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Abstract: 

Introduction/purpose: The paper presents a designed procedure for 
solving a class of nonlinear programming (NLP) tasks with the nonlinear 
and differentiable objective function, linear natural constraints (intervals of 
possible arguments values - variables) and the normalization condition for 
arguments. The procedure was applied to determine the partial stability of 
the solution of the problem of multi attibute decision-making (MADM). 

Methods: The basis of the procedure is to define the nodes of argument 
pairs and their parameters for the allowable multidimensional points. The 
parameters are implemented in the gradient method, the favorable 
directions method and the line search method. In the development of the 
procedure, the basics of the TOPSIS method for MADM with interval-
given criteria weights were used, primarily due to the nonlinearity of the 
reference function. 

Results: The paper elaborates the procedure of determining extreme and 
other admissible solutions of the reference function (boundary and basic 
solutions) and all vertices of the convex set of the function definition. This 
forms a complete graph of the function, i.e. the required solutions from the 
allowable set can be determined. A procedure for determining a set of 
solutions for defining a separating hyperplane of a set of function values 
has been developed; in this way, as a specific case, a set of solutions of 
partial stability of the variant is defined as MADM solutions. Adequate 
procedures have been proposed to eliminate the degeneration of the 
procedure (wedging and oscillation of the solution). 

Conclusions: The most significant contribution of the paper is the definition 
of the nodes of argument pairs and their parameters which ensure the 
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9normalization condition in each node and for each allowable point, non-

negativity of variables and independence of argument changes in nodes, 
within active constraints. An original procedure for determining function 
graphs has been developed. An appropriate real numerical example is 
given. 

Keywords: criteria weights, nodes of argument pairs, gradient method, 
favorable direction method, system of basic solutions, multi attribute 
decision-making, partial stability of solutions. 

Introduction  
Problems of nonlinear programming (NLP) with the nonlinear 

objective function, linear natural constraints of arguments (intervals of 
possible values of arguments) and the normalization condition for 
arguments cannot be solved by applying classical NLP methods. The 
normalization condition implies a constant sum and positive values of 
arguments in each multidimensional point from the admissible convex set 
of the function definitions. Relying on the knowledge and procedures 
from the classical NLP methods (Petrić, 1979), (Hadley, 1964), 
(Zangville, 1969), (Bazaraa et al, 2006), (Luenberger & Ye, 2016), 
developed for problems with or without limitations, the procedure 
developed in this paper can be applied for the development of the 
procedure for solving this class of NLP tasks. At the same time, the 
necessary procedures based on the introduced concept of nodes of 
arguments (or nodes of criterion) for the problem of multi attribute 
decision-making (MADM) have been developed, thus transforming the 
criterion function and constraints and creating a new NLP model based 
on node parameters. The new model does not contain a singled out 
normalization condition, because it is built into each feasible point 
through the node parameters. 

As the aim of the paper is conceived on two bases - to show a 
possible procedure for solving this class of NLP tasks while including 
consideration of partial stability of MADM solutions - a complex method 
TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 
was chosen as an example (Hwang & Yoon, 1981), (Yoon, 1987). The 
chosen method is based on multiple distances of quantitative indicators 
of quality of variants (values according to the established criteria - criteria 
values from the best and most unfavorable existing ("perceived") criteria 
values. The method was chosen solely because of the nonlinearity of the 
reference function, since in most other methods this function is linear 
(VIKOR, MABAC, COPRAS, AHP), and not because of preference over 
some other methods. The above procedure can also be applied to these, 



 

490 

 
 V

O
JN

O
T

E
H

N
IČ

K
I G

LA
S

N
IK

 / 
M

IL
IT

A
R

Y
 T

E
C

H
N

IC
A

L 
C

O
U

R
IE

R
, 2

02
0

, V
ol

. 6
8,

 Is
su

e 
3 as well as other methods with a continuous reference function. The 

function of partial stability of one variant in relation to the another one 
represents a set of weight points for which the difference of the reference 
TOPSIS values of these variants is positive. Feasible weight points are 
given to components whose values are within a certain interval, which 
can be the result of determining the value of weights using group 
methods, combining multiple methods, incomplete or unreliable 
information, uncertainty of decision makers and the like. 

By applying the TOPSIS method, a reference nonlinear objective 
function is obtained, the constraints of the variables are linear, and their 
values must meet the normalization condition, which limits the application 
of standard NLP methods for conditional optimization. Based on the 
constraints and possible changes in the values of the weight components 
(variables), the nodes of the pairs of criteria (arguments) are formed. 
They ensure the normalization condition, non-negativity of variables and 
independence of weight changes in one node from changes in other 
nodes, under active constraints. The Cauchy gradient method of the 
fastest fall (growth) (Vujičić et al, 1980, pp.89-92) and the line search 
method, adapted to the conditional optimization and characteristics of the 
nodes of the pairs of criteria, were applied as a basis for the proposed 
procedure for solving the NLP problem. The first part of the paper defines 
the function of similarity of a variant to an ideal solution, the nodes of 
criteria pairs and their characteristics for one variant, and also presents 
the procedure for determining the extremum of a function (exact and 
approximate solutions). The way of solving a possible occurrence of 
degeneration of the procedure (wedging or oscillation of the solution in 
the "vicinity" of the boundary of the set of feasible solutions) is also 
shown. In the second part of the paper, the partial stability of one variant 
in relation to the other ones is defined and the already performed 
parameter relations for one variant are applied to the partial stability 
function. Based on the introduced system of basic solutions for the 
required value of the reference TOPSIS function (separating the 
hyperplane of the values set of the function), a set of solutions was 
determined for which one variant is better in relation to the other selected 
variant. The paper does not explicitly deal with the analysis of the 
influence of criteria weights on the values of quantitative indicators of 
variant quality, but with the procedure of determining weight points from 
the set of admissible points, for which the stability of one variant in 
relation to the other one from the set of available variants can be 
determined. As an illustration of the procedure, a corresponding real 
numerical example is given. 
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9The objective function (the similarity function of the 

variant to the ideal solution) 

An MADM problem: There are m variants Im,i;V i 1  available 
and each of them is described with n attributes that are used as criteria 

Jn,j;K j 1  in the decision-making process: the MADM problem is 

defined as a requirement to determine the variant Ip;V p   that is best 

according to all criteria K j , as well as a ranking list of all variants. In the 

decision matrix }n,j;m,i;{C cij 1=1==  ( Rcij  
are criteria values), the 

criteria are associated with numerical values of weights ),(w j 10  with 

the normalization condition 11  


nj
j jw  and the operators - min/max 

criteria: 1L j   (min) or 1L j  (max). 

The TOPSIS method: It is based on compromise decision making 
and Lp metrics (Hwang & Yoon, 1981), (Zeleny, 1982), (Yoon, 1987) and 
can be displayed in several steps, when determining: 
- Normalized criteria values: 

a)  
 mi

i ijijij cca 1
2 , for za 1L j  (maximum), 

b)  
 mi

i
/
ij

/
ijij cca 1

2 , cccc ijj
*
j

/
ij   ,), for 1L j  (minimum),         (1)   

where c*
j  are the best and c j

  are the most unfavorable criteria 

("perceived" ideal and anti-ideal)1, when all criteria become 
maximizing )( L j 1 . 
- Distances of Lp metrics for  ,,p 21  according to the normalized 

values of the "perceived" ideal }){( amaxaV ijj
*
j

*   and the anti-ideal 

}){( aminaV ijjj   : 

a) pp
ij

*
j

nj
j

p
ji

*
p

*
i,p ])([);( aawVVLt

1
1   

 , 

b) pp
jij

nj
j

p
jipi,p ])([);( aawVVLt

1
1




   ,  ,,p 21 .              (2) 

- Unified distances of variants from ideals and anti-ideals: 

                                                 
1 It is possible to apply linear normalization )) cc(cc(a j

*
jjijij

 --  which increases the range 

of normalized criteria values 10  aij . The decision maker can determine both the 

absolute best (desirable) and the worst (undesirable or critical) values of the criteria 
functions that are outside the perceived best and worst criterion values, thus forming a 
secondary ideal and anti-ideal. 
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3 ;tt *

i,pp ,p
*
i     );i(tt i,pp ,pi

     ;,,p  21                                (3) 

where  ,p  i 1 p ,p   are the coefficients of the linear combination in 

the system of three metrics ( ,t1 ,t2 )t , which represent the relative 
reliability of the function t p  for the dimension   (e.g.  is the number of 

criteria, variants, class, rankings, etc.) (Yoon, 1987, pp.283-284) or are 
chosen depending on the nature of the problem i.e. on what is required: a 
greater overall benefit )p( 1 , geometric proximity to the ideal )p( 2  or 
smaller individual maximum deviations of the criteria values )p(   
(Opricović, 1986, pp.45-48). 
- Ideal similarity vector }{S si  - similarity (closeness) of the variant V i  

to the ideal solution V*  with elements (ideal similarity coefficients): 

)( ttts i
*
iii

  ; 10  si .                                                                 (4) 
- Rank of variants according to the criterion: 

}{)i(R smax ii .                                                                               (5) 
The coefficient of similarity of ideal (4) is a quantitative indicator of the 
quality of the variant V i  at the same time according to all criteria and in 
relation to the ideal and the anti-ideal (or the degree of "goodness" of the 
variant). For 50,si   (when i tt *

ii 
 ) the variant V i  has a greater 

influence on the variant and the variant is considered to be under the 
"control" of the ideal (the opposite is also true for tt *

ii 
  the anti-ideal). 

The similarity function of the variant to the ideal (similarity function) 
(4), for the constant criterion values Rcij   (1) and one variant V i  

(hereinafter the index "i" is implied), can be represented as a real 
function of n variables - weight );(w j 10  for each Jj : 

JjiIifor;)};;({w);w()w(s nj
j jji wws   
 110 1 ,         (6) 

where 11  


nj
j jw  is the normalization condition. For the solved MADM 

problem, the weight components w  are given in the intervals  

],[)(w www B
j

A
jj  , where wA

j  are the lower limits and wB
j  the upper 

limits of the interval of the values of the weight components (some 
components can be specified as discrete values). Interval weight 
estimates can be obtained in the process of group decision making on 
weights, when applying several objective methods of determining 
weights, as a consequence of incomplete information or uncertainty of 
decision-makers and the like. A set of initial weights is formed for each 
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9criterion wP

j  and the lower wAP
j  and upper limit values wBP

j  are 

separated. The starting point of the weight )( ww P
j

P 00   has components 

www BP
j

P
j

AP
j  0  that can be the arithmetic means of several obtained 

weights (either modal or medial values) or at will chosen weight and for 

which it is generally 11
0  


nj

j
P

jw . By normalizing these values, the basic 

point of weights ],[)( wwww B
j

A
jj  00  and 11

0  


nj
j jw  is obtained, with 

the limit weights wA
j  and wB

j  whose sums are 11  


nj
j

A
jw  and 

11  


nj
j

B
jw . According to the basic point of weights )w(w j

00   and 

expressions (1-5), a basic TOPSIS solution of the MADM problem 
))(;( wssw pp

000   is obtained or a variant Ip,V p   for 

}m,i);({)( wsmaxws iip 100  . 

The function definition set )w(s  is a compact (closed and bounded) 

and convex set of points  nEw , such that  nFE . A set F  is 

an n-dimensional set bounded by 2n hyperplanes, wA
j  and wB

j , and 

],[)(w www B
j

A
jj   is an n-dimensional point. The point Fw , with the 

components 0w j  for each Jj , not connected by the normalization 

condition 11
0  


nj

j jw , is the vertex of the set F  only if each component 

has a value of ww A
jj   or ww B

jj  . The vertex of the set F  must contain 

n components: p components 0wA
jA

 for JJj AA   and q components 

0wB
jB

 for JJj BB  , so that np 0 , nq 0 , nqp  , JJJ BA  , 

and JJ BA ; the total number of vertices is 2n  (variations with 

repetition). Since it is 1
B BA A j

B
jj

A
j ww  in the general case and  due to 

the normalization condition 11  


nj
j jw , the set FE   does not contain 

vertices, and thus not all points of boundaries (edges) and sides of the 

set F . 

A point E\Ew  is a boundary point of a set  nE  only if there is 

ww A
jj   or ww B

jj   for at least one Jj , and an inner point Ew  - 

only if there is www B
jj

A
j   for every Jj , where E  is the interior of 
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3 the set E . Each vertex of the set E  contains n components: p 

components wA
jA

, q components wB
jB

 (where in 10  np ,  10  nq  

and 1 nqp ) and a wr  component:  

)(
B BA A j

B
jj

A
jr www  1 , www B

rr
A
r  ;                                          (7) 

which is a condition for some combinations of the values wA
jA

 and wB
jB

 to 

form the vertex  of the  set E . As it is wwww B
rj

B
jj

A
j

A
r )(

B BA A
 1 , 

condition (7) in the general case cannot be fulfilled for all 2 1 )n(   possible 

combinations of the values wA
jA

 and wB
jB

. 

A set of function values )w(s  is a set  ]};[s{S ss Mm  limited 
with the values of the function for extreme solutions: minimum 

))(s;( wsw mmm   and maximum ))(s;( wsw MMM  . Mapping 

SE:s  )( n   is a surjection: there is at least one point Ew  for 

which there is SC)w(s   and for each point Ew  there is only one 

value SC)w(s  : )())(( EwSws  ; )SC)w(s!()Ew(  . The 
set of all solutions forms the graph of the function 

}S)w(ss,Ew|)s;w{( n
s   1 . 

The extremes of the function )w(s  are obtained as solutions of the 
NLP problem with a nonlinear objective function, 2n linear constraints, 
the normalization condition and positive values of the variables: 

)w(smax)(min/ ;  

ww A
jj  ; ww B

jj  ; 11  


nj
j jw ; 0w j ; n,j 1 .                                 (8)  

The function )w(s  on a convex set E  is continuous and twice 
differentiable, but it is not possible to unambiguously determine the 

convexity or concavity of the function on the whole set E . For a special 
case and for a constant value C)w(s  , function (4) can be written as 

)(C ttt *    or  01  tt )C(C * . Hence the assertion (Yoon, 1987, 

p.280) that a function )w(s  is convex for the subsets of points Ew E  1  

in which it is 50.)w(s  , and concave for subsets of points 

EE \Ew 12   in which it is 50.)w(s  . Therefore, each local extremum 
is also a global extremum, that is, a function has extreme solutions at the 

boundary of the set E , which are  unique in terms of the values of the 
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9function and arguments. The convex function ( 50.)w(s  ) has a 

maximum, and the concave ( 50.)w(s  ) has a minimum at the vertex of 

the set E  (Martić, 1978, pp.144-145) and these are exact extreme 
solutions that meet the optimality criterion. The minimum convex and 
maximum concave functions are at the boundary of the set (they can also 

be the vertices of the set E ), and if they are not the vertices of the set 

E , then they are determined as approximate extreme solutions 
(incorrect, acceptable) according to the predefined criteria for function 
values and/or arguments according to real (exact) extreme solutions. 

Nodes of the pairs of arguments (criteria) 
Defining the nodes of the pairs of arguments (criteria) and their basic 

parameters is the most important phase of the presented method of 
solving the NLP problem. Nodes are formed for one variant V i  and each 

pair of criteria tr;Jt,r   and one point wk . In a narrower sense, the 

node of the pair (two) of criteria )t,r(  is the node of two different 

components wk
j  for t,rj   of one point of weight wk : it represents a 

qualitatively new set of parameters arising from the mutual relations of 
characteristics (parameters) of current components wk

r  and wk
t . 

The transition from the initial to a new solution is done by changing 
the starting point wk  to a new point of weights wk 1 , where ,,,,k 210  is 

the mark of the iterative solution. The basic parameters of the point wk  

are: 
Active constraints of the criteria d Ak

j  and dBk
j  (possible changes in 

weight components) at the point wk  for the intervals ],[ ww B
j

A
j : 

 0 wwd A
j

k
j

Ak
j ; 0 wwd k

j
B
j

Bk
j ; Jj,wwddd A

j
B
j

Bk
j

Ak
j

AB
j  ,      (9) 

where 0d Ak
j is the largest possible decrease, 0d Bk

j  is the largest 

possible increase in weight wk
j , and 0d AB

j  is the size of the interval 

],[ ww BA . The values d Ak
j  and 0d Ak

j  and their sums  


nj
j

Ak
jd1  and 

 


nj
j

Bk
jd1  can be related by any sign (<, =,>). 

The vector of change (increment) is the weight vk : when changing 

the point wk  to the point wk 1 , the new point vww kkk 1 , where the 
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3 )( vv k

j
k   vector of change (increment) is the weight. The values vk

j  can 

be 0  or 0 , which is why non-negative values are introduced 
0vv Bk

j
Ak
j ,  ( 0vAk

j reduction and 0vBk
j  increase weight wk

j ): 

a) 0 vv k
j

Ak
j , ],[ dv Ak

j
Ak
j 0 ; za 0vk

j ; 

b) 0 vv k
j

Bk
j , ],[ dv Bk

j
Bk
j 0 , za 0vk

j .                                        (10) 

The values of the weight components at the new point wk 1  are2: 

vvwvww Ak
j

Bk
j

k
j

k
j

k
j

k
j 1 .                                                         (11) 

where for each component wk
j  (11) at least one of the values vAk

j  or vBk
j  

is equal to 0. 
The gradient of function: from the development of function (6) into 

Taylor's polynomial of the first degree: 
RwwRwwwww )()(s))((s)(s)(s kkkkkkk

11
11         (12) 

and for the value of the remainder 01 R , the auxiliary function 

)( wkk    is equal to: 

))((s))((s)( vvwwwww AkBkkkkkk  1 ;                            (13) 

where 
n,j

k
j

kk })(s{)(s www 1
  the gradient of the function )w(s  is at 

the point wk . Approximate values of the gradient components 

wwwgg k
j

kk
j

k
j )(s)(   can be calculated by the method of double 

increment of variables (Milovanović & Stanimirović, 2002, p.114): 

Jj;;/)](s)(s[ wwg k,jk,jk
j   02  ,                                 (14) 

where points ),,,,( wwww k
n

k
j

kk,j  
1  and ),,,,( wwww k

n
k
j

kk,j  
1 , 

and 0  the increment is small (e.g. 610  or less). 

Node parameters 

For the transition from the point wk  to the point wk 1  and with the 

normalization condition 11  


nj
j

k
jw , it is necessary to change the weights 

of at least two criteria Jt,r   that form a node )t,r(  with a unique value 

                                                 
2 The index ,,,,k 210  indicates the quantities in the point wk  (eg: sk ,  k , d Ak

j , d k
)t,r( , 

gk
j
, g k

)t,r(
) and the quantities that "come out" of it (eg: vk

j , vAk
j , zk

)t,r( ,  k
)t,r( ). 
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9of weight changes 0 vv Bk

)r(t
Ak

)t(r  and the direction of changes: vAk
)t(r  is the 

reduction of the weight wk
r , and vBk

)r(t  is the increase of the weight wk
t . 

The components Jt,r   of the point wk 1  are equal to: 

Jt,r;;; vvvwwvww Bk
)t(r

Ak
)t(r

Bk
)r(t

k
t

k
t

Ak
)t(r

k
r

k
r   011 ,          (15) 

while the other components are unchanged }t,r{\Jj,ww k
j

k
j 1 . A set 

of nodes is formed for a known solution 
}tr,Jt,r|)t,r{(k                                                                   (16) 

with )n(n 1  elements in total. The basic characteristics of the nodes 
are: 

Active constraints of nodes )( wdd k
)t,r(

k
)t,r(   depend on a possible 

decrease in the r-component and on an increase of the t-component 
weight in nodes (9) (available resources): 











])t,r[(,tr;

)t,r(;);min( dd
d

Bk
t

Ak
rk

)t,r( 


0

0
,                                             (17) 

where the matrix nxn
k

)t,r(
k )d(D   for Jt,r  . 

Variables zk
)t,r( : variables 0zk

)t,r(  are introduced, whose values 

show the change of the weight components in the nodes, whereby a 
square matrix nxn

k
)t,r(

k )( zZ   is formed, with the following elements: 

a) 










])t,r[(,tr;

)t,r(,d
z

k
)t,r(k

)t,r(
0

0
,                                                      

b) 0 vvz Bk
)r(t

Ak
)t(r

k
)t,r( .                                                                 (18) 

Since vv Bk
)r(t

Ak
)t(r  , the values of the variables 0zk

)t,r(  are conditional 

and compensatory values of the weight changes in the node )t,r( , and 

their summation in the nodes )t,r(  gives the total increase vAk
r  or 

decrease vBk
t  of each weight component: 

a) dzvvvvrj Ak
r

nt
t

k
)t,r(

nt
t

Ak
)t(r

Ak
)n(r

Ak
)(r

Ak
r   



 111  , 

b) dzvvvv Bk
t

nr
r

k
)t,r(

nr
r

Bk
)r(t

Bk
)n(t

Bk
)(t

Bk
ttj   



 111  ,         

c)  



  nj

j
Ak
j

nj
j

Bk
j vv 11 0 .                                                                 (19) 
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3 The normalization condition is provided in each node and does not 

need to be considered further. The condition from the starting point of 

weights 11
0  


nj

j jw  (11) is also contained in the point w1  because of 

(19c): 11
0

1
0

1
0

1
1   











nj
j

A
j

nj
j

B
j

nj
j j

nj
j j vvww . The normalization condition 

is transformed into 011   





nj
j

Ak
j

nj
j

Bk
j vv  or 01  


nj

j
k
jv  and is contained in 

each node )t,r(  and for each point Ewk  in any iteration ,,,,k 210 . 

Gradient function in the node gk
)t,r( : the increment of the value of the 

auxiliary function (13) for the node )t,r( is: 

vwwvww Ak
)t(r

k
r

kBk
)r(t

k
t

kk
)t,r( ))(s())(s(  .                                 (20)   

By changing wwg k
j

kk
j )(s   for gk

r  and gk
t  (14) and 0 vvz Bk

)r(t
Ak

)t(r
k

)t,r(  

(19a, b) expression (20) becomes: 

gzggzz
k

)t,r(
k

)t,r(
k
r

k
t

k
)t,r(

k
)t,r( )()(  , )(g zg k

)t,r(
k

)t,r(  ,                     (21) 

where )( wgg k
)t,r(

k
)t,r(   is the approximate value of the gradient function  

component )w(s  in the node  k)t,r(  . The values gk
)t,r(  for all nodes 

)t,r(  form a square antisymmetric matrix nxn
k

)t,r(
k )( gG   with the 

elements: 










])t,r[(,tr;

)t,r(;
k

kk
r

k
tk

)t,r(

gg
g




0
,                                                       (22) 

where gg k
)r,t(

k
)t,r(  . The approximate total change in the value of the 

function )(s wk  for all nodes  k)t,r(  , according to (21), is equal to: 

 kk
)t,r()t,r(

k
)t,r(

k )t,r(,))( zz(gZ   .                                         (23)  

Possible changes in the function values by the nodes  k
)t,r(  are 

derived values based on the values of the elements of the matrix Dk  (18) 

and Gk  (22). A matrix nxn
k

)t,r(
k )(   is formed, with the elements: 












000

000

dg

dgdg
k

)t,r(
k

)t,r(

k
)t,r(

k
)t,r(

k
)t,r(

k
)t,r(k

)t,r(
iliza;

iza;
 ,  k)t,r(              (24) 
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9of which there may be at most n (n-1) elements 0 k

)t,r( . This defines the 

basic characteristics of the nodes )t,r( : d k
)t,r( , gk

)t,r(  and  k
)t,r(  and the 

variables zk
)t,r( , shown in Table 1.  

Active nodes 

The characteristic 0 k
)t,r( , as a derived quantity, is the most 

significant indicator of the possibility of changing the value of the function 
in the node )t,r(  for the current point wk . Based on the values 0 k

)t,r( , 

the matrix T k
  with the elements that are 0 or 0 k

)t,r(  and the matrix T k
  

with the elements that are 0 or 0 k
)t,r( ;  this determines the subsets of 

active nodes  k
  and  k

  at the point wk : 

a)  kk
)t,r(

k }|)t,r{(  0 ;  

b)  kk
)t,r(

k }|)t,r{(  0 .                                                       (25) 

The active nodes in the point wk  are the nodes  kk)t,r(   , and 

the active gradient components are only the components 0gk
)t,r(  in the 

active nodes (the nodes in which there are 0gk
)t,r(  and 0d k

)t,r(  are not 

active nodes). According to the influence on the value of the function 
(increase or decrease), i.e. for determining the extreme of the function 
(minimum, maximum), active nodes are the nodes  k)t,r(   for 
decreasing the value or determining the minimum of the function and the 
nodes  k)t,r(   for increasing the value or determining the maximum of 
the function. Active gradient components are only the components 

0gk
)t,r(  (min) or 0gk

)t,r(  (max) in the active nodes ( 0 k
)t,r( ). The sum 

0  )t,r(
k

)t,r(
k

)t,r(
k

)t,r()t,r( dg ||||  for the node  k)t,r(   is the largest 

possible decrease, and for the node  k)t,r(   the largest possible 

increase of the value of the function )w(s  is at the point wk . The value 

|| k
)t,r()t,r(   can also be a criterion for accepting the achieved solution as 

an approximate extreme solution and for interrupting the iterative 

procedure if   || k
)t,r()t,r(  for  k)t,r(   (min) or  )t,r( k  (max), 
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3 because the improvement of the function value in the next iteration 

cannot be greater than the defined value   (e.g. 5105  ). 

The formation of the nodes  k)t,r(   ensures that the normalization 

condition 11  


nj
j

k
jw  (or 01  


nj

j
k
jv ) is contained in each point Ewk  the 

non-negativity of the variables 0zk
)t,r(  and the independence of weight 

changes in a particular node  k)t,r(   from changes in the other nodes, 
with active limitations of criteria (18, 19). 

Extreme solutions of the objective function (similarity  
functions) 

The extremes of the function )w(ss   (8) are determined by an 

iterative procedure starting from some feasible solution );( sw kk  which, in 

general, is not extreme. Improving the initial solution is possible only if 
there is at least one node  k)t,r(   (25a) (decrease in the value sk ) or 

only if there is at least one node  k)t,r(   (25b) (increase in the value 

sk ). According to expression (13), the current solution );( sw kk  is 

improved by increasing (decreasing) the value of the auxiliary function 
)( Z k  (13, 23), when the nodes taken into account are only the nodes 

 k)t,r(   in which weight changes contribute to the improvement of the 

value of the auxiliary function )( Z k .  
The iterative procedure determines the boundary solutions 

);E\E( sw kk 11    with the improved function )w(s  values, i.e. the 

boundary points E\E)( ww *kk 1  that will give an improved TOPSIS 

solution (2-4), while active constraints allow it. At the end of the 
procedure, a solution will be obtained at the point at the vertex of the set 

E , which will be the exact extreme solution E\E)( www Mm*k   or 

the initial solution for a further procedure and determination of the 
approximate extreme solution. In both cases, there is a single iterative 
procedure by which an admissible solution is obtained at the vertex of the 

set E , from which no better solution can be obtained at any vertex of the 

set E . 
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9Exact extreme solutions 

For the initial solution );( sw kk , usually k=0, it is convenient to form a 

table similar to Table 1 which contains the values of the active 
constraints dAk

j  and dBk
j  (9), the node characteristics )t,r(  - the elements 

of the matrices Dk  (17), Gk  (22) and T k  (24) at the point wk , the partial 

sums gk
)t,r(  and  k

)t,r(  dependent on the active nodes  k
  or  k

 ,  the 

space for writing variables zk
)t,r(  

and their sums as the components of the 

vector )( vv k
j

k  .  

The extremes of the function )w(s  (8) are determined as the 
solutions of the NLP problem with restrictions on the weight changes in 
the nodes 0 dz k

)t,r(
k

)t,r(  (18) and according to the criteria 

01  
 dz Ak

r
nt

t
k

)t,r(  
and 01  

 dz Bk
t

nr
r

k
)t,r(  (19), that is, from the 

condition that the points of extremes are admissible, and, at the same 

time, the boundary points E\Ewk 1 . 

The mathematical model NLP (8) was transformed according to the 
node parameters and a new model was formed containing the nonlinear 
objective function (due to the multiple differentiability of the function )w(s  
and the nonlinearity of the function )(g zk

)t,r( ), )n(n 1  linear constraints 

(the normalization condition 11  


nj
j jw  is contained in the nodes 

parameters) and for )n(n 1  variables 0zk
)t,r( , with indices as in Table 1: 

 

zz(gZ k
)t,r()t,r(

k
)t,r(

k ))(max)(min/  ,   

dz k
)t,r(

k
)t,r(  ,        n(n-1) constraints, 

dz Ak
r

nt
t

k
)t,r(  

1 ,  n  constraints,                                                     (26) 

dz Bk
t

nr
r

k
)t,r(  

1 ,   n constraints,  

0zk
)t,r( ;  k)t,r(   (min) or  k)t,r(   (max). 

 
The NLP task (8,26) is solved by applying an iterative procedure 

based on the first-order gradient method or the Cauchy method of the 



 

502 

 
 V

O
JN

O
T

E
H

N
IČ

K
I G

LA
S

N
IK

 / 
M

IL
IT

A
R

Y
 T

E
C

H
N

IC
A

L 
C

O
U

R
IE

R
, 2

02
0

, V
ol

. 6
8,

 Is
su

e 
3 fastest drop (growth) of the value of the function )w(s 3 adapted for the 

application of node parameters. The direction of the antigradient 
)(s wk  is also the direction of the fastest decrease in the value of the 

function )w(s  at the point wk , that is, it is the most favorable direction 

from the point wk  for determining the minimum (Vujičić et al, 1980, p.89); 

the direction of the gradient )(s wk  is the most favorable direction for 

determining the maximum. 
Through the starting point wk , in addition to the most favorable 

direction, countless other favorable directions can be drawn that will 
contain the characteristics of one or more active nodes4. The aim is to 

determine the point Ewk 1  at which the TOPSIS value of the function 

sk 1  is better than the value sk  in the chosen favorable direction and in 
accordance with the limitations in model (26). 

Solving problem (26) requires at least one known feasible solution 
);( sw kk  (basic TOPSIS solution );( sw 00  or any other feasible solution), 

for which there is at least one node  k)t,r(   (minimum) or at least one 

node  k)t,r(   (maximum) (25). Based on the values of all active 

components of the gradient at the point wk , the most favorable direction 

or the direction of the fastest fall (growth) of the objective function is set 
through it. Active nodes are determined depending on the required 
extreme:  k)t,r( 

 
(min) or  k)t,r(   (max). The most 21)n(n   active 

nodes are possible for each required extremum, that is, it is the largest 
number of elements of the sets  k

  
and  k

  
for the inner point Ew . In 

the intersection of the most favorable direction and some, unknown in 

advance, hyperplane of the set E - wA
j  or wB

j , there is the boundary 

point E\E)( ww k*k  1 : 

Jj);()( vvwvwvww Ak
j

Bk
j

k
j

k
j

k
j

kk*k  .                          (27) 

                                                 
3 Based on the gradient method of the fastest fall, several procedures and their 
modifications have been developed, which are not listed here, and some of them have 
been treated in the cited literature.  
4 Other favorable directions are applied in eliminating the degeneration of the procedure 
known as wedging and in determining the basic solutions for the required values of the 
function C)w(s   (shown below). 
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9 

Table 1 – Parameters of the point wk

 
and the nodes (r, t) for the NLP model 

Таблица 1 – Параметры точки wk

 
и узлов (r, t) для модели НЛП  

Табела 1 – Параметри тачке wk  и чворова (r,t) за модел НЛП 

tj   1  n 

sums* rj   
d Ak

r     d Bk
t  d Bk

1    d Bk
n  

gk
r      gk

t  gk
1    gk

n  

1 

d Ak
1  0  d k

)n,(1   

gk
1  0  gk

)n,(1  |nt
t

k
)t,(g| 

1 1
 

 k
)t,r(  0   k

)n,(1  |nt
t

k
)t,(| 

1 1  

zk
)t,r(  0  zk

)n,(1  vz Aknt
t

k
)t,( 11 1  

  

           

n 

d Ak
n  d k

),n( 1   0  

gk
n  gk

),n( 1   0 |nt
t

k
)t,n(g| 

1  

 k
)t,r(   k

),n( 1   0 |nt
t

k
)t,n(| 

1   

zk
)t,r(  zk

),n( 1   0 vz Ak
n

nt
t

k
)t,n(  

1  

sums* 

|nr
r

k
),r(g| 

1 1
  |nr

r
k

)n,r(g| 
1   

|nr
r

k
),r(| 

1 1   |nr
r

k
)n,r(| 

1   || k
)t,r()t,r(   

vz Bknr
r

k
),r( 11 1  

  vz Bk
n

nr
r

k
)n,r(  

1  

*sums g k
)t,r(
 and  k

)t,r(  are determined in relation to  k)t,r(  or  k)t,r(  

 
Minimum problem: The direction of the fastest fall is the direction of 

the antigradient )(s wk , that is, the direction of the antigradient vector 

in the active nodes for the point wk  (the gradient vector is the sum of the 

gradient vectors  kk
)t,r( )t,r(;g  0  of the active components); the 

values of the variables  kk
)t,r( )t,r(,z  0  (18,19) have the same 
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3 interrelationship (proportionality) as the values of the active components 

of the gradient5: 

 kk
)t,r(

kk
)t,r( )t,r(|;g|z  ,                                                            (28) 

where 0 k , the unique coefficient (proportionality) of weight increment 

for all active nodes, depends on the active constraints in the nodes 
( 0d k

)t,r( ) and the criteria ( 0d Ak
j  and 0d Bk

j ); it is necessary to 

ensure, when passing the point Ewk  to the boundary point E\Ew *k  : 

a) that the point w *k  (27) is a feasible point; b) that w *k  is in the most 

favorable direction; and, c) that the active constraints of the nodes and 
the criteria are met to the maximum (to achieve the maximum possible 

changes in the weight components vk
j ). The values of the coefficient  k  

are obtained on the basis of the following considerations: 
1) Active constraints in the nodes  kk

)t,r(
k

)t,r( )t,r(,dz  0  (18): for 

the boundary case 0 dz k
)t,r(

k
)t,r(  and  kk

)t,r(
k

)t,r(
k

)t,r(
k

)t,r( )t,r(;| dg|z  ,  

where 0 k
)t,r(  is the node coefficient. The lowest value 0 k

)t,r(  in all 

nodes allows at least one resource d k
)t,r(  - active constraint to be fully 

utilized and that 0d *k
)t,r( , based on which the coefficient of active nodes 

is determined 0 k : 

a) 


















k

kk
)t,r(

k
)t,r(k

)t,r(
)t,r(;

)t,r(;|| gd
0

0
; 

b) })t,r(;{ kk
)t,r()t,r(

k
min   0 .                                            (29)  

2) Active constraints of arguments (criteria) 01  
 dz Ak

j
nt

t
k

)t,j(  and 

01  
 dz Bk

j
nr

r
k

)j,r(  for J)tj;rj(   (19a,b): to move to the  point 

E\Ew *k   at least one of the active constraints to the criteria, which 

have a positive value 0d Ak
j  or 0d Bk

j  at the point wk , should be fully 

                                                 
5 In the following text, for a simpler presentation, the components of the gradient 

 kk
)t,r( )t,r(;g  0  and  kk

)t,r( )t,r(;g  0  are replaced by 0|| g k
)t,r(

 for  k)t,r(   

(min) or  k)t,r(   (max). 
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9utilized and there should be 0d *Ak

j  or 0d *Bk
j  at least for one Jj  . 

The weight components for one criterion (27) are vvv Ak
j

Bk
j

k
j  , where in 

the final outcome 0vAk
j  or 0vBk

j . The change of the  component vk
j  

depends on partial changes in the row and column of the same index 
trj   in the matrix Gk : changes in the row rj   are 

 



  nt

t
k

)t,r(
k
j

Ak
j

nt
t

k
)t,r( g|vz 11 0 , and in the column tj   they are  

011   



 |[ nr

r
k

)t,r(
k
j

Bk
j

nr
r

k
)t,r( g|vz  , where 0 k

j  is the coefficient of 

proportionality for the jth-criterion. It follows that 

|]|[ nt
t

k
)t,j(

nr
r

k
)j,r(

k
j

k
j g|g|v  



  11 , where the sums in the parentheses [.] 

can be connected by any sign (<, =,>), when three cases are possible: a) 

vv Ak
j

k
j 0 , followed by vv Ak

j
k
j   and 0vBk

j ; b) 0vk
j , followed by vv Bk

j
k
j   

and 0vAk
j ; and, c) 0 vvv Ak

j
Bk
j

k
j . For boundary cases, when 

0 dv Bk
j

Bk
j  or 0 dv Ak

j
Ak
j , the coefficients of the criteria ( k

j ) and the 

coefficient of all criteria ( k ) are obtained: 

a) 


















 
  

   





 

























nt
t

nr
r

kk
)j,r(

k
)t,j(

nt
t

nr
r

nt
t

k
)t,j(

k
)j,r(

k
)t,j(

nr
r

k
)j,r(

Bk
j

nt
t

nr
r

nt
t

nr
r

k
)j,r(

k
)t,j(

k
)j,r(

k
)t,j(

Ak
j

k
j

;)t,j(),j,r(|;|||for;

|;|||for;|)|||(

|;|||for;|)|||(

gg

ggggd

ggggd

1 1

1 1 11

1 1 1 1

0

0



  

b) }Jj;{ k
jj

k
min  0 .                                                                 (30) 

The transition from the  point Ewk , which can be a boundary or an 

inner point, to the boundary point  E\Ew *k   in the direction of the 

fastest fall, is realized for the value of the unique coefficient: 

 kkkk for},;min{  00 ,                                                (31) 

where the values  k  and  k  can be associated with any sign         

(<,=,>). Expressions (27-31) are key to determining exact extreme 
solutions using active node parameters. 

In the further procedure, the values of the variables 0zk
)t,r(  are 

calculated (28) as well as the values of the weight increments 

01   


nt
t

k
)t,j(

Ak
j zv  (the sum zk

)t,j(  in the rows of the matrix Z k ) and 

01   


nr
r

k
)j,r(

Bk
j zv  (the sum zk

)t,r(  in the columns of the matrix Z k ) (19), 
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3 together with the components of the point weight w *k  (27), and then the 

TOPSIS solution );( sw *k*k (2-4) is determined.  

Maximum problem: Expressions (27-31) and (2-4) are used to 
determine the solution );( sw *k*k , so that the nodes  k)t,r(   (25a) are 

replaced by the nodes  k)t,r(   (25b), and the matrices T k
  - by the 

matrices T k
 . 

Optimality solution: In the continuation of the examination procedure, 
the obtained solution );( sw *k*k  is obtained according to two criteria: 

- basic criterion: 
a) ss k*k   (min);  b) ss k*k   (max);                                               (32) 

- optimality criterion:  

a)  *k*k
)t,r(

*k
)t,r(

*k
)t,r( )t,r(everyfor;dg  0  (min), or 

b)  *k*k
)t,r(

*k
)t,r(

*k
)t,r( )t,r(everyfor;dg  0  (max),                    (33) 

when three cases can occur: 
1) criterion (32) is met and criterion (33) is not met: the obtained 

solution is not extreme, but it is the initial solution );();( swsw kk*k*k 11   

for the (k+1) iteration, when the node parameters in Table 1 are 
calculated and the procedure is repeated (27-33); the procedure is 
repeated until solutions are obtained according to cases 2 or 3; 

2) criteria (32) and (33) are met: the exact extreme solution was 

reached at the vertex of the set E ; 
3) criteria (32) and (33) are not met: the solutions );( sw kk  and 

);( sw *k*k  are the initial solutions for the procedure of determining the 

approximate extreme solution (the case when (32) is not fulfilled, and 
when it is fulfilled, (33) is impossible). 

For the starting inner point of the weights Ewk 0 , the number of 

active nodes  0
)t,r(  and  0

)t,r(  is equal to 21 /)n(n  . If there is 

an exact extreme solution );( sw mm  or );( sw MM  (33) and, during the 

procedure, in each iteration, 0 kk  and  kk   (31), and there is 

no degeneration - oscillation, then the solution is achieved after the 
iteration 1 nk . After each ,,k 21  iteration, the number of active 
nodes decreases and is equal to 21 /)kn)(kn(  . At the end of the 
procedure and after iterations, there is only one active node, and at the 
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9point w *k  after 1 nk  iterations, there are no active nodes:  k  

(min) or  k  (max). From the beginning of the procedure in each 
subsequent iteration, the value of the possible total weight change 

|| k
)t,r()t,r(   in the active nodes decreases; for the exact extreme solution 

is 0 || *k
)t,r()t,r(   and there is no possibility of further improvement of the 

function value. The number of iterations increases if oscillation or 
wedging (discussed below) appear “near” the hyperplane wA

j  or wB
j . 

Approximate extreme solutions 
Determining approximate extreme solutions is necessary in the case 

when the extreme solution is not at the vertex of the set E  and when 
criteria (32) and (33) are not met. One of possible solutions is the line 
search procedure6, adjusted to node parameters, where the number of 
iterations should be as small as possible. The absence of an exact 
extreme solution is manifested in the iteration by which it would be 
obtained, when there is only one active node and when the value of the 
function s *k  is not better than the value sk . Instead of 0 || *k

)t,r()t,r(  , 

new active nodes appear that did not exist previously7; this means that 
on the direction ],[ ww *kk  there is a value of the function that is better 

than sk  and s *k  (it does not have to be an extreme value, because it can 
be located at the point w  which is not on the current direction). First, the 

known segment of the direction ],[ ww *kk  is examined, and if a solution 

                                                 
6 Inaccurate linear search methods are widely discussed in the literature for nonlinear 
unconditional optimization problems (Zangvill, 1973; Bazaraa, et al., 2006; Luenberger & 
Ye, 2016) and they can also be applied to constraint problems or their adjustment is 
required. Although the procedures are known, due to the specific characteristics of the 
nodes, the whole procedure is given here. 
7 If, from the solution );( sw *k*k , which is not better than the solution );( sw kk , the already 

described procedure is continued by choosing the most favorable direction (27-31), due to 
the change of the gradient sign in previously active nodes, they will become inactive, and 
new active nodes will appear that did not exist at the beginning of the procedure - for the 
initial solution );( sw kk . For the obtained new solution, the value of the function may be 

even better than the value s *k , but criterion (33) will not be met; then, a new solution is 
obtained from this solution, etc., until after several iterations, the solution );( sw *k*k  is 

obtained again, when the procedure begins to "circle" over the already obtained solutions. 
There does not have to be a solution );( sw kk  among these solutions. 
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3 that meets the set criteria is not found on it, then, by applying the 

procedure based on the direction of the fastest fall (growth), a new 
search segment is determined. 

The segment of the direction ],[ ww *kk  is divided into several equal 

parts (subsegments): ],[ wwww nl,k*kl,kk k  0 , where nk,..,,,l 210  is the 

mark of the points on the segment of the direction, and 4nk  is both the 
number of equal search steps and the number of equal subsegments 
(integer) which provides search for a sufficient number of points for 
smaller subsegments. The following points are generated on a segment 

of the direction ],[ ww n,k,k k0 :  

;,...,,lfor;l nvww k
kk,kl,k 1210                                            (34) 

where );(k 410  is the constant size of the weight change step in each 

of 4nk  equal steps in total; expression (34) is a linear combination of 

the points w ,k 0  and w n,k k
: www n,kk,kkl,k k

l)l(   01 . 

The criteria for accepting the approximate solution );( sw l,kl,k  as an 

extreme solution and for stopping the iterative procedure are defined 
here in relation to the values of the function and the values of the 
arguments (criteria weights) for three consecutive iterative solutions: 
- basic criterion: 

a) ;sss l,kl,kl,k 11    (min),  

b) ;sss l,kl,kl,k 11    (max);                                                            (35) 
- argument value criterion:  

 w
l,k

j
l,k

j
l,k

j
l,k

jj |}||;{| wwwwmax   11 ;                                          (36)    

- function value criterion: 

 s
l,kl,kl,kl,k |}||;max{| ssss   11 ;                                                 (37)   

where 121  nk,...,,l , and 0 sw ,  are the parameters of small values. 

The number of steps nk  and the size of the steps  k are determined 
depending on the selected parameter  w  (36): 

30  )|}{| w
,k

j
n,k

j
k

j ww(maxn
k

  ( nk - the first major integer);       (38) 

nkk 1 ,   );(k 410 .                                                                (39)  
whereby criterion (36) is met. The increments of the weight components 

)( vk
j

k  are constant, and, with 4nk , it is ensured that at least three 
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9

points w l,k  are determined on each segment ],[ ww n,k,k k0  and the value 

of the limit parameter is achieved: 

 w
k,k

j
n,k

j
k
w j

)|}{| nwwmax
k

 0 .                                                  (40) 

The choice of parameter values  w  and  s  can be based on the 
sensitivity of the value of the function to changes in the value of 
arguments in the extremum environment. Although the criteria for 
stopping the optimization process can be based on the norms of the 
arguments  w

kkk |||||||| www 1  and the function values 

 s
kkk )(s|)(s)(s| www 1  in two consecutive iterations, for the current 

NLP problem, the parallel application of criteria (36,37) in three iterations 
is favorable. Criterion (36) limits the largest individual weight changes  
via the parameter  w  (40), so that the largest weight increment is 

 w
k
w

k
j

k
j vmax  .The sensitivity of the value of a function )( ok

s , as a 

criterion for the selection of parameters  w  and  s , can be defined as 
the ratio of changes in the value of the function and the maximum 
change of individual weights, i.e. as the ratio of the realized parameters 

 w
k
w   and  k

s  for a certain subsegment:  k
w

k
s

k
so  . Numerical results 

for TOPSIS solutions show greater sensitivity of argument values 
(weight) than function values, because it is 1  k

w
k
s

k
so  or  k

w
k
s  , 

which should focus on the choice of the  parameter w . The parameters 

 w  and  s  can also be determined depending on the required accuracy 
of the values of arguments and functions: in order to round the values of 
weights and the function of the target to four exact decimal digits, it is 

enough to set 5105  w , which ensures 5105  k
s . 

In the set of solutions ),...,,l;,( nsw k
l,kl,k 121  , there does not have 

to be a solution for which ss ,kl,k 0  (min) or ss ,kl,k 0  (max), because 

such a solution can also be in the first subsegment ];[ ww l,k,k 10  . 

Therefore, for the sake of generality of the procedure, a point w a,k  is 

determined on the segment ],[ ww n,k,k k0  in which the function has the 

value: 

a) },...,a,a,a,....,,l;s{min ns kk
l

a,k 11121    (min),                         

b) },...,a,a,a,....,,l;s{max ns kk
l

a,k 11121    (max).             (41)  
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3 There is an improved solution on the subsegment ];[ ww a,ka,k 11  : 

according to the selected  w  and for 4nk  which provides at least four 
new intervals, determine the required parameters (38-40), search the 
subsegment and determine the TOPSIS solution according to the criteria 
(35,37). 

The disadvantage of the procedure based on fulfilling criterion (36) is 

a large number of generated w l,k  points on the segment ],[ ww n,k,k k0 , 

especially for larger interval widths, when the values of the s l,k  function 
and other required quantities need to be calculated for several hundred 
generated w l,k  points. 

For the solved MADM problem procedure will satisfy criteria (35-37), 
knowing that due to the nonlinearity of the function gradient in the nodes 

)(g zk
)t,r(  and the appearance of new active nodes, the exact solution will 

be outside the direction ];[ ww *kk . For the sake of generality of the 

procedure and reduction of error according to criteria (36,37), a two-
phase procedure can be applied: a) linear search and determination of 
the best solution in the segment ];[ ww *kk , it can also be the solution 

];[ sww a,ka,kk 1 ; and, b) determining a new segment between the 

obtained solution and the solution on the hyperplanes wA
j  or wB

j . If the 

point wk 1  is where the best solution is achieved on the segment  

];[ ww *kk , a new direction of the fastest fall (growth) is set through it and 

a point w *)k( 1  is determined. On the new segment ];[ ww *)k(k 11  , the 

value of the function is calculated at the newly generated points, etc. The 
two-phase procedure is repeated until criteria (35,37) are met. In general, 
an approximately extreme solution was obtained in two steps with a 
smaller error, but the procedure is much longer. 

Procedure degenerations: wedging and oscillation 
The presented procedure for determining a point on one hyperplane 

requires that in each iteration at least one component of weight wk
j , 

which is different from the limit values www B
j

k
j

A
j  , have a value 

ww A
j

*k
j   or ww B

j
*k

j   at the new point w *k  and is in the direction of the 

fastest fall (growth). These requirements cannot be met if wedging 
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9occurs: starting from some k-th iteration and a point wk  that can be an 

inner or boundary point, through all subsequent iterations, the points 
"accumulate" "near" the hyperplane wA

j  or wB
j  and some expected 

boundary point w *k  which cannot be reached in a finite number of 

iterations. The expected point w *k  cannot be an extreme point, because 

wedging does not appear in the iteration in which the extreme solution is 
obtained; this iteration is preceded by only one active node, and for the 
occurrence of wedging  there must be two or more active nodes, which 
facilitates the elimination of the problem. The possibility of wedging 
cannot be established at the initial stage of the proceedings.  

 Wedging occurs (but not necessarily) when the coefficient of active 

nodes  k  (29) is smaller than the coefficient of all criteria  k  (30): 

 kkk   (31).  As a consequence, none of the active constraints 

under criteria (19a, b) that had a positive value 0d Ak
j  or 0d Bk

j  in  the 

point wk , will be fully utilized to achieve that  0d *Ak
j  or 0d *Bk

j  for at 

least one Jj  . Through several iterations, the unique coefficient 

 kkk   (31) decreases and 0



k

k , due to successive reduction 

0 k
)t,r(

k . In each subsequent iteration, the values of the weight 

changes per node |g|z
k

)t,r(
kk

)t,r(   decrease as well as the increment of 

the value of the objective function. When the process enters wedging, the 
number and indices of active nodes do not change, so that all the 
components of the direction vector that were active at the starting point 

wk  exist. 

The  kkk  disorder can disappear by the algorithm: if in some 

subsequent iteration in the second node )q,p(   k
)t,r(

k
)q,p(

k   and 

 k
j

k
)q,p(   are achieved, then the most favorable direction towards  k

)q,p(  

will be chosen, and the active node )t,r(  will have no effect or will 
become an inactive node. 

Unlike some possible ways to solve the problem of wedging, e.g.  -
approximation (Zangville, 1969) for the current problem of NLP and 
based on relative independence of active nodes, a procedure based on 
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3 changing the direction can be applied: a new direction is chosen from a 

set of favorable directions which exclude individual active nodes. In any 
iteration after the occurrence of wedging, at the obtained point wk  close 

to the expected boundary point w *k , a new and less favorable direction is 

selected based on the characteristics of all active nodes except the node 

(r, t) which is the cause of wedging and is found to be  k
)t,r(

k  . By 

setting 0gk
)t,r(  for that node (current iteration only), the node )t,r(  is 

excluded from the set of active nodes (25) and the new direction is 
selected in accordance with the characteristics of the remaining active 
nodes using expression (29-31). This does not disturb the procedure, 
because a favorable direction is chosen, but after obtaining a new 

boundary point w *k , the current value 01 gk
)t,r(  must be returned to the 

procedure for the node )t,r( , so that the node )t,r(  can become an 
active node again if it satisfies conditions (25), when again the most 
favorable direction is chosen (29-31). There is a possibility that in several 
consecutive iterations the selected favorable directions must be changed 
and the number of active nodes successively reduced, until at some step 

it is obtained that it is 0  kkk , when the procedure continues by 

determining the );( sw *k*k  solution, and the omitted nodes return to the 

procedure. 
As the extreme solution does not depend on the initial solution or on 

the secondary solutions that are a consequence of choosing one of the 
favorable directions (based on the characteristics of all or only some 
active nodes), it gives the possibility to simplify the problem of wedging 

by: always when  kk
)t,r(

kk  , set the 0gk
)t,r(  for the node )t,r(  

and select another favorable direction, and in the (k+1) iteration, include 

the calculated value of 01 gk
)t,r(  in the procedure of selecting the most 

favorable direction. This prevents the occurrence of wedging, that is, 
automates its removal, and the whole procedure is extended by several 
iterations at the most. 

A special form of degeneration can be described as an oscillation of 
the value of the wk

r  component in the vicinity of a hyperplane. For 

example: in the k-th iteration for the r-th component of the point wk , the 

value ww A
r

k
r   is reached. In the normal course of the procedure, the 
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9already reached values on the hyperplane wA

j  or wB
j  do not change until 

the end of the procedure, which is not the case with oscillations: instead 
of www A

r
k
r

k
r  1 , the ww A

r
k
r 1  value close to wA

r  is obtained in the (k+1) 

iteration, while for some other component the boundary value ww A
t

k
t 1  

or ww B
t

k
t 1  is reached. In one of the following iterations, the value of 

wA
j  is reached again for the r-th component, but wedging can also occur. 

The oscillation can also be repeated on the same hyperplane, when the 

ww A
r

k
r 1  differences also decrease. Apart from increasing the number 

of iterations, the oscillations do not affect the final solution, and the 
wedging is removed in the described way.  

Partial stability of solutions 

The stability of the MADM solution – the variant Ip));w(;w(| sV pp   

is defined in relation to all other variants }p{\Iq);w(;w(| sV qq   and 

represents the set of points Ew E p   for which it is 

}p{\Iq;Ip);w()w( ss qp  . 

The partial stability of the solution ))w(;w(| sV pp  is determined in 

relation to one of the other variants }p{\Iq;V q  : The solution 

))w(;w(| sV pp  is stable in relation to the solution ))w(;w(| sV qq  for all 

points Ew E pq   for which the function of partial stability is: 

qp,Iq,p;)w()w()w( ssh qppq  0 ,                                   (42) 

that is, if it is 1)w()w( ss qp . For ss M
q

m
p  , the solution ))w(;w( s p  is 

stable in relation to the solution ))w(;w( sq  at each point Ew  (Figure 

1a) and therefore the determination of partial stability makes sense only if 

 SS qP , ie, if ssss M
q

m
p

m
q

M
p   (Figure 1: b,c,d,e). The function 

)w(hpq  is concave or convex, continuous and differentiable on the 

convex set E , and the local extreme is also the global extreme. 

The set of values of the function is  ]};[{ hhhS M
pq

m
pqpqpq  for 

Iq,p   and  qp   or the line segment hh M
pq

m
pq ; . 
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3 The extremes of the function )w(hpq  follow from the function 

development hwh k
pq

k
pq )( 11    into the Taylor's polynomial of the first 

degree (12):  k
pq

k
q

k
p

k
pq )( ssh 1 , where Css k

q
k
p  . The auxiliary 

function of  k
pq , according to (13,21), is equal to: 

   )t,r(;)( zgzgg k
)t,r()t,r(

k
)t,r(pq

k
)t,r(

k
)t,r(q)t,r(

k
)t,r(p

k
pq .      (43)  

 
Figure 1 – Possible relations of the set of function values )w(si  of  two variants  

Рис. 1 – Возможные отношения множеств значений функций )w(si двух 

вариантов  
Слика 1 – Могући односи скупова вредности функција )w(si  две варијанте 

 

The values of the function gradient components )w(hpq  in the 

nodes )t,r(  are: 












])t,r[(,tr;

)t,r(;
k

kk
)t,r(q

k
)t,r(pk

)t,r(pq

gg
g




0
                                              (44) 

and the elements are antisymmetric matrices 

nxn
k

)t,r(pq
k
pq

k
pq )()( gGwG  . To determine the extremes, it is sufficient to 

determine the points of weight w  in which the nonlinear auxiliary function 

)w(pq  (43) has extreme values, and then the corresponding TOPSIS 

solutions. Starting from an admissible solution (let that be the solution at 
the starting point );( hw pq

00 ), by applying the presented procedure for 

determining the extremum of the function )w(si  (27-41) and by 

calculating the values gk
)t,r(pq  (22, 44), d Ak

r , d Bk
t  and d k

)t,r(  (9, 17) in 

a
Sq  

b

d

1 0 

si

sM
qsq

0sm
q Sq

sm
p S p sM

ps p
0sm

p

c 

e
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9each iteration, the extreme solutions of );( hw m

pq
m 0  and );( hw M

pq
M 0  

are obtained. 
The separating hyperplane of the value set of the function Ch R

pq   

is defined by any value8 of the hChC MRmR |h   function and divides 

the value set of the function  ]};[h{S hh Mm  into two subsets: 

S}h|h{ ChS Rm   and S}h|h{ ChS RM  , where SSS    

and   SS . An acceptable approximate value of the function in the 

vicinity of the separating hyperplane of CRh   is: 

...,,k];C
C R

C[Ch 210  ,                                                       (45) 

where  C  is a low value parameter (e.g. 5105  C  or less). The 
procedure for determining the set of solutions on the separating 
hyperplane of )C;w( hC   has several phases, where it is determined: 
the set of 2n boundary solutions and their extremes; basic boundary 
solutions for ChC   (if any) or basic solutions that are closest to the 

current hyperplane wA
j  or wB

j ; and, a set of solutions for ChC   on the 

set EEC  . Accordingly, the partial stability of the variant V p  with 

respect to V q  is achieved for all points of Ew  with the corresponding 

)))h(;w( S  0  solutions. 

Boundary solutions  
Boundary solutions are a set of solutions on one hyperplane of the 

set E  ( wA
j  or wB

j ). On the hyperplane wA
j , these are );( hw aa   solutions 

for the points ),,,,( wwwww a
n

A
j

aaa 


   1  (due to unambiguous 

indexing, additional Jn, 1  marks are introduced). If condition (7) is 
met, then there is at least one boundary point with the component 

ww Aa



  .  

Based on the relative independence of the variables 00 z )j,(   (18) 

and the built-in normalization condition (19) in each node, the wa
  

                                                 
8 In the following text, the "pq" indices were used only if it was necessary due to 
unambiguity. 
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3 component is determined on the basis of any starting point Ew  - let 

that be the point w0 : the choice of variables 000  dz )j,()j,(   eliminates 

the active constraint of the  -criterion 00 10  dd AA
  and achieves the 

required condition: 
00

1
0  

 )j,(;dz Anj
j )j,( . Nodes )j,(  and the 

corresponding variables 000  dz )j,()j,(   (the   row  of the matrix T 0 ) 

can be chosen at will until the specified condition is met, or preference 
can be given to a node in which }{max ddz )j,(j)j,()j,(

000
  ; if it is 

fulfilled that dz A
)j,(

00
  , then also ww Aa



  , otherwise the procedure 

should be continued by selecting a next node from the   row  of  the  
matrix T 0  and by adding the necessary difference, until it is fulfilled that 

dz Anj
j )j,(

0
1

0
  

 . 

 
Figure 2 – Overview of the procedure for determining the basic solutions on hyperplanes 

Рис. 2 – Обзор процедуры определения базовых решений на гиперплоскостях 

Слика 2 –  Приказ поступка одређивања основних решења на хиперравнима 
 

Practically, in all rows of the matrix G0  except in the   row, 

}{\Jj;Jj;g )j,j(  100
1  should be set and in the active nodes )j,(  

the values of 000  dz )j,()j,(   should be determined until the condition 

w0


w M,a 2  
h  

w kM,a

w C,b

wA
  

w m,a 2

w M,a  

w m,a  

CRh  

w ,b 1

w m,b

w M,b
wM

wCk

wm

w ,a 1  

w k,a


w ,b 2  

wB
  

w0

ww C,akm,a  

w

hM  

hm  

w ,a 2


w ,a 2
 C

RC 
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dz Anj
j )j,(

0
1

0
  

  is fulfilled. By applying expression (2-4) for the point 

ww ,aa 1  , the TOPSIS solution );( hw ,a,a 11   is obtained. In the same 

way, the solution of );( hw ,b,b 11   on the hyperplane wB
j  was obtained by 

eliminating the active constraint 00 10  dd BB
  based on the choice of 

the variable 000  dz ),j(,,j(   from which the dz Bnj
j ),j(

0
1

0
  

  (the   

column of the matrix T 0 ) was obtained. 

Extreme solutions on the hyperplanes wA
j  and wB

j  (extreme 

boundary solutions) are the exact solutions at the vertex of the set E  
and are determined by applying the presented method for the extremes 
of the function )w(s . The starting point is the obtained solutions on the 

hyperplanes: e.g. for the hyperplane wA
j , the initial solution is 

);( hw ,a,a 11  ; the component ww A,a  



1  retains its value, which requires 

that the nodes that affect its value must become inactive. 
From the starting point w ,a 1 , the most favorable direction is chosen 

in accordance with the characteristics of the active nodes (the set 1
  for 

the minimum or the set 1
  for the maximum) that are not in the   row 

and the   column of the matrix T1 : set 011  gg ),j()j,(   for all nodes (r,t) 

in the row of   and the column of  , and the further procedure for 
determining the extremes );( hw m,am,a  (min) and );( hw M,aM,a  (max) is 

identical to the procedure shown for determining the exact extreme 
solutions of the function )w(s  (27-31). The interval of the value of the 

function ];hh[ M,am,a   on the hyperplane wA
  cannot be greater than the 

interval of the extremum of the function )w(h : hhhh mMm,aM,a   , 

Figure 2. In the same way, the extreme solutions on the hyperplane wB
  

are determined. Extreme boundary solutions (maximum 4n solutions), 
among which are the extreme solutions )w(h  of the function, are unique 

in terms of the corresponding points w  and the values of the  function 

)w(h . Not all extreme points ( w m,a  and w M,a ) are linearly independent; 

by eliminating the linearly dependent points, a set of points wv  is 

obtained which are the vertices of the set E . 
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3 System of basic solutions for the separating hyperplane 

CRh   

A system of basic solutions (SBSC) is established for the value of the 
function Ch  , which contains 2n basic solutions: n solutions 

)C;( hw C,aC,a   and n solutions )C;( hw C,bC,b  . These are the basic 

boundary solutions for the point w C,a  if ww AC,a



   (or w C,b  for 

ww BC,b



  ) or the basic non-boundary solutions that are closest to the 

current hyperplane wA
  or wB

  with ww AC,a



   or ww BC,b



  : 

a) On the hyperplane wB
  (or wA

 ), there is an edge solution 

);( Chw Rbb   (Figure 2, hyperplane wB
 ) because it is hCh M,bRm,b    

and it is determined by repeatedly halving the segment ];[ ww M,bm,b   

until it is achieved that it is Ch C,b  . The segment ];[ ww M,bm,b   is 

halved for the point www M,bm,b,b ..  50502    as well. The TOPSIS 

solution, in general, has the value Ch ,b 2 ; in the next iteration, the 

segment of the interval in which CRh   ( ];[ ww ,bm,b 2  or  ];[ ww M,b,b  2 ) 

is halved and the TOPSIS value is calculated, etc. The procedure is 
interrupted when ][ C

Rkk,b CCh    is obtained in the k-th iteration 
and that solution is accepted as the basic boundary solution 

];[ hw C,bC,b  ; for a larger number of iterations, a smaller absolute error 

 
C

C,bRk
C || hC   was obtained. 

b) On the hyperplane wA
  (or wB

 ), there is no solution 

);( Chw Raa   because ];[ hhC M,am,aR  . To achieve the Ch   value, 

the point wa  cannot have a value of ww Aa



  , but a value of ww Aa



  . 

These solutions are not boundary based on ww Aa



  , but are closest to 

the hyperplane wA
  (basic non-boundary solutions). The position of CR  

can be hC m,aR   (as in Figure 2) or hC M,aR  . For the situation in 

Figure 2, in order to determine the ww Aa



   component, the point 

ww A,a



 2  is first determined by iterative halving of the segment between 

two known points at which there is a solution with CRh  until the value 

Ch k,a   is reached: for 
C

Rm,a Ch   value Ch R,a 2  it is on the 



 

519 

Đ
uk

ić
, R

., 
P

ar
tia

l s
ta

bi
lit

y 
of

 m
ul

ti 
at

tr
ib

ut
e 

de
ci

si
on

-m
ak

in
g 

so
lu

tio
ns

 fo
r 

in
te

rv
al

 d
et

er
m

in
ed

 c
rit

er
ia

 w
ei

gh
ts

 -
 th

e 
pr

ob
le

m
 o

f n
on

lin
ea

r 
pr

og
ra

m
m

in
g,

 p
p.

48
8-

52
9segment ];[ ww m,am  , and for 

C
RM,a Ch  , on the segment 

];[ ww MM,a . From the point w ,a 2 , for the constant value w ,a 2
  (in the 

row of   and the column of   the matrix G2 , set 022  gg ),j()j,(  ) and 

determine the minimum );( hw m,am,a 22  . If the obtained solution does not 

satisfy condition (45) and if it is 
C

Rm,a Ch 2 , by repeatedly halving 

the new segment ];[ ww m,am,a  2 , a new point w ,a 3  and a minimum 

);( C
Sm,am,a Chw  33  are obtained, etc. The procedure ends when the 

solution )C;()C;( hwhw C,aC,akm,akm,a    is obtained in the k-th 

iteration, from which it is not possible to further move the point w km,a  

towards the hyperplane wA
  provided that Ch  , which determines the 

basic non-boundary solution );()C;( hwhw C,aC,akm,akm,a    (based on 

other weight components }{\Jj;w j  , these solutions can also be 

boundary) 9. 

On the hyperplane wA
 , if 

C
RM,a Ch  , the procedure for 

determining the solution is similar: the segment ];[ ww MM,a  is 

considered; the relevant points are wM  and w kM,a ; the non-boundary 

solution is );()C;( hwhw C,aC,akM,akM,a   . 

The presented procedure yields n solutions );( hw C,aC,a   and n 

solutions );( hw C,bC,b   that make up the SBSC for the value of the 

function  C
RCh  . Due to the components   of the points w C,a  and 

w C,b , the points of solution w  in SBSC are mutually linearly 

independent. 
A set of solutions for the separating hyperplane CRh  : From SBSC 

linear combinations of the weight points w C,a  and w C,b , countless new 

                                                 
9 In the numerical example, the solution );( hw ,bb 0044   is the basic non-boundary 

solution because ).().( ww Bb 1830016810 4
4

4   although E\Ewb 4  is a boundary 

point due to 099001
4

1 .ww Ab  . 
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3 weight points can be obtained  based both on them and on the solutions 

with Ch  : 

Jj;; nj
j

b
j

nj
j

a
j

bjnj
j

b
j

ajnj
j

a
j

ab www   









 11111  ,             (46) 

where all coefficients 0 b
j

a
j ,  are not equal to 0, and can be selected 

according to different criteria. Due to the nonlinearity of the )(h wab  

function, by using the points wm  and wM  and/or other known points, a 

satisfactory solution );( hw C,abC,ab  can be determined by the line search in 

the vicinity of the point wab . 

The procedure completely defines the set of all solutions of the 
function )w(h  (graph of the function): based on the most 4n extreme 

boundary solutions (whose points w  are not linearly independent), a set 

of linearly independent points wv  is singled out, which are also all 

vertices of the set E . Other TOPSIS solutions can be determined on the 

basis of linear combinations of points on the vertices of the set E . For 
each criterion Jj  and any value ],[ www B

j
A
jj , weight points can be 

determined for which the function )w(hpq  has a maximum and minimum 

value, as well as points w  for all values of the function from that interval. 
If some values of the weight point components are set to a 
predetermined and allowable value (maximum n-2 values), it is possible 
to determine the solution for the required value of C)w(hpq   based on 

the parameters of the remaining active nodes. By combining multiple 
SBSC solutions for different ];[ hhC M

pq
m
pq  values, solutions with a 

range of ];[ CChpq
 21  values and stricter criteria for weight component 

values can be determined. 

Numerical example 

By applying the TOPSIS method to the MADM problem given by the 

initial matrix },j,,i;{C cij 6151  , for the weight point w 0  and the 

coefficients of the linear combination ).;.;.(,p 1636026470571706   for 

 ,,p 21 , the basic solution was obtained: the variant V 2   

).;( sw 620900
2

0   and the rank VVVVV 41532   (1-5) (Table 2). 
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Table 2 – Criteria Matrix, basic solution and extreme solutions  
Таблица 2 – Матрица критериальных значений, базовые решение и 

экстремальные решения 
Табела 2 – Матрица критеријумских вредности, основно решење и екстремна 

решења 

       j 
     i 

criteria )w(si
0  

(rank)
)( ws m

i  )( ws M
i  

)(K 1  )(K 2
 )(K 3  )(K 4 )(K 5 )(K 6

va
ria

nt
s 

V1  415 85 1112 60 1.42 11.9 0.4348 (4) 0.4107 0.4645 

V 2  432 94 970 35 1.71 15.2 0.6209 (1) 0.5846 0.6518 

V 3  405 77 1015 55 1.88 14.6 0.6058 (2) 0.5812 0.6366 

V 4  352 62 1055 54 1.06 13.8 0.3522 (5) 0.3248 0.3838 

V 5  328 78 1045 38 1.43 17.5 0.4997 (3) 0.4717 0.5214 

w A  0.099 0.132 0.237 0.147 0.208 0.088 
Set of function values )w(si  

 

w B  0.134 0.161 0.273 0.183 0.241 0.105 

w 0  0.112 0.144 0.258 0.167 0.223 0.096 

d A
j

0  0.013 0.012 0.021 0.020 0.015 0.008 

d B
j

0  0.022 0.017 0.015 0.016 0.018 0.009 

d AB
j

 0.035 0.029 0.036 0.036 0.033 0.017 

 
Table 2 provides data for the weight range limits wA

j  and wB
j , the 

initial active limits d A
j

0  and d B
j

0  (9) for 0k , and the extreme values of 

)w(s m
i  and )w(s M

i . Based on the characteristics of the formed nodes 

(Table 1), exact extreme solutions were obtained at the vertices of the 

set E  (27-31, 2-4) when the optimality criterion (33) was met, regardless 
of the convexity or concavity of the function. The variant V 2  is slightly 

better than the variant V 3 , but in the conditions of interval given weights, 

the ratio of their extreme values is ).().( ss mM 5812065180 32   and 

).().( ss Mm 6366058460 32  , which shows that the sets of values of 
functions partially overlap and require testing the stability of solution 

))w(;w(| sV 22  in relation to the solution ))w(;w(| sV 33 . 
The solution V 2  is stable with respect to V 3  for 

03232  )w()w()w( ssh , . For the function )w(h  (42), extreme 

solutions are determined (which are on the vertices of the set E , in 

si

V 4 V 5
V 3

V 2
V 1

0.3 0.4 0.5 0.6 0.7 
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3 accordance with (7)), where, except for the component w3 , all other 

components w j  have values of one of the limits of the weight interval, 

Table 3. The set of values of the function is 

]}.;.[{ hS ,, 05570029803232  , in the point w M  the largest difference of 

TOPSIS values of the variants V 2  and V 3  ( 0557032 .)( wh M
,  ) is 

achieved, while in the point w m
the variant V 3  is "better" than the variant 

V 2  ).)(( wh m
, 0298032  . 

 
Table 3 – Extreme solutions of the function )w(h ,32  

Таблица 3 – Экстремальные решения функции )w(h ,32  

Табела 3 – Екстремна решења функције )w(h ,32  

 w0
1  w0

2  w0
3  w0

4  w0
5  w0

6  )w(s2 )w(s3  )w(h ,32  

w m  0.0990 0.1610 0.2640 0.1470 0.2410 0.0880 0.6009 0.6307 -0.0298 

w M  0.1340 0.1320 0.2550 0.1830 0.2080 0.0880 0.6425 0.5868 0.0557 

 
For each hyperplane ww aA

j

  and ww bB

j

 , boundary solutions 

and extreme boundary solutions ( 244 n  solutions) are determined, 
whereby the individual extreme boundary solutions are identical to each 
other or identical to the extreme solutions of the function )w(h . On the 

segments ];[ ww M,am,a   and ];[ ww M,bm,b  , the basic boundary 

solutions for the separating hyperplane ]C
C R

C[Ch   (45) and for 

the reference value of the function 0CR  (if any) are determined, or the 
basic non-boundary solutions are determined. In order to determine only 
solutions with positive values of the function 0h , due to partial stability 

and S}h|h{ ChS RM  0 , a modified expression (45) was 

applied: ]C
R

C[ChC  . 

The obtained basic solutions are also boundary solutions based on the 
current hyperplane because ww A,a



 0  or ww B,b



 0 , except for the solution 

for the point w ,b 04  which is not a boundary solution based on the hyperplane 

wB
4  because ww BC,b



   (non-boundary basic solution) and 

1830016810 4
04

4 .. ww B,b  . In general, according to the definition of the 
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9boundary solution, the solution w ,b 04  is a boundary solution based on other 

hyperplanes, because 99001
04

1 .ww A,b   and 161002
04

2 .ww B,b   (Table 

4)10.  
 

Table 4 – System of basic solutions for the separating hyperplane 0)w(h  

Таблица 4 – Система базовых решений для разделения гиперплоскостей 0)w(h  

Табела 4 – Систем основних решења за хиперраван раздвајања 0)w(h  

      w  

    j 
w ,a 01

 w ,b 01
 w ,a 02

 w ,b 02 w ,a 03 w ,b 03 w ,a 04 w ,b 04 w ,a 05 w ,b 05 w ,a 06
 w ,b 06

 

1 0.0990 0.1340 0.1075 0.1106 0.1175 0.1053 0.1300 0.0990 0.1140 0.1073 0.1117 0.1116 

2 0.1495 0.1532 0.1320 0.1610 0.1511 0.1503 0.1353 0.1610 0.1527 0.1489 0.1505 0.1505 

3 0.2681 0.2418 0.2699 0.2509 0.2370 0.2730 0.2719 0.2482 0.2679 0.2528 0.2607 0.2438 

4 0.1613 0.1567 0.1532 0.1644 0.1593 0.1603 0.1470 0.1681 0.1573 0.1620 0.1600 0.1600 

5 0.2251 0.2263 0.2353 0.2250 0.2301 0.2232 0.2127 0.2404 0.2080 0.2410 0.2291 0.2291 

6 0.0971 0.0880 0.1021 0.0880 0.1050 0.0880 0.1031 0.0881 0.1002 0.0880 0.0880 0.1050 

)w(h  0.00002 0.00001 0.00004 0.00000 0.00003 0.00001 0.00003 0.00003 0.00004 0.00004 0.00000 0.00004 

s2=s3 0.6091 0.6188 0.6238 0.6089 0.6174 0.6092 0.6139 0.6122 0.6007 0.6222 0.6150 0.6153 

 
It is shown that the function )w(h  between the points of the weight 

of the basic solutions is concave or convex: between the points w ,a 01  and 

w ,b 01  the function is convex, and between the points w ,a 02  and w ,b 02  the 

function is concave. Due to the values of the   weight components ( wa
  

and wb
 ), all points of the basic solutions w ,a 0  and w ,b 0  are linearly 

independent and their linear combinations give innumerable new weight 
points in the environment of the separating hyperplane. By applying 

expression (46) for 12121 /n/b
j

a
j   , the solution is obtained:  

).;.;.;.;.;.(wab 095102266015910257201497011230 ; 

000050000300
32 ..)( C

ab
, wh    and 6139032 .)()( wsws abab  . The 

solution does not need to be corrected in accordance with other known 

                                                 
10 For 5105  C  and the calculation of one basic boundary solution for which ww aA

j

  

or ww bB
j


  about twenty iterations were required, and for the non-edge solution wb4  - 

about forty iterations.  
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3 points, for example in accordance with the extremes of the function or the 

boundary extreme solutions, because  C
ab

, )( wh 32  and the solution 

);( hw ab
,

ab
32  can be accepted in accordance with condition (45). The 

fulfilled condition (45) can also be a consequence of the concavity or 
convexity of the function on the segments between the points of the basic 
solutions. 

 
Table 5 – Vertices of the set E  

Таблица 5 – Вершины множества E  

Табела 5 – Врхови скупа E  
 

vw  w1  w2  w3  w4  w5  w6  )w(h v  

1w  0.0990 0.1610 0.2640 0.1470 0.2410 0.0880 -0.0298 

2w  0.0990 0.1610 0.2470 0.1470 0.2410 0.1050 -0.0294 

3w  0.0990 0.1610 0.2730 0.1470 0.2320 0.0880 -0.0283 

4w  0.1090 0.1610 0.2370 0.1470 0.2410 0.1050 -0.0269 

5w  0.1060 0.1610 0.2730 0.1470 0.2080 0.1050 -0.0216 

6w  0.1340 0.1610 0.2370 0.1470 0.2330 0.0880 -0.0194 

7w  0.1020 0.1320 0.2730 0.1470 0.2410 0.1050 -0.0111 

8w  0.1340 0.1320 0.2730 0.1470 0.2090 0.1050 0.0040 

9w  0.0990 0.1610 0.2370 0.1830 0.2303 0.0897 0.0207 

10w  0.1230 0.1610 0.2370 0.1830 0.2080 0.0880 0.0337 

11w  0.1190 0.1320 0.2370 0.1830 0.2410 0.0880 0.0416 

12w  0.0990 0.1320 0.2730 0.1830 0.2080 0.1050 0.0467 

13w  0.1160 0.1320 0.2730 0.1830 0.2080 0.0880 0.0512 

14w  0.1340 0.1320 0.2370 0.1830 0.2090 0.1050 0.0550 

15w  0.1340 0.1320 0.2380 0.1830 0.2080 0.1050 0.0554 

16w  0.1340 0.1320 0.2550 0.1830 0.2080 0.0880 0.0557 

 
Some of the weight components do not have to be given intervally 

but as discrete values (maximum n-2 components), which also enables 
the determination of a set of solutions for a certain value of the function 
and the definition of the separating hyperplane. For example, if the 
weight point is )(w w j  with the components ww jj

0  for 321 ,,j   and 

the components ],[ www B
j

A
jj  for 654 ,,j   (according to Table 2), and 
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9the required value is 0500032 .)w(h ,   (to ensure a significant “advantage” 

of the variant V 2  over V 3 ), althhough 055703232 .)w( hh M
,,  , such a 

solution does not exit because the maximum possible value of the 
function for these conditions is equal to 0421032 .)w(h ,  . For a smaller 

value, for example for 0400032 .)w(h ,  , there is a set of basic boundary 

solutions, and linear combinations of points of difficulty of these solutions 
determine other solutions that meet condition (45). One of these 
solutions is: ).;.;.;.;.;.(wab 090002132018280258001440011200 ; 

0400032 .)( wh ab
,  ; 627802 .)( ws ab   and 587803 .)( ws ab  . 

From the set of points w  for the extreme boundary solutions ( w m,a , 

w m,b , w M,a  and w M,b ), which are not all linearly independent, linearly 

independent points wv  are singled out and all vertices of the set E  are 

determined by them (16 vertices of the set Ewv  are obtained, Table 5). 

This completely describes the set of definitions of the function E , which 
with TOPSIS values of the function, represents a complete graph of the 

function })w(,Ew|);w{( Shh ,,,h 3232
7

32   . Knowledge of function 

graphs enables determination of sets of solutions complying with specific 
requirements in accordance with the stated limitations, which exceeds 
the goal and scope of this work. 

Conclusion 
The initial idea of developing a concept for testing the stability of the 

solution of the MADM problem (best variant and the corresponding 
quantitative indicator of the quality of the variant according to the chosen 
MADM method) in relation to other solutions (variants) and variable 
criteria weights was operationalized only through the examination of 
partial stability in relation to some other solution - one variant. The 
problem of determining the set of solutions of partial stability is set as a 
problem of NLP with the aim of finding feasible solutions that meet the 
conditions from the definition of partial stability. The TOPSIS method with 
parameters and interval-given criteria weights was considered as a basis, 
which defined the reference function as nonlinear and differentiable, in 
the presence of a normalization condition for arguments (weight 
components). 



 

526 

 
 V

O
JN

O
T

E
H

N
IČ

K
I G

LA
S

N
IK

 / 
M

IL
IT

A
R

Y
 T

E
C

H
N

IC
A

L 
C

O
U

R
IE

R
, 2

02
0

, V
ol

. 6
8,

 Is
su

e 
3 The created NLP model contains a nonlinear objective function, 

linear constraints based on the nature of the arguments (values: from - 
to) and the normalization condition for the arguments. An appropriate 
method was not known for solving the set NLP task, and therefore an 
attempt was made to solve the problem by introducing the nodes of 
argument (criteria) pairs and by defining their parameters. This ensures 
the normalization condition in each node and for each feasible point, non-
negativity of variables and independence of variables in nodes, within the 
limits of active constraints. Node parameters were applied to determine 
the extremes of the function, the extremes on the hyperplanes of the set 
of arguments and other feasible solutions needed to determine the partial 
stability of the MADM solution, as well as to eliminate the consequences 
of accompanying degeneration (wedging and oscillation of the solution).  

The presented procedure for determining the extremes of a given 
NLP problem differs from the basic gradient method in applying nodes 
parameters, choosing favorable directions, determining improved 
solutions, as well as in the procedure of linear search for the point of 
difficulty for an improved TOPSIS solution. The well-known and applied 
line search procedure can be replaced by another, for example, the 
"golden ratio" procedure, if this would contribute to the reduction of the 
procedure. 

The procedure can be applied to other MADM methods with a 
nonlinear reference function, as well as to the class of NLP problems with 
conditional optimization, in which the mathematical model contains a 
nonlinear and on the whole set of arguments differentiable objective 
function, natural linear constraints and the normalization condition for 
variables. The procedure is robust and requires a larger number of 
calculations, so adequate software support would increase the 
possibilities of application. 
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ЧАСТИЧНАЯ УСТОЙЧИВОСТЬ МНОГОАТРИБУТИВНОГО 
ПРИНЯТИЯ РЕШЕНИЙ ПО ИНТЕРВАЛЬНО ЗАДАННОМУ ВЕСУ 
КРИТЕРИЯ − ПРОБЛЕМА НЕЛИНЕЙНОГО 
ПРОГРАММИРОВАНИЯ 

Радомир Р. Джукич 

независимый исследователь, г. Крушевац, Республика Сербия 
 
РУБРИКА ГРНТИ: 27.00.00 МАТЕМАТИКА; 
                               27.47.19 Исследование операций 
ВИД СТАТЬИ: оригинальная научная статья 

Резюме: 

Введение/цель: В статье представлена разработанная процедура 
для решения класса задач нелинейного программирования (НЛП) с 
нелинейной и дифференцируемой целевой функцией, линейными 
естественными ограничениями и условием нормализации 
переменных (аргументов). Процедура была применена для 
определения частичной устойчивости решения задач 
многоатрибутивного принятия решений. 

Методы: Основой процедуры является определение узлов пар 
аргументов и их параметров для допустимых многомерных точек. 
Параметры внедрены в примененном градиентном методе, 
методе возможных направлений и методе линейного поиска. При 
разработке процедуры были использованы основы метода TOPSIS 
как метода для многоатрибутивного принятия решений с 
интервально заданными критериями веса, в первую очередь из-за 
нелинейности в вызове функций. 
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3 Результаты: Также разработана процедура определения 

экстремальных и других допустимых решений при вызове функций 
(маргинальные и базовые решения) и всех вершин выпуклого 
множества определения функции. Таким образом сформирован 
полный график функции, т.е. определены требуемые решения из 
допустимого множества. Разработана процедура установления 
множества решений для определения разделяющей 
гиперплоскости множества значений функции; благодаря чему в 
отдельных случаях множество решений частичной устойчивости 
варианта определяется как решение многоатрибутивного 
принятия решений. Были предложены соответствующие  
процедуры для устранения отклонений в процедуре (заклинивание  
и колебание решений). 

Выводы: Данное исследование является значительным вкладом в 
определение узлов аргументов и их параметров, которые 
обеспечивают условия нормализации в каждом узле и для каждой 
допустимой точки, неотрицательность переменных и 
независимость изменений аргументов в узлах в рамках активных 
ограничений. Разработана оригинальная процедура определения 
графов функций. Приведены соответствующие реальные 
числовые примеры. 

Ключевые слова: веса критериев, узлы пар аргументов, 
градиентный метод, метод возможных направлений, система 
базовых решений, метод многоатрибутивного принятия 
решений, частичная устойчивость решений. 

ПАРЦИЈАЛНА СТАБИЛНОСТ РЕШЕЊА ВИШЕАТРИБУТНОГ 
ОДЛУЧИВАЊА ЗА ИНТЕРВАЛНО ЗАДАТЕ ТЕЖИНЕ 
КРИТЕРИЈУМА ‒ ПРОБЛЕМ НЕЛИНЕАРНОГ ПРОГРАМИРАЊА 

Радомир Р. Ђукић 

самостални истаживач, Крушевац, Република Србија 
 
ОБЛАСТ: математика, нелинеарно програмирање 
ВРСТА ЧЛАНКА: оригинални научни рад 

Сажетак: 

Увод/циљ: У раду је приказан пројектовани поступак за решавање 
класе задатака нелинеарног програмирања (НЛП) са нелинеарном 
и диференцијабилном функцијом циља, линеарним природним 
ограничењима и нормирајућим условом за променљиве 
(аргументе). Поступак је примењен за одређивање парцијалне 
стабилности решења проблема вишеатрибутног одлучивања 
(ВАО). 
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9Методи: Основ поступка представља дефинисање чворова парова 

аргумената и њихових параметара за допустиве 
вишедимензионалне тачке. Параметри се имлементирају у 
градијентни метод, метод повољних праваца и метод линијског 
тражења. У развоју  поступка коришћени су основи метода 
ТОПСИС за ВАО са интервално задатим тежинама критеријума, 
првенствено због нелинеарности референтне функцје. 
Резултати: Разрађен је поступак одређивања екстремних и 
других допустивих решења референтне функције (рубна и основна 
решења) и свих врхова конвексног скупа дефинисаности функције. 
Тиме је формиран потпуни  график функције, на основу којег се 
могу одредити захтевана решења из допустивог скупа. Развијен је 
поступак одређивања скупа решења за дефинисање хиперравани 
раздвајања скупа вредности функције. На тај начин се, као 
специфичан случај, дефинише и скуп решења парцијалне 
стабилности варијанте као решења ВАО. За отклањање 
дегенерације поступка (заклињавање и осциловање решења) 
предложене су адекватне процедуре. 
Закључак: Најзначајнији допринос  овог  рада јесте дефинисање 
чворова аргумената и њихових параметара којима се осигурава 
нормирајући услов у сваком чвору и за сваку допустиву тачку, 
ненегативност променљивих и независност промена аргумената 
у чворовима, у границама активних ограничења. Такође, развијен је 
оригиналан поступак за одређивање графика функције и 
представљен одговарајући реалан нумерички пример. 
Кључне речи: тежине критеријума, чворови парова аргумената, 
градијентни метод, метод повољних праваца, систем основних 
решења, вишеатрибутно одлучивање, парцијална стабилност 
решења. 
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