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Introduction/purpose:  The principal techniques of regularization
schemes and their validity for gauge field theories are discussed.

Methods: Schemes of dimensional regularization, Pauli—Villars and lat-
tice reqularization are discussed.

Results: The Coleman—Mandula theorem shows which gauge theories
are renormalizable.

Conclusion: Some gauge field theories are renormalizable, the Standard
Model in particular.

Key words: regularization, renormalization, Gauge Field Theory,
Coleman—Mandula Theorem.

Regularization schemes

Up to now, we have encountered quantum electrodynamics and other
theories such as the scalar potential ¢* and the Standard Model (Fabi-
ano, 2021a,b). In QED, we have seen in some detail how to get rid of
infinities coming from loop integrations and obtain meaningful results for
physical quantities with renormalization. For this purpose, we have used
dimensional regularization, but there are other regularization schemes with
different properties.
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Dimensional regularization

This is the scheme we have already used in (Fabiano, 2021a,b), per-
haps the most versatile one (Bollini & Giambiagi, 1972; 't Hooft & Veltman,
1972). First, a Wick rotation (Wick, 1954) is performed to an Euclidean
space. Then the action is extended to an arbitrary dimension D that be-
comes a complex number. In these regions, all Feynman diagrams are
finite. All integrals are analytically continued for D — 4, and the resul-
ting simple poles due to Gamma functions are to be reabsorbed into the
physical parameters. This scheme, beyond its simplicity, has a great ad-
vantage of preserving all symmetries of the theory that do not depend on
dimensionality such as gauge symmetry, Poincaré symmetry etc., as well
as the Ward—Takahashi identities (Ward, 1950; Takahashi, 1957). A re-
mark on the notation. We have already encountered the minimal subtrac-
tion scheme MS ('t Hooft, 1973; Weinberg, 1973), where the counterterms
computed with dimensional regularization have no finite part. There is an-
other widely used scheme, the modified minimal subtraction scheme, or
the MS (Bardeen et al, 1978), where the finite part is a constant by means
of the substitution

D1_4—>D1_4+%—%10g47r, (1)
where, as usual, v ~ 0.57721 is the Euler—Mascheroni constant.

Pauli—Villars regularization

In this procedure of 1949 (Pauli & Villars, 1949) the propagator is mo-
dified as:
1 1 1 m? — M?*  m?— M> 1
Pom?  pem P2 gt +O(ps> @)
where the fictitious mass is chosen M > m. The propagator behaviour
for large momenta ~ 1/p* is usually enough to render finite all Feynman
graphs. Eventually, the M? — +oo limit is taken to decouple the unphy-
sical particle. This technique has the advantage of preserving local gauge
invariance in QED, as well as Ward identities.

2

Lattice regularization

Another popular scheme is the lattice regularization, where the theory
is defined on a four—dimensional Euclidean lattice with the finite spacing
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a (Wilson, 1975; Kadanoff, 1966). This spacing serves as a cutoff A = 1/a
for the Feynman integrals, rendering the results finite. This approach is
mostly used for QCD, and results are extrapolated to the continuum limit for
a — 0 comparing different lattice spacings. Almost invariably, this method
is used to simulate QCD on computers using Monte Carlo methods. The
symmetry on the lattice is of course lost as Lorentz invariance is broken.
There is also the problem of fermion doubling, with the appearance of more
particles for each original fermion. This approach is also very computatio-
nally intensive with large memory bandwidth requirements.

Overview of renormalization

The divergences are given by graphs with loops. To determine the de-
gree of divergence of any graph we need to know the dimensions of va-
rious fields, coupling constants and the behaviour of propagators at large
momenta. As the action is given by

5= / Pz £($,0) 3)

and has the dimensions of 7, that is zero dimensions in our units, [S] = 0,
then the Lagrangian has the dimensions in length units (for energy units
just reverse the sign)

[£]=-D. (4)

From the free action for a generic bosonic field ¢ and for a 1/2 spin fermion

1, we readily obtain
D -2
[¢] = ——— )]

and D1

[ = ———. (6)
The dimensions of the coupling constants are then easily computed, for
instance in the Higgs potential with g¢*/4! interaction, [g] = D — 4, so in 4
dimension g is dimensionless. We will now calculate the superficial degree
of divergence D of a Feynman diagram. Any diagram with loops could be
represented by

/def(p)—/dpF(p), (7)

(f is made out of different propagators in general) and the behaviour of
F when all internal momenta go to infinity gives the superficial degree of

722



convergence D
F(p) ~pP~tforp — +o00. (8)

When D > 0, the diagram diverges like a power

A
/ dppPt ~ AP )

while if D = 0 implies a logarithmic divergence, log A, and the integrals with
D < 0 are convergent.

The asymptotic behaviour for large momenta of various propagators are
well known: for bosonic scalar fields ¢ and vector fields A,, it is 1/p*, while
for electron (lepton) fields v is 1/p. In general, the asymptotic behaviour
for a propagator A (p) of a field f is given by

Ag(p) ~p2t>r (10)

and it can be shown that for a massive field f that transforms under Lorentz
group as (A4, B) one has sy = A+ B, so loosely speaking s is the “spin” of
field. For massless bosonic fields, s; = 0. The photon (spin=1) propagator
and also the graviton field g,,, (with spin=2) behave like 1/p.

By power counting, one could calculate the superficial degree of the
convergence D. Each fermion propagator contributes to p—!, each boson
propagator gives a p—2 term, each loop from integration contributes with a
p* term, and each vertex with n derivatives contributes at most with a p"
term. We will see the superficial degree of divergence for QED graphs in
some detail. Define

L = number of loops,
V' = number of vertices,
Ey, = number of external electron legs,
I, = number of internal electron legs,
E 4 = number of external photon legs, and
I, = number of internal photon legs , (11)

then the superficial degree of divergence is:
D=A4L 214 —1Iy. (12)

We want to rewrite this relation as a function of external legs only, no matter
how many internal legs or loops the graph may have.
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Consider electrons. Each vertex connects to one end of an internal
electron leg. For external legs, only one end connects onto a vertex, thus:

1 1
V=1I,+ §E¢ implies I, =V — §Ew . (13)

For photons, each vertex connects to one end of an internal photon line,
unless it is external, that is

1
V =214+ E, implies IA:§(V—EA) ) (14)

We know that the total number of independent momenta is equal to L,
which in turn equals the total number of internal lines in the graph minus
the number of vertices, because of moment conservation at each vertex,
plus one, as we have overall momentum conservation as well. So:

L=Iy+Is-V+1. (15)

By substituteing for 1,,, 14, L the expressions found in egs. (13)—(15) into
eq. (12), we obtain

D:4—%Ew—EA. (16)

What is renormalizable?

The procedure of renormalization we have met in QED is not substan-
tially different from any other theory. When calculating Feynman diagrams
one encounters diagrams with momenta integration inside loops. These
integrals diverge, and have to be regularized in some manner, that is, their
divergencies should be isolated. Then these infinities are reabsorbed by a
set of bare physical parameters, such as coupling constants and masses.
These parameters have divergencies that cancel out the ultraviolet infinities
coming from loops in Feynman diagrams. Eventually, we are left with the
physical (or “renormalized” or “dressed”) parameters, that are the actual
parameters one could measure in an experiment.

Since there is only a finite number of such parameters in a Lagrangian,
one can make only a finite number of such redefinitions. In other words, itis
possible to renormalize only a theory with a finite number of fundamentally
divergent diagrams that are the building blocks of all divergent diagrams of
the theory. For instance, QED is such a theory, and we have encountered
those kinds of diagrams in (Fabiano, 2021a,b).
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Of course, all this procedure has to be built on solid grounds, requiring a
sound mathematical proof that this can be actually done. It is usually done
by an induction argument, that is, if one proves that the nth order of a theory
is finite, and the n + 1th order is finite in terms of the nth order, then the
theory is renormalizable. The induction proof uses Weinberg’'s theorem,
which essentially states that a Feynman graph converges if the superficial
degree of the divergence D of the graph and all its subgraphs is negative.

We will now find out whether a particular theory is renormalizable. Con-
sider its Lagrangian and compute the dimensions of the coupling ¢ starting
from egs. (4)—(6). Let d be the length dimension of g, that is

gl =4, (17)

and from the scaling of the Lagrangian parameters we have met in (Fabi-
ano, 2021b), eq. (16) in particular, for which e = equ=4=2)/2 _ we could
deduce the scaling

g~goL™" or g~ gE?, (18)
L being a length scale, E an energy scale, and g, the bare coupling con-
stant. Suppose now that d > 0, then we see that with decreasing distance,
or increasing energy, the coupling constant g increases indefinitely:

g=+4ocfor L - 0,0r F — +00. (19)

As the coupling constant increases, perturbation theory will fail; therefore,
it will not be renormalizable.

So, we have obtained the important result: if the length dimension of the
coupling constant is positive, then the theory is non renormalizable. On the
other hand, if d is negative, g — 0 for increasing energy, then perturbation
theory is applicable. In this case, the theory is called super renormalizable.
If the coupling constant is adimensional, then the theory is renormalizable.

Non renormalizable theories

Non renormalizable theories have coupling constants with negative en-
ergy dimensions: for instance, any theory with the interaction g¢™ with
n > 4 in four dimensions. Such theories have infinite divergent Feyn-
man diagrams of infinite different kinds. The proliferation of different types
of divergencies cannot be controlled by redefinition of a finite number of
physical parameters.

Some examples of such theories are:
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Any nonpolinomial action: an action that has an infinite number of terms
like Z:j}g gncn@™. Independently of dimensions there will be an (infi-
nite) number of dimensionful coupling constants with negative energy
dimensions.

Fermi’s interaction: the four fermion interactions proposed by Fermi in
1934 (Fermi, 1934a,b) much before the electroweak theory, G (11))2.
As it is well known, Gp ~ 1/m%,[,, so the coupling has the energy
dimension of —2.

Massive vector boson with a non Abelian gauge group: a vector field
with mass M has a propagator such as

Guv _PMPV/M2
p? — M? + e

that goes like a constant —1/M? at infinity. No integral of a loop dia-
gram could converge with such behaviour.

Gravitation: Newtonian potential is Gmms/r. So G has negative energy
dimensions.

Theories with anomalies: symmetries of the original classical La-
grangian could be broken by quantum effects and are called anoma-
lies. They in turn spoil Ward—Takahashi identities, essential for prov-
ing that a theory could be renormalizable.

Renormalizable theories

These theories are of course the most important ones. They have only
a finite numbers of necessary counterterms, and their coupling constant is
adimensional. Some examples follow.

¢* in four dimensions: a scalar field with such interaction, like the Higgs
potential, has a dimensionless coupling constant g for D = 4. From
hints by the e—expansion method, this theory is also probably free in
four dimensions.

QED: we already discussed quantum electrodynamics in (Fabiano,
2021a,b), and explicitly wrote the counterterms. Historically, it was
the first theory to be proven renormalizable.
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Standard Model: the SM of particles with a gauge group SU.,(3) x
SUL(2) x Uy(1) broken to SU.y(3) x Uen(1) has three adimen-
sional coupling constants (Glashow, 1959; Salam & Ward, 1959;
Weinberg, 1967). Notice, however, that electroweak model alone,
SUL(2) xUy (1), is not renormalizable. The further presence of quarks
is needed in order to cancel all anomalies and render the SM anomaly
free.

Yukawa theory: it is also part of the SM. It describes a coupling between
fermions and scalars given by

9P
the coupling constant g is, as usual, dimensionless (Yukawa, 1935).

Spontaneously broken non Abelian gauge theories: although we
have seen that a massive vector boson is non renormalizable,
spontaneously broken massless non Abelian gauge symmetries are
actually renormalizable. These are spontaneously broken Yang—Mills
theories. The proof was given by 't Hooft and Veltman in 1972 ('t
Hooft & Veltman, 1972), and only after that the usage of gauge
theories was fully justified. It is important to notice that unbroken
Yang—Mills theories are renormalizable only in four dimensions.

Two dimensional fermion theory: for D = 2, a term (&b)2 of Fermi's
theory is renormalizable there.

Super renormalizable theories

They converge very rapidly, only a finite number of graphs is divergent.
Actually, the degree of divergence decreases when the number of loops
increases.

¢3: in three dimensions, this bosonic theory is super renormalizable. Ho-
wever, this theory is ill-defined because the potential is unbounded
from below, so the vacuum is unstable.

¢*: in three dimensions, this theory is super renormalizable as its coupling
is such that [g] = D — 4, negative for D < 4.

Fabiano, N., Regularization in quauntum field theories, pp.720-733
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Two dimensional boson theory: for D = 2, that is, only time and a space
coordinate, there is a sort of magic. Any theory of bosonic field is
super renormalizable, because the field itself is dimensionless, and

l9] = —2.

Two dimensional theory: combining the results previously obtained, in
two dimensions a theory

P(¢)y)

where P is an arbitrary polynomial is super renormalizable.

Why gauge theory?

We have followed the full path starting from the Lagrangian to a measu-
rable physical quantity. On our walk, we have encountered infinite quanti-
ties and rigorous results that allow us to get rid of them. All the time we have
dealt with gauge theories that combine Poincaré group invariance (that is
the Lorentz plus translation group) and some internal symmetry groups, the
gauge group, for instance U(1) for QED or SU(3) for QCD.

A question naturally arises whether it is possible to have theories with
different kinds of symmetries than those previously described, which are
able to give physically meaningful results?

This question has been answered by the Coleman—Mandula no—go the-
orem of 1967 (Coleman & Mandula, 1967) and, to a certain extent, the short
answer is “no”.

We recall that the Lorentz group preserves the distance with Minkowski
metric s = xz,g"x,. It has L, generators of rotations, boosts and inver-
sions that obey the SO(3,1) Lie algebra

[Lyws Lpo] = i9uoLup + i9upLpo — igupLve — iguoLyp - (20)

Remember that the Lie algebra is defined by its generators 7* with com-
muting properties
[T, T = if*Te, (21)

where f2¢ is the structure constant. The Lie algebra is obtained from the
Lie group by taking the logarithm of group elements G.
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The generators L, together with the generators of translations P* form
the Poincaré algebra. While the translations commute among them

[P*,P"] =0, (22)

they do not commute with the Lorentz generator, because the latter has
two indices opposed to only one:

(LMY, PP] = igh? PV — igh PP . (23)

Wigner (Wigner, 1939) gave all possible classifications for real particles
from the Poincaré group, where states are labelled by the invariant mass
P? = m?2, the spin s and the helicity h.
1. P2 = m? > 0 and the spin s is discrete, then the state is |m, s),
s=0,1/2,1,3/2,....
2. P? = m? = 0, and the state is determined by its helicity, |k), where
h=+s5=0,1/2,1,3/2,....
3. P? =m? =0, and the spin is continuous, so h is continuous. These
states do not seem to be realized in nature.

Coleman—Mandula theorem

It states that, given some reasonable physical assumptions we will dis-
cuss later, the only possible Lie algebra of symmetry generators consist of
the generators of the Poincaré group and of some other symmetry genera-
tors of the gauge group that commute between them. Let P be the Poincaré
group, P its algebra, and G the symmetry group, G its algebra. Then the
only possible algebra C M of allowed symmetry group CM is given by the
direct product of those two, that is

CM=PxG. (24)

In plain language, it means these two groups never mix, the Lorentz indices
do not affect the group indices and vice versa. For instance, in QED, an
U(1) rotation will not affect electron energy, likewise a Lorentz boost is
unable to flip electron charge.

The assumptions of this theorem are very reasonable. Consider the
scattering matrix S, and its symmetry group CM with the following assump-
tions
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* Mass gap: for any given mass m > 0 there is only a finite number of
particles with mass less than m. No continuous spectrum is allowed.

» Scattering: it occurs at almost all energies except maybe for some
discrete set of energies.

» Analyticity: the S matrix for two body scattering is an analytic function
of angle, energy and momentum, except maybe for some discrete set
of energies.

» “Ugly technical assumption”: stating that the matrix elements of the
group generators are distributions in momentum space.
Under these assumptions, the only allowed algebra for the symmetry group
CM of the S matrix is given by eq. (24).

There is actually a possible way out of this theorem. If one considers a
symmetry that exchanges bosons with fermions, so called supersymmetry,
then it is possible to extend this particular symmetry to the allowed sym-
metries of the S matrix without breaking the Coleman—Mandula theorem,
which is known as the Haag-topuszanski-Sohnius theorem (Haag et al,
1975).

It must be stressed, however, that up to this date supersymmetric par-
ticles are yet to be discovered.
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PEMYNAPN3ALINA B KBAHTOBbIX TEOPUAX MONA

Hukona ®abwnaHo

Benrpaackuin yHusepceuteT, MHCTUTYT aaepHbIX nccriefoBaHui
«BuHya» - HaumoHanbHbIn nHcTutyT Pecnybnukn Cepbus,
r. benrpaa, Pecnybnuka Cepbus

PYBPUKA TPHTW: 29.05.03 MaremaTtudeckue MeTonbl
TeopeTudeckon usnku,
29.05.23 PenatuBnucTckad KBaHTOBasi TEOpWUS.
KBaHTOBasi Teopus nons
29.05.33 3nekTpomarHMTHOE B3aumModencTaune
BWL CTATbW: o63opHas cTtaTbs

Pesrome:

BsedeHue/uenb: B daHHOU cmambe paccmampuearomcsi OCHO8-
Hble MemoObl CXeM peayrnapu3ayuu u Ux npuMeHUMOCmb 8 Ka-
NUbpPOBOYHbLIX meopusix roned.

Memodsi: B cmambe npuMeHeHb! cxeMbl pa3MepHoU peaynsapu-
3ayuu, lNaynu - Bunnapca u peaynsapu3ayuu pewemku. obcyx-
OGaromcs peaynspu3sayusi.

Pesynbmamel: Teopema KoynmaHa-MaHyrbl nokasbigaem Ka-
Kue KanubposoyHble meopuu rnodnexam peHopMmarnusayuu.

Bbieodbi: B xo0e uccrnedogaHusi 8bISI8NIEHO, YMO HEKomopbie
meopuu KanubpoeoYHOZ0 oSSl NEPEHOPMUPYEMbI, 8 YaCMHO-
cmu — cmaHOapmHasi MOO€erb.

Knirouesble criosa: peeynspusauyusi, IepeHopMuposKa, meopusi
KanubpogoyHo20 norsi, meopema KonemaHa - MaHOysbl.
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PETYNAPUSALINJA Y TEOPUJAMA KBAHTHOI MNMOJbA

Hukona ®abuaHo

YHuuBepautetr y beorpagy, VIHCTUTYT 3a HykneapHe Hayke ,BuHua“
- HaumoHnanuu uHctutyt Penybnuke Cpbuje, beorpag, Peny6nuka
Cpbuja

OBJIACT: maTtematuka
BPCTA YJTIAHKA: npernegHu pag

Caxemak:

Yeo0/uurb: Pasmampajy ce 0CHO8He MEXHUKe wema peayrnapu-
3ayuje Kao U HUX08a 8asbaHOCM 3a meopuje KanubpayuoHUX
nosba.

Memode: [llpumetrbyjy ce weme OUMeH3UOHasHe peayrnapusa-
yuje, MNaynu-Bunapcosa peaynapusayuja kao U peaynapusayuje
pewemke.

Pesynmamu: KonemaH-MaHOyna meopema riokasyje Koje Kasnu-
bpayuoHe meopuje ce Moy peHopmanu3oeamu.

Bakrbyyak: Heke meopuje kanubpayuoHoe rosba ce moay pe-
HopMmasu3osamu, crieyugpuyHo cmaHdapdHU moodern.

KibyuHe peyu: peeynapusauuja, peHopmasusauyuja, meopuja
KanubpayuoHoe nosrba, Koneman—MaHOyna meopema.
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