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Abstract:

Introduction/purpose: The running of the coupling constant in various
Quantum Field Theories and a possible behaviour of the beta function
are illustrated.

Methods: The Callan—Symanzik equation is used for the study of the
beta function evolution.

Results: Different behaviours of the coupling constant for high energies
are observed for different theories. The phenomenon of asymptotic free-
dom is of particular interest.

Conclusions: Quantum Electrodynamics (QED) and Quantum Chromo-
dinamics (QCD) coupling constants have completely different be-
haviours in the regime of high energies. While the first one diverges
for finite energies, the latter one tends to zero as energy increases. This
QCD phenomenon is called asymptotic freedom.

Key words: Quantum Electrodynamics, Quantum Chromodynamics,
Quantum Field Theory, renormalization group, beta function.

Fixed points

In (Fabiano, 2021) we have seen how a generic coupling constant be-
haves at different renormalisation scales. It should be remarked that this
result is valid also for different renormalisation schemes, not only for di-
mensional regularisation. In this sense the coupling constant is a func-
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tion depending on the energy scale u, and is often regarded to as running
coupling constant. Just for the sake of simplicity define the new variable
t = log i (the t variable could be also thought of as a “time” parameter).
With this position, the Callan—Symanzik equation (Callan, 1970; Symanzik,
1970) could be rewritten in a nicer form as:

dg
2 = 5l9). (1)

which is a differential equation governing the behaviour of the coupling con-
stant g upon the energy scale considered. As such it also needs some initial
conditions in order to be solved —a Cauchy problem. The points g for which

Blg) =0 (2)

are called fixed points (Symanzik, 1971), and once the coupling g reaches
one of these points, it does not evolve anymore. In Fig. (1) a possible
scenario for the 3 function is shown. The origin 0, the points ¢g; and g, are
fixed points. If for the initial scale ¢t = 0 the coupling constant g is at one of
these points, then it will remain there for any energy scale considered (or
“forever”, depending on the language one prefers).

There are different kinds of fixed points. Consider the point g; and its
neighbourhood. From the Figure, for 0 < g < ¢1, 5(g) > 0 then the coupling
constant increases with the scale because of eq. (2) (i.e. dg/dt > 0), mo-
ving towards ¢; for ¢ — +o00. On the contrary, in the interval g; < g < ¢» the
3 function is negative, so the coupling constant decreases and approaches
again g1 ast — +o0o. We conclude that g; is a stable fixed point, as g tends
to it from either side. It is called the ultraviolet stable fixed point - the term
“ultraviolet” is present because g — ¢1 as t — +oc.

On the other hand, for the points 0 and g it is clear that the inverse of
the previous argument holds true: the coupling ¢ “escapes” from them as
t — 400, and approaches them as energy decreases, for t — 0. Such
points are named the infrared stable fixed points.

Itis important to know that the fixed points of the 3 function are difficult to
calculate because they are usually determined by nonperturbative effects,
apart from the trivial zero at the origin, for g = 0.

Behaviour of g function

We shall consider some possible asymptotic behaviours of the g func-
tion for energy scale u — +o0o. The exact problem we consider is given
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Figure 1 — The Beta function with fixed points 0, g, and g». The arrows indicate

the direction of the flow of g with increasing scale .

Puc. 1 - bema-gyHKkuus ¢ chukcuposaHHbIMUu modkamu 0, g1 U go. Cmperku

yKasabigarom HaripasesieHue rnomoka g c yeejiudeHuem wWkKarsibl [

Cnuka 1 - bema ¢byHkyuja ca chukcHUM madkama 0, g1 U go. Cmpenuue nokasyjy

rpasay moka g ca rnoseharem ckare i

by
dg
Han = B(9)
g(,uo) = 4o,

whose formal solution is written as

Ydg _ (M)
w Bl B\ o)

Different behaviours of the  function are shown in Fig. 2.

3)

(4)

For such functions, the running coupling constant ¢ will, for different

cases:
(a) approach infinity for a finite value of g, with 5(g) > 0
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B

Figure 2 — Beta functions with different asymptotic behaviour
Puc. 2 — bema-gyHKUUU ¢ pa3nu4dHbiM acuMmomu4yecKumM rnoeedeHUem
Cnuka 2 — bema ¢byHKyuje ¢ pa3nuqumum acuMnmomcKUM rnoHawarem

(b) approach infinity as ¢ — +o0
(c) have a finite fixed pointin g1, 5(g1) =0
(d) approach —oc for increasing g, with 8(g) < 0

Case (a)

Suppose that 5(g) grows sufficiently rapidly in such a manner that the
integral of eq. (4) converges (for instance, any power of g larger than 1),

namely .
/ Blg) ~ e ©)

then it is clear that the scale . has a finite upper bound 1, corresponding
to the coupling g = +oo given by the relation

fitoo = 10 €XD (/;OO Bd({]q)) : (6)
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We have already encountered such behaviour, for the QED coupling
case as discussed in (Fabiano, 2021), where 3(g) = ¢3/1272 and p  iS
given by the Landau pole (Landau et al, 1954; Landau & Pomeranchuk,
1955) of eq. (40) in (Fabiano, 2021).

Another example is the scalar field theory with the interaction term
go*/4! given by the Lagrangian

1 2 m? 2 9 4
for which the s function is

2 3
Blo) = Ly - 2 Y

T 1672 3 (1672)2 +0(Y. ®)

The Lagrangian (7) is almost the same of the Higgs field in the Stan-
dard Model (Glashow, 1959; Salam & Ward, 1959; Weinberg, 1967). The
only difference, yet an essential one, is that in the latter case the scalar
field is coupled to fermion fields + via a term A\i)¢), so called Yukawa cou-
pling (Yukawa, 1935), where )\ is another coupling constant different from
g.

Using only the first term of eq. (8), we arrive at the expression

g=—F= : ©)

which has the same form of eq. (39) in (Fabiano, 2021) as anticipated; it
has also a pole for y = g exp(1672/(3go))-

Case (b)

The integral of eq. (5) diverges. It means that the coupling constant ¢
becomes infinite only at an infinite energy scale, ;. = +oo. For instance,
assume that 3(g) = ag®, with a > 0 and & < 1 but k # —1 - then one
obtains for eq. (3) the solution

1/(1-k)
g= [93’“ +a(1 — k) log (“)] . (10)
Ho

The growth of g in i is very slow, but in the very high energy limit the
coupling becomes independent from the initial condition g.
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Case (c)

We encounter a fixed point like previously discussed in the section Fixed
points for the ultraviolet fixed point g1, that is 3(¢g1) = 0. The j function
stays positive for 0 < g < ¢1 and turns negative afterwards. Either if the
initial condition g is such that gy < g1 or g9 > g1 the coupling constant g
will evolve towards the fixed point, ¢ — ¢1 as yu — +oc.

Assuming that the root of 3 in g; is simple, then

B(g) = a(g1 — g) for g — g1 (11)

with a > 0. The solution to eq. (3) is then
g—g~pt (12)

with the assumption that gg < ¢, g0 < g1 and g < g¢1.

It is worth noticing that we have already discussed a case in which, ap-
parently, an ultraviolet fixed point is obtained. The ¢* scalar theory presents
such a point. From eq. (8) one computes the fixed point ¢; as

g1 =87%, (13)

which, however, has a huge value of g; = 80 thus spoiling the perturbation
theory as ¢ > 1. As the § functions that have been encountered so far
have been computed using only the perturbation theory, it is clear that the
result obtained above is invalid. The discussion regarding eq. (8) proves
the statement of the section Fixed points, for which a fixed point could be
basically only computed by means of nonperturbative techniques.

Case (d)

So far, all 3 functions discussed were positive at least for small positive
g, so the renormalisation group flow drives away ¢(u) from the origin g = 0.
Now suppose that 5(g) < 0 for small positive g, like

B(g) = —ag", (14)

where ¢ > 0, n > 1 and an integer. The solution to eq. (3) is then written
as

= 90 |
9 {1 +g5" ' (n—1)alog (H] 1/(n=1) (15)
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A dramatic difference between this and the previous cases is that, for
large energy scales, the coupling constant vanishes, i.e.

g=0foru — +co . (16)

This phenomenon is called asymptotic freedom (Gross & Wilczek, 1973;
Politzer, 1973). With growing energy, the theory has a weaker coupling
constant, approximating a free theory, i.e. one without interactions. So at
larger energy scales, the perturbation theory gives better results. Remem-
ber actually that corrections C of any kind (propagator, coupling, etc.) are
computed as series of powers of g,

C = chg” (17)

and this formal series is supposed to converge for small g.
A toy model that exhibits asymptotic freedom could be obtained from
the Lagrangian (7) with a negative potential’ —g¢?/4!. Its § function has

the form
3 o

B(g) = —@9

(18)

for which

~1
g= [ 5 log <,u>] for 4 — 400 . (19)
1672 140

i.e. g goes to zero at logarithmic speed.

A very important class of theories that have the property of asymptotic
freedom is the Yang—Mills theory (Yang & Mills, 1954), with the gauge group
SU(N). Of particular relevance is one of them, quantum chromodynamics
— QCD - that is the theory of strong interactions embedded in the Standard
Model, whose gauge group is SU(3).

The QCD Lagrangian is written as

s 1 a v
L= ¢j [Z(Vupﬂ)jk - m(s]k’] wk - ZGlLVGg (20)

where v;(z) is the j—th quark field, indexed by j, k; Af, are the gluon fields,
a =1...8. v* are the usual Dirac matrices, the covariant derivative is given

1We neglect the fact that this theory is ill-defined and that the perturbation theory cannot be applied.
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by D, = 9, —igA;T*. Gy, is the gluon field strength tensor, similar to the
F,,, electromagnetic tensor, defined by

G4, = 0, AL — 0,A% + g f**° Ab A (21)

where e are the structure constants of SU(3), [T%, T] = i f*cT*, with T
being generators of the group.

For a generic SU(N) the Yang—Mills theory coupled to fermions the g
function at one—loop level is given by

3

0) = L5 (135 - 32 ) +0). 22)

and for the QCD case Cy = ny/2,

3
== - — 2
80 =5 (5 - 3 ) + o). 3)
where n is the number of quark flavours with masses much lower than the
energy scale considered u, which can be considered massless.

Defining the QCD strong coupling constant s = g2 /472 in an analogous
fashion to QED, where o = ¢?/4w, we obtain from eq. (49) in (Fabiano,

2021)
127

33 —2ny)log(u/A)

which exhibits asymptotic freedom as far as the number of quark flavours is
ny < 17. Another property due to the presence of (approximately) massless
particles is that a dimensionless coupling g, is exchanged for a dimension-
ful parameter A, which is an integration constant with dimensions of energy.
This phenomenon is referred to as dimensional transmutation (Coleman &
Weinberg, 1973; Weinberg, 1973). The $ function eq. (24) is known today
to four—loop order O (o), with three and four—loop coefficients being renor-
malisation scheme dependent. The measured value of a strong coupling
constant at the Z peak is

() = | (24)

as(mz) = 0.1197 £ 0.0016 (25)

while the corresponding value of A is about 0.2 GeV.
A few remarks are in order. In the 1950s, Landau argued that in QED
the increasing powers of logarithmic terms, that we already encountered at
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one—loop level in (Fabiano, 2021), of the form log(E /M), would coalesce
and give raise to singularities for finite values of the energy E. This is the
(a) case, with the Landau poles, also known as the Landau ghosts or the
Moscow zero (because ey /e(n) = 0), discovered by himself (Landau et al,
1954; Landau & Pomeranchuk, 1955). This argument does not rule out the
cases (b) or (c), though. This possible inconsistency in the renormalisation
procedure has not yet been proved but it is believed to actually exist.

Today, there is a broad agreement on the fact that the interacting field
theories like QED or scalar ¢* we have discussed (which are not asympto-
tically free) are not mathematically consistent. About QED, there is some
evidence against the case (c) with a finite fixed point that would be only
possible in the presence of yet unknown nonperturbative effects. However,
even if (c) is ruled out, there still remains the possibility (b) with a fixed point
at infinity.

There is an electromagnetic analogy for different behaviours of QED
and QCD couplings. In QED, the charge is stronger at shorter distances,
i.e. is the vacuum acts like a dielectric medium with a dielectric constant

e>1, (26)

shielding the charge. Remembering the relation of the relative magnetic
permeability . to the dielectric constant to the speed of light, which in our
units is 1,

ep=1, (27)

we have a duality relation. The QED case corresponds to x < 1, also
known as Landau diamagnetism, where charged particles in the medium in
response to an external magnetic field generate an opposed magnetic field,
a phenomenon seen in superconductors, water, copper, and gold. In QCD,
the opposite behaviour is observed: the chromoelectric charge is weaker at
shorter distances, so its vacuum is anti screening, with a dielectric constant

e<1. (28)

The equivalent magnetic permeability is 4 > 1, known as Pauli para-
magnetism, where the particles tend to align with the external field, as in
tungsten, aluminium, or lithium. It has to be stressed that the electromag-
netic terminology used for QCD is just an analogy to the QED case: by “the
charge” we mean the colour charge, by “the magnetic moment” the colour
magnetic moment.
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BETA-®YHKLIN B KBAHTOBOW TEOPUM NONA

Hukona ®abunaHo

benrpaackuin yunsepcuteT, UHCTUTYT SAepHbIX uccnegoBaHmm
«BuH4ya» — MIHCTUTYT rocygapcTBeHHOro 3HaveHns ansa Pecnybnvkn
Cepbus, r. benrpaa, Pecny6bnuka Cepbus

PYBPUKA TPHTWU: 29.05.03 MatemaTtudeckue mMeToabl
TEopeTN4eCKon PU3NKK,
29.05.23 PenAaTmBMCTCKas KBaHTOBas Teopus.
KeaHTOBas Teopus nonsi
29.05.33 3nekTpomarHMTHOE B3auMOOENCTBUE
B[O CTATbW: ob3opHasi ctaTtbs

Pesrome:

BsedeHue / yenb: B 0aHHOU cmambe rnpedcmasriieHo, Kak pa-
6omaem KOHCmMaHma ces13U 8 paafiu4yHbIX K8AHMOBbLIX MEOPUSIX
1o U 803MOXHbIe Modenu rnogedeHusi bema-gyHKyUU.

Memoodsi: YpasHeHue KannaHa—CumaH3uka ucrornb3yemcs 0ns
usydeHus sgonroyuu bema-gpyHKUUU.

Pesynbmamei: HabritoGaemcs pasnu4yHoe nogedeHue KOHcmaH-
mbl C8513U MPU BbICOKUX 3HEPausiX 8 Pas/fluYyHbIX MeopUsiX.
Ocobebil uHmMepec npedcmaesrnsiem sierieHuUe acuMnmomu4eckol
€80600hI.

Bbieodbi: KoHcmaHmbl cesi3u K8aHmMoe8oU 351eKmpoduHamMuKu
(K34) u keaHmosou xpomoduHamuku (KX/]) eedym cebsi cosep-
WEHHO M0-pa3HOMY 8 peXxume 8bICOKUX 3Hepeull. [lepsas om-
JNiudaemcs KOHeYHoU 3Hepauel, 8 MO 8peMsi Kak emopasi cmpe-
mumcs K Hymwo, ko2da aHepaus yeenudueaemcs. [JaHHoe siene-
Hue KX/[] Ha3blieaemcsi acumnmomu4ecKkoli ceob000d.

Kntouesbie criosa: keaHmosasi arekmpoduHaMuKka, KeaHmoeasi
XpomModuHaMuKa, KeaHmoeasi meopusi rosisi, peHopMmanu3ayu-
OHHas epyrnna, bema-gyHKYUS.

BETA ®YHKUWJE Y KBAHTHOJ TEOPUNJN NOJbA

Hukona ®abnaHo

YHusepauTteT y beorpagy, MHCTUTYT 3a HykneapHe Hayke "BuHuya’-
MHCTUTYT of HaumoHanHor 3Havaja 3a Peny6nuky Cpouijy,
Beorpag, Penybnuka Cpbuja
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OBJIACT: maTtematuka
BPCTA YJTAHKA: npernegHu pag

Caxemak:

Y800/ uurb: inycmpoeaHu cy pad KOHCmaHme cripeae y pasHum
KeaHMHUM meopujama rnosba kao u mozyhe noHawame 6ema

pyHKUUje.

Memode: KanaH-LllumaH3ukosa jedHaduHa Kopucmu ce 3a rpo-
y4aear-e egornyyuje 6ema ¢byHkyuje.

Pesynmamu: lNpumeheHo je pa3nu4umo rioHaware KOHCmaH-
me cripeae 3a 8UCOKe eHepauje 3a pasrudyume meopuje. OO0 rno-
cebHo2 UHmMepeca je cheHoMeH acumnmomcke criobode.

Bakrpyyak: KoHcmaHme cripezce K8aHMHe enekmpoOuHamuKe
(QED) u keaHmHe xpomoduHamuke (QCD) umajy nommyHo pa
3/1UHUMO MOHalWaHEe Y PEXUMY 8UCOKUX eHepauja. [Jok ce npea
pasunasu 3a KoHa4He eHepeauje, Opyaa mexu HyJsiu Kako ce eHep-
auja nosehasa. Osaj peHomeH QCD Hasuea ce acumnmomcka
cr060da.

KrbyyHe peyu: kgaHmMHa eriekmpoduHaMuKa, KeaHmHa XpoMo-
OuHaMuKa, KeaHmMHa meopuja nosba, peHopmanau3ayuoHa epy-
na, bema ¢yHKuuja.
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