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Introduction/purpose: The problem of divergencies in Quantum Electro-
dynamics (QED) is discussed.

Methods: The renormalisation group method is employed for dealing
with infinities in QED.

Results: The integrals in QED giving physical observables are finite.

Conclusions: The divergencies in QED can be treated in a consistent
way providing mathematical rigorous results.
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Renormalisation group

The quantum field brings together two fundamental notions of classical
and non-relativistic quantum physics: particles and fields. Forinstance, the
quantum electromagnetic field can be reduced to particles called photons,
or to a wave process described by a classical field. The same is true for
the quantum Dirac field, for electrons.

Quantum field theory, QFT for short, as the theory of interacting quan-
tum fields, includes the remarkable phenomenon of virtual particles related
to virtual transitions in quantum mechanics. For example, a photon pro-
pagating through empty space, the classical vacuum, undergoes a virtual
transition into an electron—positron pair. Usually, this pair undergoes the
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reverse transformation: annihilation back into a photon. This sequence of
two transitions is known as the process of vacuum polarisation. Hence the
vacuum in QFT is not an empty space, rather it is filled by virtual particle—
antiparticle pairs.

Another example is the electromagnetic interaction between two electric
charges, e.g. between two electrons. In QFT, rather than a Coulomb force
described by a potential, the interaction corresponds to an exchange of
virtual photons, which, in turn, propagate in spacetime accompanied by
virtual electron—positron pairs.

QFT calculation usually results in a series of terms, each of which rep-
resents the contribution of different vacuum polarisation mechanisms. Un-
fortunately, most of these terms turn out to be infinite.

The puzzle was resolved in the late 1940s, mainly by Bethe (Bethe,
1947), Feynman (Feynman, 1949a), Schwinger (Schwinger, 1948),
Tomonaga (Tomonaga, 1946) and Dyson (Dyson, 1949). These famous
theoreticians were able to show that all infinite contributions can be grouped
into a few mathematical combinations that correspond to a change of
normalisation of quantum fields, ultimately resulting in a redefinition, i.e.
‘renormalisation” of masses and coupling constants. Physically, this effect
is a close analogue of a classical “dressing process” for a particle inter-
acting with a surrounding medium.

The most important feature of renormalisation is that the calculation of
physical quantities gives finite functions of new “renormalised” couplings,
such as electron charge and masses, all infinities being swallowed by the
factors of the renormalisation redefinition. The “bare” values of mass and
electric charge do not appear in the physical expression. At the same time,
the renormalised parameters should be related to the physical ones, mea-
sured experimentally.

Dealing with infinities

Infinities are disturbing. In Nature infinities seldom happen. There are
“only” about 10%° atoms in the Universe. The Universe itself had a be-
ginning, but (as of 2021) it will expand forever to a state of thermodynami-
cally no free energy. Mathematics itself started using infinite numbers only
in 17t" century, and division by zero is invalid even in hyperreal numbers.

Yet in physics we have to deal with infinities even from classical electro-
magnetism. Consider a static electrical field generated by a single particle,
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say an electron e. Then we have
div £ = 6(r) . (1)

By symmetry arguments, we immediately obtain the electrical field g,

that is
- (&

= 2
£ 4mr? 2)
and computing the total energy of the field, proportional to its electromag-

netic mass men,

1 & 1 [ e \2, 5 e?
E=—-[d = - — ] 4 =
2/ ve 2 /r dr (47‘(7“2) i 87T 3)

one sees that becomes infinite as the electron radius r. goes to 0. In late
19" century, that meant that an electron needed infinite energy to be acce-
lerated.

When quantising the electromagnetic field, we are faced with another
divergence problem. Writing down the Hamiltonian of harmonic oscillators
for each radiation mode identified by (k, r)

S <ai(k)ar(k) i ;) (4)

we see that the energy of vacuum state |0) equals to 1 >, 3" fiw, which
is an infinite constant (wx = c|k|). This problem is usually dealt with by
shifting the Hamiltonian by this infinite value, as one has the freedom to
redefine the zero of energy scale.

During the development of quantum electrodynamics (QED) it was
discovered that many integrals were divergent (Dirac, 1927), (Dirac,
1934), (Heisenberg, 1934). Those were present in perturbative calcula-
tions involving Feynman diagrams (Feynman, 1949a), (Feynman, 1949b)
containing closed loops. Particles circulating in closed loops are called vir-
tual particles because they are off-shell, that is p?> # m?2. In a loop, their
momentum and energy are not determined and thus they have to be in-
tegrated over all values allowed by the whole 4-momentum conservation.
Such integrals are divergent, i.e. give infinite results. Divergencies that are
troublesome in quantum field theory are almost always due to large energy
and momenta i.e. ultraviolet divergencies — (UV), or conversely short dis-
tance behaviour.
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It is possible to give perfectly meaningful and rigorous results to this
divergent integrals in an ample class of theories, as we will see.

QED divergencies

We will now treat the divergencies given by loops present in quantum
electrodynamics. Recall that the Lagrangian is given by

L= PB4 Blin (0 — ieA") — m]v (5)

where FH = grFAY — 9V AH, ¢ is a 4 component Dirac spinor and e the
electric charge. Recall that under a gauge transformation L is invariant for
Y —epand A, — A, + 0,0

In order to perform the calculation, we will make use of the so—called
dimensional regularisation (Bollini, 1972), (Hooft, 1972). This technique
was introduced during investigation of the renormalisation of non Abelian
gauge fields. It consists of writing Euclidean Feynman integrals obtained by
means of a Wick rotation (Wick, 1954) zy — iz (i.e. with positive defined
metric 2% + 23 + 23 + z3) in a space with generic dimension D, and ma-
king an analytic continuation in D itself which assumes non—integer values.
Recalling that the volume of a D dimensional sphere Sp is

R xD/2
/ dPz = / drdQp r?' =RP ——— (6)
Sp 0 L (z+1)

i.e. Qp = 7P/2/T(D/2 + 1), one could infer that all possible divergencies
stem only from the Gamma function term. Eventually, we will get rid of
those infinities obtaining meaningful results.

As we are going to do our calculations in D dimensions, a few observa-
tions on the Lagrangian (5) are in order. One half spin spinors ¢ have the
dimension (1 — D)/2, while vector fields A, have the dimension (2 — D) /2.
Clifford algebra of v matrices retains the usual form

{'Yua 'YV} = 29;11/ (7)
while g,,, = diag(+1,—1,—1,... — 1). The coupling constant e is replaced
by

e — eplt=P)/2 (8)

1 being a mass parameter of dimensional regularisation. In Euclidean
space photon propagator becomes simply §,,,/p?, while the fermion pro-
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pagator is —i/(p + m). The vertex of two fermions and a vector becomes
—iept=D)/2

Vacuum polarisation

The first loop diagram of QED we consider is the so—called vacuum
polarisation diagram, i.e. the correction to the photon line, shown in Fig. 1.

q+p

p
Figure 1 — Vacuum polarisation diagram
Puc. 1 - Juaepamma nonspu3ayuu eakyyma
Cnuka 1 — Hujaepam nonapusayuje eakyyma

The expression for the loop is given by
dr 1 1
_ _(p,,(4=D)/2\2 p
Myula) = ~(en®™ PP [t ] @

where the minus sign comes because of the fermion loop, the trace is cal-
culated over v matrices. This will be rewritten in a more suitable form for
calculations

@Pp T+ g —m)(p—m)]

L (q) = _(€M(4D)/2)2/(2W)D [(p+ q)2 + m2?][p? + m?| (10)

From eq. (9), it is readily apparent that in D = 4 the integral is quadra-
tically divergent, with a sub-leading logarithmic divergent term. In fact, for
large p we have

A de 1 1 Ad Dfli AD72 11
D ~ pp- 5~ ~ (11)
2m)P p+qd+mp+m D

Let us introduce a trick due to Feynman for writing denominators, using

1 1 dzx
AB :/0 [(1—z)A+zB?" (12)
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We will now shift the integration variable with the Feynman parameter z
p'=p+qz. (13)
Plugging it back into eq. (10), we obtain

Huu(‘]) = _( (47D)/2)2X

4Py Tl + 41— 2) — m)(ff — g — m)]
/ / e+ i - ) - 04

By symmetry considerations, that is p’ — —p’, terms odd in p’ do not
contribute to the integral. For the trace in D dimensions of v matrices, we
have the following formulae:

Tr(’YM’YI/) = _2D/25uy (15)

and
Tr(v %Yo Yo0) = 222[0,0p0 + 0uo0up — Op00o] - (16)

Using these expressions, we will rewrite the trace of eq. (14) as follows
P10, — 4pdor (1 — )] Tr(v 7 707%0) + M Tr(yu) | (17)

remembering that the trace of an odd number of gamma matrices is zero.
Using egs. (15) and (16), we arrive at the following expression

2D/2{2pupy —2z(1 —2)(quqw — 5uvq2) - 5;”/[(]9/2 +m®+ qzx(l —z)|}, (18)

after having added and subtracted §,,,¢z(1 — z). We end up with the fo-
llowing integral, after dropping the prime for simplicity

(9) =

,m/
—(ept=D)/2) 2D/2/ / { 2pupy B
[p? +m? + ¢?x(1 — x)]?

2x(1 — 2)[quqy — 609"
R @2+m2+2x<1fx>}2}' 1o
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Integrating over the loop with the aid of egs. (67) and (69) shows that the
first two terms cancel out. Defining ¢ = (4 — D)/2, the integral reads
—€

€2

212

m? + ¢?x(1 — x)
27

1
1yu(0) = 50Nt — o) [ 1 =) |
(20)
As D approaches 4, we can expand eq. (20) in powers of . Noticing
that a small power is indistinguishable from a logarithm, namely,
¢ =1—celog(z) + O(?) (21)

and using the properties of the Gamma function illustrated in the appendix,
we can see that eq. (20) becomes

2
_ & _ N SR
,.(q) = 52 (quav — 0 q ){6 el
! m? + ¢®z(1 — x)
/0 dz z(1 — z)log { 22 } } +O(e) , (22)
where we have used the result of
1
/dmx(l—x):l. (23)
0 6

Properties of vacuum polarisation

A few remarks on formula (22) are in order. First of all, we have actually
checked out that thanks to dimensional regularisation and because of the
Gamma function properties of its singularities, the loop integral has only a
divergence given by a simple pole for D — 4, all other terms being finite.
The technique used when D approaches 4 is known by the name “epsilon
expansion” (Wilson and Kogut, 1974), very often employed in Statistical
Mechanics as well.

If just the finite part is considered, eq. (22) could be rewritten as

H,uz/(Q) = (Q,uqy - 5;wq2>ﬂ—(q2) (24)
where at one-loop order 7(¢?) is given by
2 1

)
2 0

m? + ¢?x(1 — x)

2y
W(q ) - 27‘(,&2

dz z(1 — x)log [ (25)

The form of eq. (24) shows that vacuum polarisation I1,,,(¢*) obtained
is also a Lorentz invariant as it should be, since all its parts are Lorentz
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invariant. It can be shown that this statement holds true to any order of
perturbation theory. It also obeys to the equation

¢ (4*) = 0 (26)

known as Ward—-Takahashi identity (Ward, 1950), (Takahashi, 1957). In
QED, this means that non—transverse photon polarisation can be consis-
tently ignored: a photon cannot acquire mass.

Observe also that vacuum polarisation depends upon a mass parameter
i, that is an energy scale.

Fermion propagator

Continue now to the computation to the correction of the fermion line
shown in Fig. 2

N U

Figure 2 — Fermion propagator diagram
Puc. 2 - [Juazpamma npornazamopa ¢hepMUOHO8
Cnuka 2 — [ujazpam nponazamopa ¢hepmuoHa

This diagram is usually denoted by X (p). As for the vacuum polarisation
graph, we will proceed with dimensional regularisation in Euclidean space,
for which

dPk (—i) )
S(p) = —(eu4-D)/2 2/ w o7
(p) = —(ep ) 2mP o rm R (27)
For Euclidean space, the Clifford algebra of gamma matrices has the
form

{’Yw'yu} = _25;w ) (28)
and rewrite the fermion propagator as

p+m P rm?
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Introducing the Feynman parameter integration as seen before , we
have

(4-D)/2y2,

X(p) = —i(ep
dPk w(zﬁ —F—m)v
/ dz / —xz)+ (p—k)2z +m2z)? (30)

Shift the integration variable as
K =k —px (31)

and plug it back into (30) obtaining

B APkl —z) — K —m)y,
=) = 24D/ / k’2+m2x+p z(l—x)]2" (32)

Because of symmetry, the terms linear in £’ vanish. The remaining terms
give

S(p) = —ie?ut”

' r(:52)

/0 dz yu[p(1 — x) —m]y, a 7r)2D/2
because of eq. (67).

Before expanding in ¢ = (4 — D)/2, we have to make use of gamma
matrices relations

p*z(l —z) + m*2] P92 (33)

VY = —D (34)
and
VYoV = (2 — (4 — D))Vp . (35)
In terms of ¢, eq. (33) becomes
2 1 2 2 —€
S(p) = —21’1;;(5)/0 da [p z( 47:22+m x] y
[p(1 —2) +2m —e(p(l —x) +m)] . (36)

Expanding around ¢ = 0 furnishes us with the result
2 2

Z](p):_;16 5(p +4m) + 862 [1p(1+’y)+m(1+2fy)+
! p?z(l —z) + m2x
/0 dx [p(1 — ) + 2m]log < pr )] +0O(e) . (37)
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Vertex correction

Last one—loop QED correction is the vertex correction shown in Fig. 3.

p

p+k

q+k

q

Figure 3 — Vertex correction diagram
Puc. 3 — [Juaepamma KoppeKyuu 8epuiuH
Cnuka 3 — [ujaepam Kopekuyuje eepmekca

Ty(p,q) = —i(ep=P)/2)3x
/ dPk 1 1 S

enP My m gk m R

(38)

This time, unlike in the previous cases, we have to deal with three pro-
pagators inside the loop, so this case is more complicated. It is necessary
to introduce two Feynman parameters, = and y, make use of the relation

1—x 1
:2/ dx/ dy
ABC 0 0 [Ay 4+ B(z —y) + C(1 — z)]°

and rewrite eq. (38) as

1-z D
Ly(p,q) = —2i(ep (4=D)/2y3 /dx/ dy/dk

'Yu(p‘i'% m)%(%—% m)y,

(k2 +m?(z +y) + 2k - (pz + qy) + p*x + ¢%y]>

Shifting the integration variable as follows
K =Fk+pr+qy

and plugging it back in the integral, eq. (40) becomes

1-z D
Ly(p, q) = —2i(ept=P)/2)3 /dx/ dy/dk

(39)

(40)

(41)
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Yok = gy + p(1 — ) = m)y,(F — pr + ¢(1 —y) —m)y, .

(k2 +m?(z +y) + p?r(1 — x) + ¢*y(1 — y) — 2p - qwy]? 42)

By inspection of eq. (42), the denominator goes like 1/k° for large k and
the numerator as k2, thus (42) behaves like

MaPk k2 5
[ G A )

and in D — 4 only the piece quadratic in k is problematic. Writing

To(p.q) =T (p,q) + TP (p, q) (44)

where Fﬁl)(p, q) contains only the quadratic part in k, we find using eq. (67)

Fp(paQ):_Z( ((;f;//z (4 D)/d:z: /1 ’

Y YoVp Vo Vv (45)
[m?(z +y) + p?a(l — 2) + ¢?y(1 — y) — 2p - quy](+-D)/2

for the divergent part and for the convergent part using eq. (69)

o =< (92) [as [

YWwlp(l —z) — gy — m],[¢(1 — y) — pz — m]7y,

[m2(x +y) + p?x(1 —2) + ¢2y(1 — y) — 2p - quy|(6-D)/2 "~

(46)

As eq. (46) is convergent, we are allowed to put directly D = 4 obtaining

1—x
Tp(p,a) = =i((en® /%)) 2/ dx/
Ywlp(l — ) — gy — m]y,[¢(1 —y) — pz —m

47
[m?(z +y) + p?*x(l —2) + ¢®y(1 —y) — 2p- q:vy] @7

For the divergent part, using the identity
Vo Vu VoV Vo = 2%Yp Y — (D — )Y (48)

together with eq. (35) allows us to rewrite eq. (45) in the form

11—z
Lp(p,q) = —iep” %8 sT(e)(1—¢) /dx/
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m?(z+y) + p?x(1 —2) + ¢?y(1 —y) — 2p - quy] °
5 , (49)
dmp

that is

e 11—z
Fp(p7Q):_leﬂ '7;)16 2{5_ —1—2/(11'/

log[ 2(z+y) +pPw(l — 47)”:;q y(1—y)—2p- qu“ (50)

Other one—loop diagrams

At the one-loop level for QED, we have to consider also diagrams with an
internal fermionic loop and an odd number of external photons, as shown
in Figs. 4 and 5, and one with four external photons as in Fig. 6.

Figure 4 — One external photon Figure 5 — Three external photons
Puc. 4 — OduH eHewHul ¢homoH Puc. 5 — Tpu sHewHux gpomoHa
Cnuka 4 — JedaH cnospawru gpomoH  Criuka 5 — Tpu criorpawiba pomoHa

Figure 6 — Feynman diagram for photon scattering

Puc. 6 — [Quaepamma ®eliHmaHa 015151 paccesiHusi hpOmMoHo8
Cnuka 6 — ®ejHmaHo8 dujazpam pacejarba homoHa

Fermion loops with an odd number of external photon lines vanish be-
cause of symmetry reasons. Consider such a diagram G,, with n points
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that can be written as

Gn = Trly,0)SF(T1, Tn)Vu(n)SF(Tns Tn—1)Vu(n-1) - - - Yu2)SF (22, 21)] (31)

where Sr(z;,z;) is the fermion propagator that connects points z; and z;,
where photon lines insert. From gamma matrices algebra, we recall the
existence of a matrix C' = iy~ such that transposes each gamma matrix:

CruC™l = -] (52)
Therefore, this relation holds true for the fermionic propagator as well
CSF(«T, y)Cil = SF(ya x)T ) (53)

where the inversion of coordinates in the propagator should be noticed.
Insert now the term CC~! between the propagators in eq. (51) and rewrite

Gn = (‘UnTl"[’YZu)SIZ(%m xl)V,:f(n) SE(@n-1, xn)’YZ(nq) E

’75(2)515(3717%2)] =
(—1)"T‘Y[WM(1)SF(.%'1, xn)’yu(n)SF(:Em xn—l)')/,u(n—l) ce-
’)’M(Q)SF($2,1'1)] . (54)

For odd n, therefore, G,, = —G,, so it implies G,, = 0. This proves the
statement, known as Furry’s theorem (Furry, 1937).

About the box diagram with four external photons depicted in Fig. 6, of-
ten referred to as a light-light scattering diagram, the internal loop is made
out of four fermions; therefore, for D = 4, it is expected to diverge like

A4 1
/ dp%wlogA. (55)

Luckily, this diagram is actually convergent after an explicit calculation.

Suppose that the box diagram was actually divergent. This would mean
that we are faced with new interactions among four photons, A,4, 4,4,
not present in the original Lagrangian (5). Because of gauge invariance,
this new term should be proportional to (F},,)*, implying a kinetic term with
more than two derivatives, possibly spoiling causality.
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Appendix
Gaussian and Feynman integrals
400
/ dzemoe® = [T (56)
S a

oo 2 T 2
/ dz e b7 — \/; e (57)

Momenta:

d 2n +00 . \/> 1
el —ax?+bx _ 172 — 1"

odd momenta are zero by symmetry.
In Euclidean D dimensions, we have:

/de exp(—az? + B -z) = <Z>D/2 exp (f;) . (59)

For the operators A and J, where x - A - x = x;A;;z; and J - x = J;;xj,
with repeated indices summed over:

e [@OV]E i
/OO/OO /oozl;lld:rZ e = [det(A)} e . (60)

An almost trivial yet very useful expression is the following:

1—1/%001 "L exp(—ad) (61)
T a o exp(—a

that allows us to combine propagators and Gaussian integrals.
Applying egs. (59) and (61) to the propagators written in Euclidean
space (i.e. k? = k2 + k?), one obtains:

_
k2 +m?2

/de M = /Omda /de; exp[—a(k? + m?)] =

_ / " da exploa(k? +m2)] (62)
0
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+o0o
TI'D/Q/ da o~ P72 exp(—am?) = #P/°1 <1 — g) m(P=2) (63)
0

1
dPr — = —
/ (k2 +m2)?

+o00o
7TD/2/ do o P2 Y exp(—am?) = #P/?T (2 - 12)) mP= (64)
0

D 1 1D2 D D—6

By induction, one obtains the formula for a generic power of a propaga-
tor:

D 1 _ _ppl (n— %) (D—2n)
/d k CETn =7 ) m . (66)

Let us now shift the integration variable k = &’ + p and insert it back into
eq. (66), obtaining

D 1 _ D/2F(”_%) (D—2n)
Jd Sy e e TS 0 B

By repeated differentation of eq. (67) 9/0p,, we obtain the expressions

dPk Ky _ ppl(n=%) (D=2n)(_p ) . (68)
K2+2p k+ (m2+p2))n Tn) Pu) -
and
dPk by =

(k2 +2p- k4 (m? +p?)"

mP/2 D 1 D
(D—2n) _ - _q1_ 2
() m {F <n 5 ) Pubv + 25WF <n 1 5 ) m ] (69)
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Riemann’s Gamma function
Riemann’s Gamma function is defined by the integral

I'(z) = /Ooodt 7 let (70)

for ®(z) > 0, which satisfies the recursive relation I'(z + 1) = 2I'(2), thus
having the property that for integer values I'(n) = (n — 1)! since I'(1) = 1.
Originally, the function was defined by Weierstrass as an infinite product

by the relation .
F(lz) = [ [(1+2) e 7] (71)
n=1

~ being the Euler—Mascheroni’s constant, v ~ 0.57721. From (71), it is
readily apparent that I'(z) is analytic except for negative integers z =
0,—1,-2,... where it has simple poles. It is also possible to obtain the
reflection formula

()T —2) = —~

(72)

sin z

that allows us to obtain the value {F(%)}2 = 7. Defining the function 1(2)

(or digamma) as the logarithmic derivative of I'(z), i.e.

'(z)

I'(2)

from the reflection formula it has the property that /(1 —z) —1(z) = 7 cot 7.
Subsequent derivatives are defined by the functions

P(z) = (73)

(net1)
6= () s (74)

that allows us to express the Gamma function near the simple poles z =
—n:

['(z) = n!((;lﬁnn) + (_1)%’25” L, + O(z +n) (75)
For integers n
Ynt1)= -7+ 1 =7+ Hy (76)
k=1

where H,, is a harmonic number, defined as seen above from the sum of
the reciprocal of integers, having the property that H,, ~ logn+~+1/(2n)+
O(1/n?) for large n.
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Another relevant formula related to the Gamma function is the asymp-
totic expansion, known as Stirling’s series:

: 1 1 139 571
T(z+1) = 27rz<z) [1++ -

12z ' 28822 5184023 248832024

o (2)] o

that can be computed from a saddle approximation of the Gamma function.
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Pesrome:

BeedeHue/uens: B daHHOU cmambe obcyxdaemcs rpobnema
pacxodumocmell 8 keaHmosol anekmpoduHamuke (QED).

Memodbi: B cmambe npumeHsirics memod peHopmMasiu3ayuo-
HHoU epynrbkl 8 pabome ¢ 6eckoHedHocmsamu 8 QED.

Pesynbmamei: UHmeepanbi 8 QED, darowue ¢husudeckue Ha-
brirodaembie 8e/UYUHbI, KOHEYHbI.

Bbi800s1: PacxoxdeHusi 8 QED MoxHO paccmampugams rocrie-
dosamernbHbIM 06pa3om, obecriequsasi cmpoaue Mamemamuye-
CKue pesynbmameil.

Krouesbie criosa: keaHmosasi ariekmpoduHamMuKa, KeaHmosasi
meopusi Nonsi, peHopManu3ayuoHHas 2pynna.

KBAHTHE ENEKTPOOVMHAMWYKE AMBEPIEHUUJE

Hukona ®abwnaHo

YHuBepautetr y beorpagy, VIHCTUTYT 3a HykneapHe Hayke ,BuHya“
- HaunoHanuu wuHctutyT Penybnuke Cpbuje, Beorpag, Peny6nuka
Cpbuja

OBNACT: matemaTtuka, humanka
BPCTA YJIAHKA: npernegHu pag

Caxemak:

Yeod/uurb: Y pady ce pasmampa npobnem ousepzeHuuja y
KeaHmMHoj enekmpoduHamuyu (QED).

Memode: Memoda peHopmMmanu3ayuoHe epyne Kopucmu ce 3a
pewasare beckoHadyHocmu 'y QED.

Pesynmamu: Unmeepanu y QED koju Oajy ¢husuyke orcepea-
bunHocmu jecy KOHa4yHUU.

Bakmwyuak: Pasnuke y QED moey ce mpemupamu Ha docriedaH
HaquH npyxajyhu cmpoze mamemamuuyke pesyrnmame.

KrbyyHe peuu: keaHmMHa enekmpolOuHaMuka, KeaHmHa meopuja
rnosba, peHopmarsusayuoHa spyna.
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