?B #1 in the general case and due to

A VY]

the normalization condition Z}waj =1, the set EgE does not contain

vertices, and thus not all points of boundaries (edges) and sides of the
set F.

A point V_VGE\ E is a boundary point of a set EcR" only if there is
w;=w; or w;=w’ for at least one jeJ, and an inner point weE -

only if there is W?<W,— <W? for every jeJ, where E is the interior of
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the set E. Each vertex of the set E contains n components: p
components W?A , § components W?B (wherein 0<p<n-1, 0<q<n-1

and p+gq=n-1)anda yw, component:

we =1-(X), Wi, + X5, wi, ), we<wr <wr (7)
which is a condition for some combinations of the values W’j*A and W?B to
form the vertex of the set E. As it is we<(1=3 wh -2 wh ) <wh,
condition (7) in the general case cannot be fulfilled for all 2(") possible
combinations of the values w] and w} .

A set of function values s(w) is a set §={SE [s™;sM]}c R limited
with the values of the function for extreme solutions: minimum
(w"s"=s(w")) and  maximum  (wWM;s"=s(wM)).  Mapping

s:E—>S (R"— R) is a surjection: there is at least one point V_VEE for
which there is s(w)=C €S and for each point weE there is only one
value s(w)=CeS: (Vs(w)eS) (BweE); (vweE) (Fs(w)=CeS). The
set of all solutions forms the graph of the function
Fe={(w;s)eR™|weE,s=s(w)eS}.

The extremes of the function s(w) are obtained as solutions of the

NLP problem with a nonlinear objective function, 2n linear constraints,
the normalization condition and positive values of the variables:

(min/ max) s(w);

j=n

wizwis wiswts 2w =1; w;>0; j=1n. (8)
The function s(w) on a convex set E is continuous and twice

differentiable, but it is not possible to unambiguously determine the

convexity or concavity of the function on the whole set E. Fora special
case and for a constant value s(w)=C, function (4) can be written as

C=t/({+t) or Ct —(1-C)t =0. Hence the assertion (Yoon, 1987,
p.280) that a function s(w) is convex for the subsets of points V_VEEQE
in which it is s(w)>0.5, and concave for subsets of points
We E,=E\E, in which it is s(w)<0.5. Therefore, each local extremum
is also a global extremum, that is, a function has extreme solutions at the
boundary of the set E, which are unique in terms of the values of the
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function and arguments. The convex function (s(w)>0.5) has a
maximum, and the concave (s(w) < 0.5) has a minimum at the vertex of
the set E (Marti¢, 1978, pp.144-145) and these are exact extreme
solutions that meet the optimality criterion. The minimum convex and
maximum concave functions are at the boundary of the set (they can also
be the vertices of the set E ), and if they are not the vertices of the set
E, then they are determined as approximate extreme solutions

(incorrect, acceptable) according to the predefined criteria for function
values and/or arguments according to real (exact) extreme solutions.

Nodes of the pairs of arguments (criteria)

Defining the nodes of the pairs of arguments (criteria) and their basic
parameters is the most important phase of the presented method of
solving the NLP problem. Nodes are formed for one variant \/;, and each

pair of criteria r,teJ;r=t and one point w*. In a narrower sense, the

node of the pair (two) of criteria (r,t) is the node of two different
?
qualitatively new set of parameters arising from the mutual relations of
characteristics (parameters) of current components W‘; and W{‘.

The transition from the initial to a new solution is done by changing
the starting point w* to a new point of weights w"**, where k =012...., is

components i for j=r,t of one point of weight ﬂk : it represents a

the mark of the iterative solution. The basic parameters of the point ﬂ"

are:
Active constraints of the criteria dfk and d?" (possible changes in

weight components) at the point w* for the intervals [w},wj]:
dif=wj-wj20; df=wj-wj20; dP=df*+d}*=wi-wf, eI, (9)
where d?kzois the largest possible decrease, d?kzo is the largest

possible increase in weight W‘}, and df

B>0 is the size of the interval
[w"w’]. The values d}* and d{*>0 and their sums ¥!Z7df* and
Y745 can be related by any sign (<, =,>).

The vector of change (increment) is the weight V_k : when changing

the point w* to the point w***, the new point "' =w*+\*, where the
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Vv =(\¥) vector of change (increment) is the weight. The values v can
be #0 or =0, which is why non-negative values are introduced
Vi v =0 (v#*>0reduction and v§* >0 increase weight w/ ):

a) vi*=-vj20, vi“c[0.d[“]; za v{<O0;

b) v¥=v4>0, V*<[0,d%],za v{>0. (10)
The values of the weight components at the new point w*** are”:

k K k Kk k Kk
wit = wi v = wi v v (11)

where for each component w/ (11) at least one of the values v{* or v

is equal to 0.
The gradient of function: from the development of function (6) into
Taylor's polynomial of the first degree:

s(W) =s(w*) + V(W)W ™ = w ) + Ri=s(w )+ o(w )+ R, (12)
and for the value of the remainder R,~0, the auxiliary function

o =o(w") is equal to:
(W) =Vs(w ) (W = w) = Vs(w ) (v —v™); (13)
where Vs(ﬂk)={as(ﬂk)/aw‘}}j:rn the gradient of the function s(w) is at

the point ﬂ" Approximate values of the gradient components

g‘}:gj(@)zas(ﬁ)/awﬁ can be calculated by the method of double
increment of variables (Milovanovi¢ & Stanimirovi¢, 2002, p.114):

g =[s(w**)-s(w*)1/25; 6>0; jeJ, (14)
where points w/** =(wf, W+, ,wk) and M=(W§<,"',W‘}—5,“-,Wﬁ),

and & >0 the increment is small (e.g. §=10"° or less).

Node parameters

For the transition from the point w* to the point w*** and with the
normalization condition Z}wa'} =1, it is necessary to change the weights

of at least two criteria r,t e J that form a node (r,t) with a unique value

2 The index k =01.2,..., indicates the quantities in the point ﬂk (eg: s*, &, d?k, d?r,t)’

g';, g(kr,t)) and the quantities that "come out" of it (eg: V’}, VJAk, 260y T{m)).
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of weight changes v/}, =viy,>0 and the direction of changes: v/(;, is the
reduction of the weight w}, and v{;, is the increase of the weight w; .

The components r,t € J of the point Wk+1 are equal to:

k+1 . k+1
Wit =wE vt wE

_Wt+Vt(r); Vr(t) Vr(t)ZO rteld, (15)
while the other components are unchanged W'“l— W,— , jed\{rt}. Aset
of nodes is formed for a known solution

e ={(rt)|rted,r«t} (16)
with n(n—-1) elements in total. The basic characteristics of the nodes
are:

Active constraints of nodes dfrl):d(m(ﬁ) depend on a possible

decrease in the r-component and on an increase of the t-component
weight in nodes (9) (available resources):

) {min(df‘k;df’k)zo; (rt)e®

O™ 0; r=t, [(rit)eo] ’ (17)

where the matrix D =(dfm)nxn for ritel.

Variables z(,.,: variables z(,;,,>0 are introduced, whose values

show the change of the weight components in the nodes, whereby a
square matrix Z*=(z{ ) is formed, with the following elements:

a) Z(rt){<d(rt)20 (r)ee
=0; r=t, [(rt)g0]
b) Z(rt) Vr(t) Vt(r)ZO (18)
Since Vr(t) =vt(,), the values of the variables ZF,I) >0 are conditional
and compensatory values of the weight changes in the node (r,t), and
their summation in the nodes (r,t)e® gives the total increase y* or

k

decrease y* of each weight component:

Ak Ak t=n_ Ak =n_k Ak
a) JZI'—)V :Vr(1)+ +Vr(n) t_{]Vr(t) Zt:gz(rt)gdr '
r=n_ Bk Bk
b) J—t—>Vt —Vt(l)Jr +Vt(n)_z_1vt(r)_ r_1Z(rt)—dt )
k k
) YV -T vk = (19)
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The normalization condition is provided in each node and does not
need to be considered further. The condition from the starting point of

weights Y1-'w)=1 (11) is also contained in the point w' because of

(19¢): TIw =X 12w) + ZIZVE - 319v4% =1. The normalization condition

is transformed into > 177v® - Y15y =0 or ¥ I9¥=0 and is contained in

each node (r,t) and for each point ﬂkeE in any iteration k=0.12,...,.

Gradient function in the node gfm : the increment of the value of the
auxiliary function (13) for the node (r,t)is:

otry=(5(w )/ Ok )-vige)~(B(w )/ Owk) Vi) - (20)

By changing g as(v\f)/awk for gr and gt (14) and z{,1,=Vvi{,= Vi) =0
(19a, b) expression (20) becomes:

o 2fr0)) * 2 (O ~05) = Zheay Iiray> ey = 9 2e)) (21)

where g(kmz g(”)(ﬂk) is the approximate value of the gradient function

component s(w) in the node (r,t)e®“. The values grm for all nodes

(r,t) form a square antisymmetric matrix (;.k:(gfm)nxn with the
elements:

9 -9 (rt)ep
(Ch { 0 r=t, [(r)ee"]’ 2

where gfm)z—g(kt’r). The approximate total change in the value of the

function s(ﬂ") for all nodes (r,t)e @, according to (21), is equal to:
o(Z2") =20 0(Z ) 2y (rt)e@. (23)
Possible changes in the function values by the nodes T}‘m are

derived values based on the values of the elements of the matrix DX (18)
and G (22). A matrix 7% =(z{,;))ma is formed, with the elements:

k Kk . k : k
k _{g(r’t)dmio' 2 G0 LAl (heet @)

T(I’,I)_ ; k _ . Kk _
0; za g(m_o ili dm,_o
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of which there may be at most n (n-1) elements T}‘m # 0. This defines the
basic characteristics of the nodes (r,t): d}(m, g:‘m) and z—}(m and the

variables z(,,, shown in Table 1.

Active nodes

The characteristic Té‘mio, as a derived quantity, is the most

significant indicator of the possibility of changing the value of the function
in the node (r,t) for the current point ﬂk Based on the values 1—{(”) =0,

the matrix T with the elements that are 0 or 7(,,,<0 and the matrix T%
with the elements that are 0 or T{‘m >0; this determines the subsets of
active nodes @ and @ at the point w*:

a) @ ={(r.t)|r(;y,<0}c O";

b) @ ={(r.t)| z(;1)>0}c O (25)

The active nodes in the point w* are the nodes (r,t)e ® U@, and

the active gradient components are only the components gl‘m #0 in the

active nodes (the nodes in which there are g(km) =0 and d(kmzo are not

active nodes). According to the influence on the value of the function
(increase or decrease), i.e. for determining the extreme of the function

(minimum, maximum), active nodes are the nodes (r,t)e@* for
decreasing the value or determining the minimum of the function and the
nodes (r,t)e @ for increasing the value or determining the maximum of
the function. Active gradient components are only the components

g;‘m) <0 (min) or g;‘m >0 (max) in the active nodes (T}‘miO). The sum
Z(r,t)lr(kr,tﬂ:Z(r,t)lg(kr,t)ldfr,t)zo for the node (r,t)e@* is the largest
possible decrease, and for the node (r,t)e@* the largest possible
increase of the value of the function s(w) is at the point ﬂk The value

rt )|T{‘m| can also be a criterion for accepting the achieved solution as
an approximate extreme solution and for interrupting the iterative
procedure if ¥ |z{inl<e, for (rit)e@ (min) or (rt)e@ (max),

499

Buki¢, R., Partial stability of multi attribute decision-making solutions for interval determined criteria weights - the problem of nonlinear programming, pp.488-529



’E‘ VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2020, Vol. 68, Issue 3

because the improvement of the function value in the next iteration
cannot be greater than the defined value ¢, (e.g. ¢, <5-107).

The formation of the nodes (r,t)e®" ensures that the normalization
condition ¥ /= =1 (or ¥}7\=0) is contained in each point MEE the
non-negativity of the variables z(kmzo and the independence of weight

changes in a particular node (r,t)e @ from changes in the other nodes,
with active limitations of criteria (18, 19).

Extreme solutions of the objective function (similarity
functions)

The extremes of the function s=s(w) (8) are determined by an
iterative procedure starting from some feasible solution (ﬂk; s) which, in
general, is not extreme. Improving the initial solution is possible only if
there is at least one node (r,t)e@" (25a) (decrease in the value s*) or
only if there is at least one node (r,t)e®@* (25b) (increase in the value
s“). According to expression (13), the current solution (w*;s") is
improved by increasing (decreasing) the value of the auxiliary function
o(z*) (13, 23), when the nodes taken into account are only the nodes
(r,t)e ®* in which weight changes contribute to the improvement of the
value of the auxiliary function o(z*).

The iterative procedure determines the boundary solutions
(WeE\E;s*) with the improved function s(w) values, i.e. the

boundary points (w*'=w")cE\E that will give an improved TOPSIS
solution (2-4), while active constraints allow it. At the end of the
procedure, a solution will be obtained at the point at the vertex of the set
E , which will be the exact extreme solution W_“:(W_mvw_'\")e E\E or
the initial solution for a further procedure and determination of the

approximate extreme solution. In both cases, there is a single iterative
procedure by which an admissible solution is obtained at the vertex of the

set E , from which no better solution can be obtained at any vertex of the
set E.
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Exact extreme solutions

For the initial solution (w";s*), usually k=0, it is convenient to form a

table similar to Table 1 which contains the values of the active
constraints dfk and d?k (9), the node characteristics (r,t) - the elements

of the matrices D* (17), G* (22) and T* (24) at the point w*, the partial
sums g?m and T{‘m dependent on the active nodes @* or @, the
space for writing variables ZFr,t) and their sums as the components of the
vector v = (V).

The extremes of the function s(w) (8) are determined as the
solutions of the NLP problem with restrictions on the weight changes in
the nodes z{,<d{ >0 (18) and according to the criteria
Yl <dM >0 and Y376 <dX=0 (19), that is, from the

condition that the points of extremes are admissible, and, at the same
time, the boundary points W lcE\E.

The mathematical model NLP (8) was transformed according to the
node parameters and a new model was formed containing the nonlinear
objective function (due to the multiple differentiability of the function s(w)

and the nonlinearity of the function g(zﬁrt))), n(n+1) linear constraints
(the normalization condition Z, w;=1 is contained in the nodes

parameters) and for n(n —1) variables zm) >0, with indices as in Table 1:

(min/ max) o(Z") =%, 1,902, ,) 211 »

26y S drny s n(n-1) constraints,
Zt 1Z(rt) > d v N Constralnts (26)
> ?z(rt <dt , h constraints,

z(”)_O (r,t)e®® (min)or (r,t)e @ (max).

The NLP task (8,26) is solved by applying an iterative procedure
based on the first-order gradient method or the Cauchy method of the
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fastest drop (growth) of the value of the function s(w)?® adapted for the
application of node parameters. The direction of the antigradient

—Vs(ﬂ") is also the direction of the fastest decrease in the value of the
function s(w) at the point ﬂk that is, it is the most favorable direction
from the point ﬂk for determining the minimum (Vuiji€i¢ et al, 1980, p.89);
the direction of the gradient Vs(ﬂk) is the most favorable direction for

determining the maximum.

Through the starting point ﬂk in addition to the most favorable
direction, countless other favorable directions can be drawn that will
contain the characteristics of one or more active nodes®. The aim is to

determine the point ﬂeg at which the TOPSIS value of the function

s“*! is better than the value s* in the chosen favorable direction and in

accordance with the limitations in model (26).
Solving problem (26) requires at least one known feasible solution

(ﬂk;sk) (basic TOPSIS solution (ﬂo;so) or any other feasible solution),

for which there is at least one node (r,t)e @ (minimum) or at least one
node (r,t)e®* (maximum) (25). Based on the values of all active
components of the gradient at the point ﬂk the most favorable direction
or the direction of the fastest fall (growth) of the objective function is set
through it. Active nodes are determined depending on the required
extreme: (r,t)e@* (min)or (r,t)e @ (max). The most n(n-1)/2 active
nodes are possible for each required extremum, that is, it is the largest
number of elements of the sets @* and @* for the inner point we E . In
the intersection of the most favorable direction and some, unknown in
advance, hyperplane of the set E - W? or W?, there is the boundary

point (W_"*zﬁ)eE\E:

W= = () = (v ) e )

% Based on the gradient method of the fastest fall, several procedures and their
modifications have been developed, which are not listed here, and some of them have
been treated in the cited literature.

* Other favorable directions are applied in eliminating the degeneration of the procedure
known as wedging and in determining the basic solutions for the required values of the
function s(w)=C (shown below).
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Table 1 — Parameters of the point Wk and the nodes (r, t) for the NLP model
Tabnuua 1 — lNapamempb MoYKu ﬂk u yanos (r, t) 0ns modenu HJIM

Tabena 1 — lNapamempu mayke Wk u ysopoesa (r,t) 3a moden HJIIM

j=t 1 n
Ak Bk Bk Bk
. r t 1 n sums*
JEr k k k k
g \ % 9 g,
Ak k
1 0 din
k k t=ny - K
) 0, 0 9 I=1|g(l,t)|
k k t=ny _k
T(rt) 0 T(1n) Zt:llf(l,t) |
k k t=n_k Ak
Z(ryt) 0 Z(1n) ZJZ(M) =Vi
Ak k
n dhny | - 0
k k t=n k
gn g(nj_) oo 0 I=l|g(n‘t)|
n
k k t=nj _k
T(rt) T(nl) 0 t=1|T(n,t)|
k k t=n_k Ak
Z(rt) Z(n1) 0 t=er]Z(n,t):Vn
—np K =n Kk
z::ﬂg(r,l)l z::ﬂg(r,n)l
—ny _K —ny _k k
sums* I:ﬁ?lf(r,l)l Lﬂf(r,n)l Z(r,t)|2'(r,t)|
=n_k Bk =n_k BK
z:=fZ(r,1):V1 :::rL]Z(r,n):Vn

*sums g:(r,t) and Tz(r,t) are determined in relation to (r,t)e @ or (r,t)e@"

Minimum problem: The direction of the fastest fall is the direction of
the antigradient —Vs(ﬂk), that is, the direction of the antigradient vector

in the active nodes for the point ﬂ" (the gradient vector is the sum of the
gradient vectors g?rvt)<0;(r,t)e@E of the active components); the

values of the variables zfm>0,(r,t)e@5 (18,19) have the same
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interrelationship (proportionality) as the values of the active components
of the gradient®:

Zz(r,t)=ﬂklgfr,t)|i(f,t)€@5, (28)

where ,uk >0, the unique coefficient (proportionality) of weight increment

for all active nodes, depends on the active constraints in the nodes
(d(r)>0) and the criteria (d{*>0 and % >0); it is necessary to

ensure, when passing the point ﬂkeE to the boundary point W_k*eE\ E:
a) that the point W (27) is a feasible point; b) that W is in the most

favorable direction; and, c¢) that the active constraints of the nodes and
the criteria are met to the maximum (to achieve the maximum possible

changes in the weight components V'} ). The values of the coefficient ,uk

are obtained on the basis of the following considerations:
1) Active constraints in the nodes Zé(r,t)f dfm >0,(r,t)e@" (18): for

the boundary case z{,=d{r)>0 and z() =&\ |0 = diryi(r)ed”,
where ff”)>0 is the node coefficient. The lowest value g;‘m>0 in all
nodes allows at least one resource d}‘m - active constraint to be fully
utilized and that d(;,,=0, based on which the coefficient of active nodes
is determined &> 0:

2 & - dfrof19 > 05(r) <ot

o (r)e e

b) &= mingr{&(rry > 0i(r ) €64} (29)

2) Active constraints of arguments (criteria) Y177(;,<d?“>0 and
Sz y<d¥>0 for (j=r;j=t)ed (19ab): to move to the point
W_k*eE\E at least one of the active constraints to the criteria, which

have a positive value d}“>0 or ¢% >0 at the point w*, should be fully

®> In the following text, for a simpler presentation, the components of the gradient
g?m <0;(rt)e @ and gfm) >0;(r,t)e @ are replaced by | g?m) |>0 for(r,t)e@"

(min) or (r,t)e @ (max).
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utilized and there should be =0 or ¢§“=0 at least for one j=J
The weight components for one criterion (27) are v =y% —y/*, where in
the final outcome y#“=0 or y}=0. The change of the component !

depends on partial changes in the row and column of the same index
j=r=t in the matrix G*: changes in the row j=r are

Ak

Sz =V k t_1|g(”)>0 and in the column j=t they are

Z{‘z}‘m:vjk:y/j [Zr;1|gm)|>0, where y/lj. >0 is the coefficient of
proportionality for the Jjth-criterion. It follows that
V= t//,[Zr_llg(,,)I > Ig(k,-,t)l], where the sums in the parentheses [.]
can be connected by any sign (<, =,>), when three cases are possible: a)
Vi <0vi*, followed by v =—ka and \*=0; b) v/ >0, followed by / =y5*
and ka:O; and, c) v- —v- =Vj &=0. For boundary cases, when
V?kzd?k>0 or kazd?k>0, the coefficients of the criteria (gyj) and the
coefficient of all criteria (z//k ) are obtained:

d?k/(zfﬂg(:,,t)|—z:={‘|g(“k,,,.)|)>0: for ztzﬂg(kk,-,t)|>z:z£|g(kkr,,-)|:
k = = . = = .
a) y'=1d3 /(2 "|g(,,)|—zt f19(;,0>0: for X1° IV =5 i T AN F
—>oo; for Tl g oS gl )l (Hi)(it)eok;
b) " =min;{y'>0;jed}. (30)
The transition from the point ﬂkeE, which can be a boundary or an
inner point, to the boundary point W_k*eE\ E in the direction of the
fastest fall, is realized for the value of the unique coefficient:
1 =min{ & >0;p* >0}, for @, (31)
where the values & and y* can be associated with any sign

(<,=,>). Expressions (27-31) are key to determining exact extreme
solutions using active node parameters.

In the further procedure, the values of the variables z{ﬂ’t)zo are

aIcuIated (28) as well as the values of the weight increments
= 12(“)_0 (the sum z(m in the rows of the matrix z*) and

=> 12(r jy= 0 (the sum Z(rt) in the columns of the matrix z*) (19),
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together with the components of the point weight w*" (27), and then the

TOPSIS solution (w"';s'")(2-4) is determined.

Maximum problem: Expressions (27-31) and (2-4) are used to
determine the solution (w";s""), so that the nodes (r.t) e @ (25a) are

replaced by the nodes (r,t)e @ (25b), and the matrices T - by the

matrices T .
Optimality solution: In the continuation of the examination procedure,
the obtained solution (w";s"") is obtained according to two criteria:

- basic criterion:

a) s <s* (min); b) s >s" (max); (32)
- optimality criterion:

a) rf:,t)=g(k:,t)d5:,t>20? for every (r,t)e®< (min), or

b) TE‘:,t)Zg?:,t)dl((:,t)So? for every (r,t)e @ (max), (33)
when three cases can occur:

1) criterion (32) is met and criterion (33) is not met: the obtained
solution is not extreme, but it is the initial solution (w"";s"")=(w*"*;s"*)
for the (k+1) iteration, when the node parameters in Table 1 are
calculated and the procedure is repeated (27-33); the procedure is

repeated until solutions are obtained according to cases 2 or 3;
2) criteria (32) and (33) are met: the exact extreme solution was

reached at the vertex of the set E ;
3) criteria (32) and (33) are not met: the solutions (w*;s*) and

(W_k*;sk*) are the initial solutions for the procedure of determining the

approximate extreme solution (the case when (32) is not fulfilled, and
when it is fulfilled, (33) is impossible).

For the starting inner point of the weights w*°e E, the number of
active nodes (r,t)e@® and (r,t)e@®@’ is equal to n(n—-1)/2. If there is

an exact extreme solution (w";s™) or (w";s") (33) and, during the

procedure, in each iteration, &*>y*>0 and 4=y * (31), and there is

no degeneration - oscillation, then the solution is achieved after the
iteration k=n-1. After each k=12,--- iteration, the number of active
nodes decreases and is equal to (n—k)(n—k-1)/2. At the end of the

procedure and after iterations, there is only one active node, and at the
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point W_"* after k=n-1 iterations, there are no active nodes: @“=9

(min) or @* =@ (max). From the beginning of the procedure in each
subsequent iteration, the value of the possible total weight change
Z(,Vt)|rf”)| in the active nodes decreases; for the exact extreme solution

is Z(r,t)|ré<:,t)|=0 and there is no possibility of further improvement of the

function value. The number of iterations increases if oscillation or
wedging (discussed below) appear “near” the hyperplane wf or wj .

Approximate extreme solutions

Determining approximate extreme solutions is necessary in the case

when the extreme solution is not at the vertex of the set E and when
criteria (32) and (33) are not met. One of possible solutions is the line
search procedure®, adjusted to node parameters, where the number of
iterations should be as small as possible. The absence of an exact
extreme solution is manifested in the iteration by which it would be
obtained, when there is only one active node and when the value of the

function s is not better than the value s*. Instead of X, lz(r) =0,
new active nodes appear that did not exist previously’; this means that
on the direction [E,W_k*] there is a value of the function that is better
than s* and s (it does not have to be an extreme value, because it can
be located at the point w which is not on the current direction). First, the
known segment of the direction [ﬂk,w_k*] is examined, and if a solution

® Inaccurate linear search methods are widely discussed in the literature for nonlinear
unconditional optimization problems (Zangvill, 1973; Bazaraa, et al., 2006; Luenberger &
Ye, 2016) and they can also be applied to constraint problems or their adjustment is
required. Although the procedures are known, due to the specific characteristics of the
nodes, the whole procedure is given here.

" If, from the solution (W s, which is not better than the solution (\*;s), the already

described procedure is continued by choosing the most favorable direction (27-31), due to
the change of the gradient sign in previously active nodes, they will become inactive, and
new active nodes will appear that did not exist at the beginning of the procedure - for the
initial solution (Wsk)- For the obtained new solution, the value of the function may be
even better than the value ¢, but criterion (33) will not be met; then, a new solution is
obtained from this solution, etc., until after several iterations, the solution (W) is

obtained again, when the procedure begins to "circle" over the already obtained solutions.
There does not have to be a solution (*;s*) among these solutions.
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that meets the set criteria is not found on it, then, by applying the
procedure based on the direction of the fastest fall (growth), a new
search segment is determined.

The segment of the direction [ﬂk,w_k*] is divided into several equal

parts (subsegments): [ﬂkswk"*,w_“zwk":”k] , where 1=012,...n is the

mark of the points on the segment of the direction, and n*>4 is both the

number of equal search steps and the number of equal subsegments
(integer) which provides search for a sufficient number of points for
smaller subsegments. The following points are generated on a segment

of the direction [M,M] .

W =w g VG for 1=12,n -1 (34)
where " €(0;1/4) is the constant size of the weight change step in each
of n“>4 equal steps in total; expression (34) is a linear combination of
the points w*® and w*™: W' =(1—1 )W+ 1 g*w' ™" .

The criteria for accepting the approximate solution (w*';s*') as an

extreme solution and for stopping the iterative procedure are defined
here in relation to the values of the function and the values of the
arguments (criteria weights) for three consecutive iterative solutions:

- basic criterion:

a) Sk,I—1>Sk,I <Sk,l+l; (min),

b) sk,I—1<Sk,I >Sk,l+1; (max); (35)
- argument value criterion:

max; {Iw" —wi'  IwS = wh < e (36)
- function value criterion:

max{|s"' = s ;] s = s* [} < g (37)

where 1=12,...n" -1, and ¢,,g, >0 are the parameters of small values.

The number of steps n* and the size of the steps ¢* are determined
depending on the selected parameter ¢, (36):

n“>(max {l| W‘}'”k — W[}/ ew) +3 (n"- the first major integer); ~ (38)
o =Yn. & <(0:1/4). (39)
whereby criterion (36) is met. The increments of the weight components
(«*V%) are constant, and, with n“>4, it is ensured that at least three
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points w*'

are determined on each segment [M,ﬂ] and the value
of the limit parameter is achieved:
gh=max {wi" - wi’}/n )< g, . (40)
The choice of parameter values ¢, and g, can be based on the

sensitivity of the value of the function to changes in the value of
arguments in the extremum environment. Although the criteria for
stopping the optimization process can be based on the norms of the

arguments  [|lw* - w*|l/llwll<g, and the function values

IS(WM)—SM)I/S(E) < ¢, in two consecutive iterations, for the current

NLP problem, the parallel application of criteria (36,37) in three iterations
is favorable. Criterion (36) limits the largest individual weight changes
via the parameter ., (40), so that the largest weight increment is

max; a“V§ = ey, < &, - The sensitivity of the value of a function (of), as a

criterion for the selection of parameters ¢, and g, can be defined as

the ratio of changes in the value of the function and the maximum
change of individual weights, i.e. as the ratio of the realized parameters

ek <g, and g for a certain subsegment: of=c*/£X . Numerical results
for TOPSIS solutions show greater sensitivity of argument values
(weight) than function values, because it is of=¢"/c <1 or <k,
which should focus on the choice of the parameter¢,. The parameters
gw and g, can also be determined depending on the required accuracy

of the values of arguments and functions: in order to round the values of
weights and the function of the target to four exact decimal digits, it is

enough to set ¢,=5-10", which ensures gk<5-107°.
In the set of solutions (w*',s*';1=12,..,n,—1), there does not have

to be a solution for which ¢! <s*® (min) or §*'>¢*° (max), because
such a solution can also be in the first subsegment [w*%w*'™].

Therefore, for the sake of generality of the procedure, a point ﬁ is

determined on the segment [M,Wk’“k] in which the function has the

value:
a) s“*=min{s*; 1=12,...a-la,a+1..n“~1} (min),
b) s*=max {s*; 1=12,...a-1a,a+1,..,n-1} (max). (41)
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There is an improved solution on the subsegment [w"®™%;w ] :

according to the selected ¢, and for n*>4 which provides at least four

new intervals, determine the required parameters (38-40), search the
subsegment and determine the TOPSIS solution according to the criteria
(35,37).

The disadvantage of the procedure based on fulfilling criterion (36) is

a large number of generated W_k' points on the segment [M,W"v“k] ,

especially for larger interval widths, when the values of the ! function
and other required quantities need to be calculated for several hundred
generated w*' points.

For the solved MADM problem procedure will satisfy criteria (35-37),
knowing that due to the nonlinearity of the function gradient in the nodes

a( z}‘m)) and the appearance of new active nodes, the exact solution will

be outside the direction [w;w']. For the sake of generality of the

procedure and reduction of error according to criteria (36,37), a two-
phase procedure can be applied: a) linear search and determination of

the best solution in the segment [ﬂk;W_k*] , it can also be the solution
[w*=w""s""]; and, b) determining a new segment between the
obtained solution and the solution on the hyperplanes w{ or wj . If the
point \/\f_+1 is where the best solution is achieved on the segment
[ﬂ";w_k*] , a new direction of the fastest fall (growth) is set through it and

a point w“"" is determined. On the new segment [w*";w**"], the

value of the function is calculated at the newly generated points, etc. The
two-phase procedure is repeated until criteria (35,37) are met. In general,
an approximately extreme solution was obtained in two steps with a
smaller error, but the procedure is much longer.

Procedure degenerations: wedging and oscillation

The presented procedure for determining a point on one hyperplane
requires that in each iteration at least one component of weight W'},

which is different from the limit values WJA<W'}<W‘J-3, have a value
wi =wj} or wi =w} atthe new point W and is in the direction of the
fastest fall (growth). These requirements cannot be met if wedging
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occurs: starting from some k-th iteration and a point ﬂk that can be an
inner or boundary point, through all subsequent iterations, the points
"accumulate" "near" the hyperplane W? or WjB and some expected
boundary point W_k* which cannot be reached in a finite number of

iterations. The expected point W_"* cannot be an extreme point, because

wedging does not appear in the iteration in which the extreme solution is
obtained; this iteration is preceded by only one active node, and for the
occurrence of wedging there must be two or more active nodes, which
facilitates the elimination of the problem. The possibility of wedging
cannot be established at the initial stage of the proceedings.

Wedging occurs (but not necessarily) when the coefficient of active

nodes cfk (29) is smaller than the coefficient of all criteria y/k (30):
yk:§k<1//k (31). As a consequence, none of the active constraints
under criteria (19a, b) that had a positive value d4“>0 or ¥ >0 in the
point w", will be fully utilized to achieve that (4" =0 or ¢%" =0 for at
least one j=J. Through several iterations, the unique coefficient

1= <y (31) decreases and 1/ — 0, due to successive reduction

§k=§?m>0. In each subsequent iteration, the values of the weight

changes per node z}‘m =yk|g(krt)| decrease as well as the increment of

the value of the objective function. When the process enters wedging, the
number and indices of active nodes do not change, so that all the
components of the direction vector that were active at the starting point

W< exist.

The 1= & <y* disorder can disappear by the algorithm: if in some

subsequent iteration in the second node (p,q) §k=§fpvq)<§(km) and

k k . . . Kk
$(pq)2 W, are achieved, then the most favorable direction towards &/

will be chosen, and the active node (r,t) will have no effect or will
become an inactive node.

Unlike some possible ways to solve the problem of wedging, e.g. ¢ -
approximation (Zangville, 1969) for the current problem of NLP and
based on relative independence of active nodes, a procedure based on
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changing the direction can be applied: a new direction is chosen from a
set of favorable directions which exclude individual active nodes. In any

iteration after the occurrence of wedging, at the obtained point ﬂk close

to the expected boundary point W_k* a new and less favorable direction is
selected based on the characteristics of all active nodes except the node
(r, 1) which is the cause of wedging and is found to be 4‘=¢(,,,. By

setting g(kmzo for that node (current iteration only), the node (r,t) is

excluded from the set of active nodes (25) and the new direction is
selected in accordance with the characteristics of the remaining active
nodes using expression (29-31). This does not disturb the procedure,

because a favorable direction is chosen, but after obtaining a new

boundary point W_k* the current value g?:i);to must be returned to the

procedure for the node (r,t), so that the node (r,t) can become an
active node again if it satisfies conditions (25), when again the most
favorable direction is chosen (29-31). There is a possibility that in several
consecutive iterations the selected favorable directions must be changed
and the number of active nodes successively reduced, until at some step

it is obtained that it is =y < £>0, when the procedure continues by
determining the (W_k*;Sk*) solution, and the omitted nodes return to the

procedure.

As the extreme solution does not depend on the initial solution or on
the secondary solutions that are a consequence of choosing one of the
favorable directions (based on the characteristics of all or only some
active nodes), it gives the possibility to simplify the problem of wedging

by: always when 1= ¢&" =& <y", setthe g =0 for the node (r,t)
and select another favorable direction, and in the (k+7) iteration, include

the calculated value of g(k:i)io in the procedure of selecting the most

favorable direction. This prevents the occurrence of wedging, that is,
automates its removal, and the whole procedure is extended by several
iterations at the most.

A special form of degeneration can be described as an oscillation of

the value of the w* component in the vicinity of a hyperplane. For
example: in the k-th iteration for the r-th component of the point ﬂk the

value w"=w" is reached. In the normal course of the procedure, the
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already reached values on the hyperplane W?‘ or W? do not change until

the end of the procedure, which is not the case with oscillations: instead

of wh=wi"=w}, the W™ >w” value close to w; is obtained in the (k+1)

iteration, while for some other component the boundary value w**=w"
or Wt“l:WtB is reached. In one of the following iterations, the value of
Wf is reached again for the r-th component, but wedging can also occur.

The oscillation can also be repeated on the same hyperplane, when the

wit— w2 differences also decrease. Apart from increasing the number

of iterations, the oscillations do not affect the final solution, and the
wedging is removed in the described way.

Partial stability of solutions

The stability of the MADM solution — the variant \/ ,|(w;s,(w)); pel
is defined in relation to all other variants V j|(w;s,(w);qel\{p} and
represents the set of points WeE, cE for which it is
sp(W)>sq(w);pel;qgel\{p}.

The partial stability of the solution \/ ,|(W;s,(W)) is determined in
relation to one of the other variants V. ;qel\{p}: The solution
V ,l(w;s,(w)) is stable in relation to the solution V ,|(w;s,(w)) for all
points We E ,, < E for which the function of partial stability is:

hpg(W)=s5,(W)—s,(W)>0; p,gel,p=q, (42)
that is, if it is sp(v_v)/sq(v_v)>1. For srg>sg" , the solution (w;s,(w)) is
stable in relation to the solution (w;s,(w)) at each point weE (Figure
E) arEtherefore the determination of partial stability makes sense only if
SpNS,# W, ie, if s) >sqAsh<sy (Figure 1: b,cde). The function
h, (W) is concave or convex, continuous and differentiable on the

convex set E, and the local extreme is also the global extreme.
The set of values of the function is S ,,={h,,€[hp;hpltc®R for

p,gel and p=q orthe line segment hrgq;h'g'q.

513

Buki¢, R., Partial stability of multi attribute decision-making solutions for interval determined criteria weights - the problem of nonlinear programming, pp.488-529



i" VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2020, Vol. 68, Issue 3

The extremes of the function h,(w) follow from the function

k+1
pq

degree (12): hi'=(sk—sk)+ o, Where s§-si=C. The auxiliary

development hpq(ﬁ)zh into the Taylor's polynomial of the first

function of (;';q, according to (13,21), is equal to:

k _ k k Kk _ k ko .
000 =2y (Fperey ™ Yoery) 20ty = ety G pgerny Z0rty» (H) €@ (43)

| |
| m - 0 M |
! — Sp Sp Sp Sp !
| aeSe . . |
m 0 - M
@ S¢ Sqg Sq Sqg |
: be ° |
o |
| c ° |
: d e——0—o |
o o |
| € 1Si
0 1

Figure 1 — Possible relations of the set of function values s;(w) of two variants

Puc. 1 — Bo3MOXxHble OMHOWEHUs1 MHOXecms 3HayeHull pyHkuul s;( W) dsyx

eapuaHmos
Cnuka 1 — Moayhu odHocu ckyrnosa epedHocmu gyHkuuja s;(W) Ose eapujaHme

The values of the function gradient components h,(w) in the
nodes (r,t)e® are:
k k .
Oprny = Gaery (M)€O"
0; r=t, [(r,t)e®"]

and the elements are antisymmetric matrices
G (W)=GY, =(g':)qm))nxn . To determine the extremes, it is sufficient to

(44)

k
gpq(r,t)

determine the points of weight w in which the nonlinear auxiliary function
opq(W) (43) has extreme values, and then the corresponding TOPSIS

solutions. Starting from an admissible solution (let that be the solution at
the starting point (M;h%q)), by applying the presented procedure for

determining the extremum of the function s;(w) (27-41) and by
calculating the values g';q(m (22, 44), d7, df¢ and df, (9, 17) in
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each iteration, the extreme solutions of (w";hj; <0) and (w";hp,>0)

are obtained.

The separating hyperplane of the value set of the function h,, =cR
is defined by any value® of the h=CR|h"<C®<h" function and divides

the value set of the function §={he[h”‘;hM I}<R into two subsets:
S ={h|h"<h<CR}cS and §*={h|h" >h>CR}cS, where §-US*=S
and ;m S* =@ . An acceptable approximate value of the function in the
vicinity of the separating hyperplane of h=CR is:

he=Ce[C "+ ¢c]; k=012..., (45)

where ¢. is a low value parameter (e.g. ¢.=5-10" or less). The
procedure for determining the set of solutions on the separating
hyperplane of (w;h®=C) has several phases, where it is determined:
the set of 2n boundary solutions and their extremes; basic boundary
solutions for h®=C (if any) or basic solutions that are closest to the

current hyperplane Wf or W‘f; and, a set of solutions for 1 =C on the
set E_CQE. Accordingly, the partial stability of the variant Vv, with
respect to V, is achieved for all points of V_VEE with the corresponding

(w;(h>0)eS™)) solutions.

Boundary solutions

Boundary solutions are a set of solutions on one hyperplane of the
set E (w} or w}). On the hyperplane w/, these are (w**;h**) solutions
for the points w*=(wi*,--.w} =w}.-.wj*) (due to unambiguous

indexing, additional A=1neJ marks are introduced). If condition (7) is
met, then there is at least one boundary point with the component

al _ A
W, =W, -
Based on the relative independence of the variables z?ﬂ'j)zo (18)

and the built-in normalization condition (19) in each node, the w?*

% In the following text, the "pq” indices were used only if it was necessary due to
unambiguity.
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component is determined on the basis of any starting point v_mE - let
that be the point w°: the choice of variables z¢, ;y<d{;;,>0 eliminates
the active constraint of the A -criterion d4°>0— d7*=0 and achieves the
required condition: > 1770, ;) =d:°;(4,j)e@’. Nodes (1,j) and the
corresponding variables z¢, ;,<d(,;,>0 (the 2 row of the matrix T°)
can be chosen at will until the specified condition is met, or preference
can be given to a node in which z{,;,=d{,;,=max;{d(,;,}; if it is
fulfilled that 20, ;,=d%°, then also w*=w}, otherwise the procedure

should be continued by selecting a next node from the A4 row of the
matrix T° and by adding the necessary difference, until it is fulfilled that

j=n_0 A0
Z}:{]Z(i,j)zdl :

A
h N hM """""""" al kM P WM
. W _ WM L ‘ Wb)“’M
W
all -0 Wb/l,l
1 0
w" | e ba,2
' al2 0
h=c®__| w Citec
_|EiEE e N E— = C1C bi.C
tﬂ*\\\' \ el P W
(== N v =i -
al.km alC -
= at,2m
L w__! w bim
| i
m | m
h . w" W,
' ‘ A
A alk al2 0 B
Wi Wy Wj W, W3z

Figure 2 — Overview of the procedure for determining the basic solutions on hyperplanes
Puc. 2 — 0630p npouyedypsbi onpedeneHusi 6a308bix peweHuUl Ha 2uneprnioCKoCmsx
Cnuka 2 — [lpuka3 nocmyrka odpefusara OCHOBHUX peulera Ha xuneppasHuma

Practically, in all rows of the matrix G° except in the 1 row,
g?jly”:o; jeJ;jle J\{A} should be set and in the active nodes (4, ])

the values of 20, ;,<d(,;,>0 should be determined until the condition
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YI320,5,=d4° is fulfilled. By applying expression (2-4) for the point
w* =w**, the TOPSIS solution (w**;h*") is obtained. In the same

way, the solution of (w***;h***) on the hyperplane w} was obtained by
eliminating the active constraint d2°>0— g% =0 based on the choice of
the variable z{;,<d{;,>0 from which the ¥ !7'70;,,=d5" (the 2
column of the matrix T°) was obtained.

Extreme solutions on the hyperplanes Wf and W? (extreme
boundary solutions) are the exact solutions at the vertex of the set E

and are determined by applying the presented method for the extremes
of the function s(w). The starting point is the obtained solutions on the

hyperplanes: e.g. for the hyperplane Wf-\, the initial solution is

(W% h***); the component w3**=w’ retains its value, which requires

that the nodes that affect its value must become inactive.

From the starting point w***, the most favorable direction is chosen
in accordance with the characteristics of the active nodes (the set @' for
the minimum or the set @' for the maximum) that are not in the A row

. . 1 1
and the A column of the matrix T': set 925)=9(;.,=0 for all nodes (r.9

in the row of 4 and the column of A, and the further procedure for
determining the extremes (w**™;h*™)(min) and (w*™;h**™)(max) is

identical to the procedure shown for determining the exact extreme
solutions of the function s(w) (27-31). The interval of the value of the
function [h**™;h**™] on the hyperplane w’ cannot be greater than the
interval of the extremum of the function h(w): KM —p*M<p™ —p™,

Figure 2. In the same way, the extreme solutions on the hyperplane w5

are determined. Extreme boundary solutions (maximum 4n solutions),
among which are the extreme solutions h(w) of the function, are unique

in terms of the corresponding points w and the values of the function
h(w). Not all extreme points (w**™ and w*™ ) are linearly independent;

by eliminating the linearly dependent points, a set of points w' is

obtained which are the vertices of the set E .
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System of basic solutions for the separating hyperplane

h=CR

A system of basic solutions (SBS¢) is established for the value of the
function h=C, which contains 2n basic solutions: n solutions
(W*<;h*€=C) and n solutions (w**“;h™<=C). These are the basic

boundary solutions for the point w*©

alC

if w¥*C=w; (or w*¢ for
bhA,C

wy ¢ =wi) or the basic non-boundary solutions that are closest to the

2C b C B.
b >W/1 or w; ™ <w;:

a) On the hyperplane w5 (or w?%), there is an edge solution
(w;h*=CR) (Figure 2, hyperplane w} ) because itis h>"<CR<h**M

current hyperplane w; or w§ with w3

and it is determined by repeatedly halving the segment [M;M]
until it is achieved that it is Kh*©=C. The segment [w**";w""]

halved for the point w”?=05w>"+05w"" a5 well. The TOPSIS
solution, in general, has the value h®*?=C: in the next iteration, the
segment of the interval in which h=C® ([w”*";w"*’] or [w"**w”*"])

is halved and the TOPSIS value is calculated, etc. The procedure is
interrupted when p™*=c*e[CR+¢.] is obtained in the k-th iteration
and that solution is accepted as the basic boundary solution
[w**©;h*€1; for a larger number of iterations, a smaller absolute error

£ 4R - h™C|< ¢c was obtained.
b) On the hyperplane w; (or w%), there is no solution
(w*;h* =CR) because C"¢[h*";h**"]. To achieve the h=C value,

the point W"’1 cannot have a value of w3 =w?, but a value of w% > w5 .

These solutions are not boundary based on w3 =}, but are closest to
the hyperplane /; (basic non-boundary solutions). The position of C*
can be C?<h*™ (as in Figure 2) or CR>h*M. For the situation in
Figure 2, in order to determine the w3 >w; component, the point
wit? > w4 is first determined by iterative halving of the segment between
two known points at which there is a solution with h=C" until the value

h**=C is reached: for h**">CR+¢. value p*2=C"® it is on the
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segment [w";w*™], and for h*Y<CR-g., on the segment

alM al,2

;w" 1. From the point w*?, for the constant value w3*? (in the

[w*™

row of 2 and the column of 2 the matrix G?, set gu’j): g(M):O) and

al, 2m

determine the minimum (w**";h***™). If the obtained solution does not

satisfy condition (45) and if it is h**?™<CR— ¢, by repeatedly halving

the new segment [w**™;w*"], a new point w** and a minimum

(W™ h**"<C® - gc) are obtained, etc. The procedure ends when the

solution (w**'";h***"=C)=(w*"“;h*“=C) is obtained in the k-th

iteration, from which it is not possible to further move the point Wa’l m

towards the hyperplane wﬁ provided that h=C, which determines the
basic non-boundary solution (w**";h*'"=C)=(w*;h*°) (based on
other weight components w;;jeJ\{1}, these solutions can also be
boundary)®.

On the hyperplane w;, if h*™<CR-g., the procedure for

ail M.

determining the solution is similar: the segment [w*"™;w" M1 is

a4kM - the non-boundary

considered; the relevant points are W and w*™
solutlon is (Wal kM . ha/l,kM :C)E(Wa/l,c. a/IC).
The presented procedure yields n solutions (w*“;h*<) and n

solutions (w”*“;h™°) that make up the SBSc for the value of the

function h=CR+ ¢ . Due to the components 4 of the points w*< and
W€, the points of solution w in SBSc are mutually linearly
independent.

A set of solutions for the separating hyperplane h=CR: From SBS¢
linear combinations of the weight points w*¢ and w"*€, countless new

® In the numerical example, the solution (w"*;h"*®=0) is the basic non-boundary

solution because (w5*=0.1681)< (w?=0.1830) although y’*<E\E is a boundary
point due to wP* = w{ = 0.0990 .
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weight points can be obtained based both on them and on the solutions
with h=C:

WP =YW + DAY ST+ S =L (el (46)
where all coefficients ﬂj.‘,,b’t} >0 are not equal to 0, and can be selected
according to different criteria. Due to the nonlinearity of the h(W_ab)

function, by using the points w" and W_M and/or other known points, a

ab,C.

satisfactory solution ( h®<) can be determined by the line search in

the vicinity of the point w* .

The procedure completely defines the set of all solutions of the
function h(w) (graph of the function): based on the most 4n extreme
boundary solutions (whose points w are not linearly independent), a set
of linearly independent points w' is singled out, which are also all

vertices of the set E . Other TOPSIS solutions can be determined on the
basis of linear combinations of points on the vertices of the set E . For
each criterion jeJ and any value w;e[w}.w’], weight points can be
determined for which the function h,,(w) has a maximum and minimum

value, as well as points w for all values of the function from that interval.

If some values of the weight point components are set to a
predetermined and allowable value (maximum n-2 values), it is possible
to determine the solution for the required value of h,(w)=C based on

the parameters of the remaining active nodes. By combining multiple
SBSc solutions for different C”e[h},;hi,] values, solutions with a
range of h,,€[C';C3] values and stricter criteria for weight component

values can be determined.

Numerical example
By applying the TOPSIS method to the MADM problem given by the
initial matrix C:{cij; i=15, j=16}, for the weight point W_° and the

coefficients of the linear combination % ,s=(0.5717; 0.2647; 0.1636) for
p=12,0, the basic solution was obtained: the variant Vv,
(w’;s3=0.6209) and the rank \V,~V3-V5s-V, -V, (1-5) (Table 2).
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Table 2 — Criteria Matrix, basic solution and extreme solutions
Tabnuua 2 — Mampuua KpumepuasnbHbIx 3Ha4eHul, 6a308bie peweHue u
aKcmpemaribHble pelweHust
Tabena 2 — Mampuua KpumepujyMckux 8pedHOCMU, OCHOBHO pelleHe U eKcmpemMHa
pelwera

- criteria S.(V\f) s(w")
/ Ki(+) | Ka(=) [Ka(+)|Ka(=) [Ks(+) | Ke(=) (rank)
Vl 415 85 1112 60 1.42 11.9 0.4348 (4) 0.4107 0.4645

Vo | 432 94 970 35 1.71 15.2 0.6209 (1) | 0.5846 0.6518
405 7 1015 | 55 1.88 14.6 0.6058 (2) | 0.5812 0.6366
V4| 352 62 1055 | 54 1.06 13.8 0.3522 (5) | 0.3248 0.3838
Vs | 328 78 1045 | 38 1.43 17.5 0.4997 (3) | 0.4717 0.5214

Si(ﬂ)

variants
<
w

>

w” 0099 |0.132 | 0.237 | 0.147 | 0.208 | 0.088

wP | 0134 | 0161|0273 | 0.183 | 0241 | 0.105 | St Offunctionvalues si(w)
0

w® | 0112 0.144 | 0.258 | 0.167 | 0.223 | 0.096 i 'V, | in i

|

df° |0013]0.012 |0.021|0.020 | 0.015 | 0.008 | | ! o
BO :—4' Vs | _rV3 :

d?’ 0022 | 0.017 | 0.015 | 0.016 |0.018| 0.009 | | [ | Si
d?® |0.0350.029|0036|0036|0033| 0017 |03 04 05 06 07

Table 2 provides data for the weight range limits Wf and W?, the

initial active limits d4° and d%° (9) for k =0, and the extreme values of

si(w™) and si(ﬂ). Based on the characteristics of the formed nodes
(Table 1), exact extreme solutions were obtained at the vertices of the

set E (27-31, 2-4) when the optimality criterion (33) was met, regardless
of the convexity or concavity of the function. The variant v/, is slightly

better than the variant \/;, but in the conditions of interval given weights,
the ratio of their extreme values is (s =0.6518)>(sT=0.5812) and
(s5=0.5846)< (s =0.6366), which shows that the sets of values of

functions partially overlap and require testing the stability of solution
V,|(w;s,(w)) in relation to the solution \/5|(w;ss(W)).

The solution Vv, is stable with respect to v, for
hos(W)=s,(W)-s3(w)>0. For the function h(w) (42), extreme

solutions are determined (which are on the vertices of the set E, in
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accordance with (7)), where, except for the component ;, all other
components w;j have values of one of the limits of the weight interval,

Table 3. The set of yaues of the function s
S23=1{h,3€[-0.0298; 0.05571}, in the point w" the largest difference of
TOPSIS values of the variants Vv, and V; (hys(w")=0.0557) jg

achieved, while in the point w" the variant Vs is "better" than the variant
V. (hzyg(W_m)=—0.0298).

Table 3 — Extreme solutions of the function h, ,(w)
Tabnuya 3 — SkcmpemarbHble peweHust yHKUUU h, 5(W)

Tabena 3 — EkcmpeMHa pewetrba QyHKuUje h, 3(W)

Wy WH w3 wi | owd | owl [sa(W)|ss(w)|has(w)
0.0990 | 0.1610 | 0.2640 | 0.1470 | 0.2410 | 0.0880 | 0.6009 | 0.6307 |-0.0298

3

0.1340 | 0.1320 | 0.2550 | 0.1830 | 0.2080 | 0.0880 | 0.6425 | 0.5868 | 0.0557

5|

For each hyperplane w{=wj" and w?=w}", boundary solutions

and extreme boundary solutions (4n=24 solutions) are determined,
whereby the individual extreme boundary solutions are identical to each
other or identical to the extreme solutions of the function h(w). On the

segments [w*™w*M] and [w*";w*"], the basic boundary

solutions for the separating hyperplane :CE[CR+5C] (45) and for

the reference value of the function CR=0 (if any) are determined, or the
basic non-boundary solutions are determined. In order to determine only
solutions with positive values of the function h >0, due to partial stability

and S*={h|h">h>CR=0}cS, a modified expression (45) was

applied: hC:Ce[CR +ecl-

The obtained basic solutions are also boundary solutions based on the
current hyperplane because w3*® = w4 or w2*°=w?, except for the solution
for the point Wb40 which is not a boundary solution based on the hyperplane

wi  because w»C=w? (non-boundary basic solution) and

wit?=0.1681< w5 =0.1830 . In general, according to the definition of the
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0

boundary solution, the solution w"*° is a boundary solution based on gther

hyperplanes, because Wi'°=wi;=0990 gng w'®=w;=0.1610 (Table
4)".

Table 4 — System of basic solutions for the separating hyperplane h(w) =0
Tabnuya 4 — Cucmema 6a3o8bix peweHull 0ns pasdeneHus auneprnockocmet h(w) =0
Tabena 4 — Cucmem 0CHOBHUX pelletba 3a xurneppasaH paszdeajarba h(w) =0

W 1,0 b1,0 2,0 b2,0 3,0 b3,0 4.0 b4,0 50 b5,0 6,0 b6,0
W W T wAT W T w T W wAt e  w T w T  w w

0.0990 | 0.1340 | 0.1075 | 0.1106 | 0.1175 | 0.1053 | 0.1300 | 0.0990 | 0.1140 | 0.1073 | 0.1117 | 0.1116

0.1495| 0.1532| 0.1320 | 0.1610 [ 0.1511 | 0.1503 | 0.1353 | 0.1610 | 0.1527 | 0.1489 | 0.1505 | 0.1505

0.2681 | 0.2418 | 0.2699 | 0.2509 | 0.2370 | 0.2730 | 0.2719 | 0.2482 | 0.2679 | 0.2528 | 0.2607 | 0.2438

0.1613 0.1567 | 0.1532 | 0.1644 | 0.1593 | 0.1603 | 0.1470 | 0.1681 | 0.1573 | 0.1620 | 0.1600 | 0.1600

Q| N[N |[=

0.22510.2263 | 0.2353 | 0.2250 | 0.2301 | 0.2232 | 0.2127 | 0.2404 | 0.2080 | 0.2410 | 0.2291 | 0.2291

6 0.0971 0.0880 | 0.1021 | 0.0880 | 0.1050 | 0.0880 | 0.1031 | 0.0881 | 0.1002 | 0.0880 | 0.0880 | 0.1050

h( W) 0.00002|0.00001|0.00004(0.00000{0.00003{0.00001{0.00003|0.00003|0.00004|0.00004(0.00000|0.00004

S2=S3|0.6091|0.6188 | 0.6238 | 0.6089 | 0.6174 | 0.6092 | 0.6139 | 0.6122 | 0.6007 | 0.6222 | 0.6150 | 0.6153

It is shown that the function h(w) between the points of the weight
of the basic solutions is concave or convex: between the points ' and

W™ the function is convex, and between the points w??° and yw"%° the

function is concave. Due to the values of the 1 weight components (w3*
and w5"), all points of the basic solutions w*° gng w™*° are linearly

independent and their linear combinations give innumerable new weight
points in the environment of the separating hyperplane. By applying

expression (46) for ,6'"}‘ = ﬂt} =1/2n=1/12, the solution is obtained:
w* =(0.1123; 0.1497; 0.2572; 0.1591; 0.2266; 0.0951);

hgs(w™®)=0.0003< ¢ =0.00005 and s,(W™)=s5(w*)=0.6139. The
solution does not need to be corrected in accordance with other known

" For £c=5-10"° and the calculation of one basic boundary solution for which wh=wy
or w§ =y} about twenty iterations were required, and for the non-edge solution w -

aboult forty iterations.
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points, for example in accordance with the extremes of the function or the
boundary extreme solutions, because h,;(w*)<gc and the solution

(Wab;hg?a) can be accepted in accordance with condition (45). The

fulfilled condition (45) can also be a consequence of the concavity or
convexity of the function on the segments between the points of the basic
solutions.

Table 5 — Vertices of the set E B
Tabnuya 5 — BepwuHbl MHOoXecmea E
Tabena 5 — Bpxosu ckyna E

w Wy W, W3 Wy Ws Ws | h(w")
wt | 0.0990 | 0.1610 | 0.2640 | 0.1470 | 0.2410 | 0.0880 | -0.0298
w? | 0.0990 | 0.1610 | 0.2470 | 0.1470 | 0.2410 | 0.1050 | -0.0294
w® | 0.0990 | 0.1610 | 0.2730 | 0.1470 | 0.2320 | 0.0880 | -0.0283
w* | 0.1090 | 0.1610 | 0.2370 | 0.1470 | 0.2410 | 0.1050 | -0.0269
w® | 0.1060 | 0.1610 | 0.2730 | 0.1470 | 0.2080 | 0.1050 | -0.0216
w® | 0.1340 | 0.1610 | 0.2370 | 0.1470 | 0.2330 | 0.0880 | -0.0194
w’ | 01020 | 0.1320 | 0.2730 | 0.1470 | 0.2410 | 0.1050 | -0.0111
w® | 0.1340 | 0.1320 | 0.2730 | 0.1470 | 0.2090 | 0.1050 | 0.0040
w® | 0.0990 | 0.1610 | 0.2370 | 0.1830 | 0.2303 | 0.0897 | 0.0207
w | 0.1230 | 0.1610 | 0.2370 | 0.1830 | 0.2080 | 0.0880 | 0.0337
w' | 0.1190 | 0.1320 | 0.2370 | 0.1830 | 0.2410 | 0.0880 | 0.0416
w2 | 0.0990 | 0.1320 | 0.2730 | 0.1830 | 0.2080 | 0.1050 | 0.0467
w® | 0.1160 | 0.1320 | 0.2730 | 0.1830 | 0.2080 | 0.0880 | 0.0512
w | 0.1340 | 0.1320 | 0.2370 | 0.1830 | 0.2090 | 0.1050 | 0.0550
w® | 0.1340 | 0.1320 | 0.2380 | 0.1830 | 0.2080 | 0.1050 | 0.0554
w'® | 0.1340 | 0.1320 | 0.2550 | 0.1830 | 0.2080 | 0.0880 | 0.0557

Some of the weight components do not have to be given intervally
but as discrete values (maximum n-2 components), which also enables
the determination of a set of solutions for a certain value of the function
and the definition of the separating hyperplane. For example, if the

weight point is w=(w;) with the components szw‘} for j=123 and

the components w; e [w}.w;] for j=456 (according to Table 2), and
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the required value is h,;(W)=0.0500 (to ensure a significant “advantage”

of the variant \/, over V,), althhough h,;(w)<hj;=0.0557, such a

solution does not exit because the maximum possible value of the
function for these conditions is equal to h,,(w)=0.0421. For a smaller

value, for example for h,;(w)=0.0400, there is a set of basic boundary

solutions, and linear combinations of points of difficulty of these solutions
determine other solutions that meet condition (45). One of these

solutions is: W_ab:(O.1120; 0.1440; 0.2580; 0.1828; 0.2132; 0.0900);
haa(w™) = 0.0400 ; s,(w™)=0.6278 and s;(w™)=0.5878.
From the set of points w for the extreme boundary solutions (\w**™,

W WM and wP*M), which are not all linearly independent, linearly

independent points ﬂv are singled out and all vertices of the set E are
determined by them (16 vertices of the set MEE are obtained, Table 5).

This completely describes the set of definitions of the function E , which
with TOPSIS values of the function, represents a complete graph of the

function 7, ={(w; h2’3)eER7|V_VeE,h2’3(V_V)eS_2’3}. Knowledge of function

graphs enables determination of sets of solutions complying with specific
requirements in accordance with the stated limitations, which exceeds
the goal and scope of this work.

Conclusion

The initial idea of developing a concept for testing the stability of the
solution of the MADM problem (best variant and the corresponding
quantitative indicator of the quality of the variant according to the chosen
MADM method) in relation to other solutions (variants) and variable
criteria weights was operationalized only through the examination of
partial stability in relation to some other solution - one variant. The
problem of determining the set of solutions of partial stability is set as a
problem of NLP with the aim of finding feasible solutions that meet the
conditions from the definition of partial stability. The TOPSIS method with
parameters and interval-given criteria weights was considered as a basis,
which defined the reference function as nonlinear and differentiable, in
the presence of a normalization condition for arguments (weight
components).
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The created NLP model contains a nonlinear objective function,
linear constraints based on the nature of the arguments (values: from -
to) and the normalization condition for the arguments. An appropriate
method was not known for solving the set NLP task, and therefore an
attempt was made to solve the problem by introducing the nodes of
argument (criteria) pairs and by defining their parameters. This ensures
the normalization condition in each node and for each feasible point, non-
negativity of variables and independence of variables in nodes, within the
limits of active constraints. Node parameters were applied to determine
the extremes of the function, the extremes on the hyperplanes of the set
of arguments and other feasible solutions needed to determine the partial
stability of the MADM solution, as well as to eliminate the consequences
of accompanying degeneration (wedging and oscillation of the solution).

The presented procedure for determining the extremes of a given
NLP problem differs from the basic gradient method in applying nodes
parameters, choosing favorable directions, determining improved
solutions, as well as in the procedure of linear search for the point of
difficulty for an improved TOPSIS solution. The well-known and applied
line search procedure can be replaced by another, for example, the
"golden ratio" procedure, if this would contribute to the reduction of the
procedure.

The procedure can be applied to other MADM methods with a
nonlinear reference function, as well as to the class of NLP problems with
conditional optimization, in which the mathematical model contains a
nonlinear and on the whole set of arguments differentiable objective
function, natural linear constraints and the normalization condition for
variables. The procedure is robust and requires a larger number of
calculations, so adequate software support would increase the
possibilities of application.
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YACTUYHASA YCTONYMBOCTb MHOTOATPUBYTUBHOIO
MPUHATUA PELLEHUA NO MHTEPBANbHO 3A0AHHOMY BECY
KPUTEPUA - MPOBNEMA HENIMHEMHOIO
MPOrPAMMMPOBAHWA

Padomup P. [xyku4
He3aBUCUMbIN nccnepoBaTtenb, I. Kpywesau, Pecny6nuka Cepbusi

PYBEPUKA TPHTW: 27.00.00 MATEMATUKA,;
27.47.19 UccnepoBaHue onepaumi
BWO CTATbW: opurmHanbHasa HayyYHas ctatbsl

Pe3some:

BeedeHue/yens: B cmambe npedcmaenieHa paspabomarHas rnpouyedypa
0ns1 peweHuUs Kriacca 3aday HernuHelHoe2o npoepammuposaHusi (HIIM) ¢
HenuHedHoU u OugbgpepeHyupyemol uenegol ¢hyHKyuel, MuUHeUHbIMU
€CmeCcmeeHHbIMU  O2paHUYeHUsiMU U ycriogueM  Hopmanu3ayuu
rnepemeHHbIX (apaymeHmos). [lpouedypa Obia rnpumeHeHa Ons
onipedenieHuss  4YacmuyHoU — ycmoldueocmu — peweHus — 3adad
MHO20ampubymueHO20 MPUHSIMUS PeLWeHUU.

Memodbi: OcHoeoli npouedypbl s8rsiemcs ornpedesieHue y3roe nap
apaymeHmos u ux riapamempos 01151 O0ryCmuMbIX MHO20MEPHbIX MOYEX.
lNapamempbi eHedpeHbl 8 MPUMEHEHHOM epadueHmHoOM Memode,
Memode 803MOXHbIX HarpasneHuli u memode sruHeliHo2o roucka. [pu
pa3pabomke npouyedypbi bbiiu Ucronb308aHbl 0cHO8bI Memoda TOPSIS
Kak Memoda Onsi MHO20ampubymueHO20 MPUHSMUS peweHull ¢
UHMep.asibHO 3a0aHHbIMU KpUMepUsIMU 8eca, 8 repsyto o4epedb U3-3a
HesuHelHoCMuU 8 8bi308e QhyHKUULU.
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Pesynbmambi:  Takxke  paspabomaHa rnpouedypa  ornpedesieHus
aKcmpemMaribHbIX U Opyaux 0onycmuMbIxX peweHul fpu ebi308e hyHKUUU
(MapauHarnbHblie U 0a308ble peweHus) U 8CeX 6EepWUH 8blryK1020
MHOXecmea onpedesnieHuss yHkyuu. Takum obpasom cghopmuposaH
nonHbIl epachuk oyHKYUU, m.e. onpedeneHbl mpebyeMbie pelweHust u3
donycmumozo MHoxecmea. PaspabomaHa npouedypa ycmaHO8/eHUs
MHOXecmea peuweHul onsa oripederieHusi pasdensouwel
2urnepriiocKkocmu MHoXecmea 3HaqeHuli QyHkyuu; 6rnazodapsi yemy 8
omaderibHbIX CrlyHasiX MHOXeCmE0 peueHUl Yacmu4yHol ycmouvugocmu
eapuaHma ornpedenssemcsi Kak peweHue MHO20ampubymueHo20
npuHsmusi  pewerul. bbinu  npedroxeHbl  coomeemcmeytowjue
npoyedypbl Onsi ycmpaHeHUsi OMKIIOHeHUU 8 rpouedype (3aknuHueaHue
u KonebaHue peweHud).

Bbi600bi: [laHHoe uccriedosaHue si8/1siemcsi 3Ha4umesibHbIM 8K1adoM 8
onpederieHUe y3/108 apaymMeHmos U UX rapamempos, Komopble
obecriequgarom ycriogusi HopManu3auuu 8 Kaxoom y3rne u Orisi Kaxoou
doniycmumol ~ MOYKU,  HeompuyamesbHOCMb  MEPEeMEHHbIX U
Hes3asuCcUMOCMb U3MeHEeHUU apayMeHmMoe8 8 y3riax 8 paMKax akmuHbIX
oepaHuyveHuli. PaspabomaHa opuauHanbHas rpouedypa orpedesieHuUs
epachoe  ¢pyHKkyul. [lpusedeHbl coomeemcmeyrujue pearsibHble
4uCrio8bIe MPUMEPHI.

Knouesbie criosa: eeca Kpumepues, y37bl MNap apayMeHmos,
epadueHmHbIl Memod, Memod B03MOXHbIX HarpaesieHul, cucmema
baszosbix peweHul, Memod MHO20ampubymugHo20 MPUHSAMUS
peweHul, Yacmu4yHasi ycmol4yueocmb peweHuUd.

MAPLUNJATTHA CTABUITHOCT PELLEHA BULLEATPUBYTHOI
OOJTYYMBAHA 3A MHTEPBAIIHO 3AOATE TEXXMHE
KPUTEPUJYMA — NPOBJIEM HEJNTMHEAPHOT NMPOIrPAMUPAHA

Padomup P. Bykuh
camocTanHu nctaxuead, Kpywesau, Peny6nvka Cpbuja

OBNACT: maTematuka, HenMHeapHoO NporpaMmmpare
BPCTA UJ1AHKA: opuruHanHu Hay4Hu pag

Caxemak:

Yeod/uurb: Y pady je npukasaH rnpojekmoeaHu rnocmyrak 3a peulagaqe
Krace 3a0amaka HesrluHeapHoe rpoepamuparba (HJSIl1) ca HenuHeapHoM
u OucgpepeHyujabunHomM QQyHKUUjOM uurba, JIUHEapPHUM [PUPOOHUM
ogpaHudersuma U Hopmupajyhum  ycrioeoM 3@ POMEHsbUBE
(apaymeHme). lNocmynak je npumerseH 3a olpefjusar-e napuujanHe
cmabunHocmu pewera npobrema esuweampubymHoz o00ny4Yuearba
(BAO,).
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Memodu: OcHoe nocmyrika npedcmasrba 0ecbuHUCaHE Y80pO8a raposa
apeymeHama u HbUX08UX napamemapa 3a dornycmuse
suwedumeH3uoHanHe mayke. [lapamempu ce umnemMeHmupajy y
epadujeHmHU mMemod, Memod Mo8OSbHUX Mpasaua U Memold MUHUJCKO2
mpaxera. Y pas3eojy nocmyrika KopuwheHu cy OcHosu memoda
TOlMCUC 3a BAO ca uHmepsasiHo 3adamuM mexuHama Kpumepujyma,
rpseHcmMeBeHo 3602 HesluHeapHOCMU peghepeHmMHe QyHKUje.
Pesynmamu: PaspafieH je nocmynak odpeRhusara €KCMpeMHUX U
Opyaux dorycmusux pewer-a pechepeHmHe yHkuuje (pybHa u OCHOB8Ha
pelwera) U ceux 8pxoea KOHBEKCHO2 CKyrna degbuHucaHocmu byHKyuje.
Tume je cbopmupaH romnyHu epachuk ¢byHKUUje, Ha OCHOBY Kojee ce
Moey o0pedumu 3axmeegaHa pewera u3 dornycmueoe cKyrna. Pa3ssujeH je
rnocmynak odpefjusara ckyrna pewera 3a 0epuHucare xurneppasaHu
pasleajarba CKyrna epedHocmu ¢byHKkyuje. Ha maj HayuH ce, Kao
crieyugpuyaH crydaj, OecbuHuwe U CKyrl pewera napuujanHe
cmabunHocmu eapujaHme kao pewera BAO. 3a omknawame
OeeeHepauuje rocmyrnka (3akfurasare U Ocyusiosare peuera)
rpedrnoxeHe cy adeksamHe rpoyedype.

Bakrbyyvak: HajsHavajHuju donpuHoc o002 pada jecme OegbuHucar-e
4yeoposa apeymeHama U HUX08UX Mapamemapa Kojuma ce ocueypasa
HopmMupajyhu ycriog y ceakoM 4Ygopy U 3a ceaky OOorycmusy madqky,
HeHe2amueHOCM MPOMEH/bUBUX U HE3aB8UCHOCM MPOMEHa apeyMeHama
y YeoposuMa, y epaHulyama akmueHUX ogpaHu4er-a. Takohe, pasgujeH je
OpusuHanaH nocmynak 3a odpehusame 2pahuka yHKUUje U
npedcmaesbeH o0208apajyhiu peanaH HyMepuyKu ripumep.

KrbyuHe peyqu: mexuHe Kpumepujyma, 480posu naposa apaymeHama,
epadujeHmHuU Memod, Memod Mo8OsbHUX rpasaya, cucmem OCHOBHUX
pewera, suweampubymHo o0ny4uear-e, napuyujanHa cmabunHocm
pewema.
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