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Abstract:

Introduction/purpose: An approximate approach to definite integral
calculation has been an attractive problem continuously since the creation
of integration due to practical needs in scientific and engineering areas. In
most practical cases, the integrand is complex, which leads to a difficulty
of obtaining an exact value of integration, so an approximate value of the
definite integral with certain accuracy is satisfactory for practical
applications. In this paper, an efficient approach for calculating a definite
integral with a small number of sampling points is proposed based on the
uniform design method from the viewpoint of practical application.
Methods: The distribution of sampling points in its single peak domain is
deterministic and uniform, which follows the rule of the uniform design
method and good lattice points.
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Results: The efficient evaluation of a definite integral for a periodical
function in its single peak domain can be obtained by using 11 sampling
points in one dimension, 17 sampling points in two dimensions, and 19
sampling points in three dimensions.

Conclusion: The efficient approach for a definite integral developed here
on the basis of the uniform test design method is promised from the
viewpoint of practical application; the sampling points are deterministically
and uniformly distributed according to the rule of the uniform design
method and “good lattice points”. The efficient approach developed in this
article will be beneficial to relevant research and application.

Key words: uniform design method, good lattice point, definite integral,
single peak domain, finite sampling points.

Introduction

An approximate approach to definite integral calculation has been an
attractive problem continuously since the creation of integration due to
practical needs from science and engineering, information processing,
and theoretical analysis, etc. In most practical cases, the integrand is
complex, which leads to the difficulty of gaining an exact value of
integration, thus an approximate result of a definite integral with certain
accuracy is satisfactory. Therefore, it is of considerable importance to
seek appropriate approximation for a definite integral in practical
applications.

In the one-dimensional case, many classical quadrature rules are
available, such as the rectangle rule (midpoint rule), the trapezoidal rule,
Simpson’s rule, or the Gauss rule, which have the following form
(Leobacher & Pillichshammer, 2014),

Ta(f) =20, F(x,), (1)

n=0
with the quadrature points Xo, X1, X2, ..., Xn, ..., Xm from [0, 1], and with the
weights o, 91, g2, ..., On, ..., gm. In the case of the trapezoidal rule, go=

gm = 1/(2m), for other weights, gn= 1/m with n =1, 2, ..., m-1. If f € C*([0;
1]), the error of the trapezoidal rule is of the order O(m™).

Furthermore, under the condition of s dimensions, it results in the
following form

m
T, (F) =2 w,f(x,), 2)
n=0
with the set of s-fold quadrature points { Xo, X1, X2, ..., Xn, ..., Xm} in the

[0, 1]° domain. Hence the total number of nodes is N = (m +1)3, which
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grows dramatically with the dimension s. But in terms of the actual
number N = m + 1 of integration nodes, this error is of the order O(N25).

For large dimensions, which might be in the hundreds for practical
problems, such an error convergence is less than satisfying (Leobacher
& Pillichshammer, 2014). This phenomenon is often called the curse of
dimensionality (Leobacher & Pillichshammer, 2014).

The Monte Carlo method was proposed as a calculation approach
with stochastic sampling in mid-1940s. However, this method needs a
large number of random numbers (sampling points) for simulation
calculation (Fang et al, 1994, 2018) and with a rather slow convergence
speed.

The idea of a uniformly distributed point set was proposed by
Korobov in 1959, followed by the development of the good lattice point
(GLP) method with low discrepancy by Hua and Wang (1981). According
to the GLP, the convergence speed of integration is much higher than
the Monte Carlo method. In 1980s, Fang and Wang established a
uniform design method on the basis of the "good lattice point". In the
uniform design method (Fang et al, 1994, 2018), the distribution of the
sampling points in the space is well deterministic, rather than random.
Such kinds of algorithms belong to the “quasi - Monte Carlo method”
(QMC) thereafter (Tezuka, 1998, 2002; Paskov & Traub, 1995; Paskov,
1996; Sloan & Woiniakowski, 1998).

Consequently, the so-called “curse of dimensionality” problem
puzzled the application of QMC method for many years as well (Tezuka,
1998, 2002; Paskov & Traub, 1995; Paskov, 1996; Sloan & Woiniakowski,
1998). However, the situation changed dramatically in 1990s when
Paskov and Traub used Halton sequences and Sobol sequences for
accounting a ten-tranche CMO (Collateralized Mortgage Obligation) in
high dimensions even reaching to 360 dimensions and found that QMC
methods performed very well as compared to simple MC methods, as
well as to antithetic MC methods (Tezuka, 1998, 2002; Paskov & Traub,
1995; Paskov, 1996; Sloan & Woiniakowski, 1998). Afterwards, a lot of
analogical phenomena were found in different pricing problems by using
different types of low-discrepancy sequences (Tezuka, 1998). All these
results are really counter-intuitive, so it was difficult to understand that
the point distribution from low discrepancy sequences is with so much
singular convergence speed compared to that of the distribution of
random numbers. Sloan and Wozniakowski proposed an idea of a so-
called "weighted" discrepancy to explain this conundrum (Sloan &
Woiniakowski, 1998), while Caflisch et al proposed a concept of effective
dimensions to demonstrate the miracle (Caflisch et al, 1997). These
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achievements indicate the effectiveness of QMC methods though the
reason is unclear. Here we do not focus our attention on it in more detail,
but develop an efficient approach for the calculation of a definite integral
in the viewpoint of practical application instead.

Actually, the integrand in an integral has a certain form and with a
clear physical meaning. Therefore, the value of the integrand varies
according to a certain rule as the point in space changes from one
position to the next, so it is more appropriate to conduct the numerical
integration according to a point set which pursues a certain rule and
possesses a regular distribution in space in principle.

Here in this article, we try to use a certain number of sampling points
with regular distribution to perform approximate assessment for a definite
integral. It aims to develop an efficient approach with certain accuracy for
a definite integral. The characteristic analysis of a periodical function
within its one period is conducted first. The result shows that 11 sampling
points of the circumference could supply an effective approximation to
the peak value with a relative error not greater than 4%, which enlightens
us on exploring to use the 11 sampling points to carry out an efficient
approach for the definite integral of a function within its monotonic peak
domain. Thereafter, an analogical analysis for two and three dimensional
problems is performed as well. Afterwards, some typical examples of the
definite integral of physical problems is studied to check the validity of the
approach.

Characteristic analysis of the periodical function
within one periodical domain

1) One dimensional problem

Generally, the value of a function in a domain varies from point to
point. Take a one dimensional monotonic peak function in a domain as
an example, represented as,

y = A{1+Sin(2zx/4)]. 3

In Eq. (3), A indicates the amplitude coefficient, A is the period (wave
length) of the periodical function, and x is the coordinate value in one
dimension.

Clearly, the function y takes its peak value at x = xo = 1/4, i.e., y takes
2A. While at x1 = xo +4x/2, Ax/2 is the deviation from Xo, the value of the
function y decreases, y1 = A{1+Sin(2zx1/ )] = A{1+Sin[2 (X0 + AX/2)/A]} =
A{1+Sin(42 + Axd 2)].
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While, as Ax#/A = 0.2856 radian, the function y takes the value y: =
1.92A, which leads to a relative error not greater than 4% for the y value
with respect to its peak value of 2A.

The above analysis indicates that if one attempts to give an
approximation value of the periodical function y with a relative error not
greater than 4% with respect to its peak value by subdividing the period,
the partition number n of the subdivision in the period range (wave
length) A of this periodical function within one period is,

n = A/Ax = 710.2856 =~ 11. 4)

Simultaneously, the distance between the nearest sampling points is
Ax = A/11.

Eq. (4) indicates that the 11 sampling points of the one periodical
range (wave length) could provide an efficient approximation to the peak
value with a relative error not greater than 4% to its peak value for the
function in one dimension.

2) Two dimensional case

Under the condition of two dimensions, it is a problem on a plane
where a rectangular coordinate system could be set up, consisting of two
orthogonal coordinate axes, let us say the X and Y axes.

First, if we only use the preliminary condition of the uniform design
method (Fang et al, 1994, 2018), i.e., the projections of any two sample
points on each coordinate axis will not coincide, perhaps we obtain the
worst case, which is the status of all the sampling points being distributed
along the diagonal line of the square. Even in this case, the distance
between the nearest sampling points will be enlarged by 1% +12 =/2
times as that of the distance between the nearest sampling points of one
dimension. Therefore, if one attempts to provide an appropriate
approximation with a relative error around 4% as similar to that of the one
dimensional problem for the function, the subdivision should be refined
by about 1/4/2 times, let us take 1/1.5, which leads to the number of
sampling points n’ to the period (wave length) A range of this periodical
function within one period to be

n’=1.5n =1.5x11=16.5 ~17. (5)

Eq. (5) indicates that 17 sampling points for two dimensions in one
periodical range (wave length) could provide an appropriate
approximation for the peak value of the sine function with a relative error
around 4% to its peak value.
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Second, one could use the next requirement of uniform design that
the sampling points must satisfy both projection properties and spatial
filling or spatial uniformity. Then one could rearrange the spatial
distributions of the sampling points so that their distributions meet the
demand of spatial uniformity at the same time (Fang et al, 1994, 2018).

Ripley (1981) pointed out that, in the problem of spatial sampling, the
expected value of the mean square error of the sample decreases with
the spatial correlation of the samples, which leads to the situation that the
number of sampling will decrease with the spatial correlation of the
samples. This might be related to the counter-intuitive phenomena of
using QMC in high dimensions mentioned in the previous section.

3) Three dimensional case

Analogically, in the three dimensional case, i.e., cube, a rectangular
coordinate system is set up, consisting of three orthogonal coordinate
axes, in general X, Y and Z axes. Again, let us consider the worst case
first. When all the sampling points are distributed along the diagonal line
of the cube, the distance between the nearest sampling points will be

enlarged by +1? +12 +1> =+/3 times as that of the distance between the
nearest sampling points of one dimension. So, if one attempts to provide
an appropriate approximation for the peak value of the function with a
relative error around 4% as similar to that of the one dimensional
problem for the function once more, the subdivision should be refined by
about 1/1.7 times, which results in the number of sampling points n” to
the period (wave length) A range of this periodical function within one
period

n’=1.7n =1.7x11=18.7 = 19. (6)

Eq. (6) indicates that the 19 sampling points of the one periodical
range (wave length) could provide an accurate estimation for the peak
value of the sine function with a relative error around 4% to its peak value
in three dimensions.

Then one could rearrange the spatial distributions of the sampling
points according to the procedure of the uniform design method (Fang et
al, 1994, 2018).

The above discussion shows that if one attempts to provide an
appropriate approximation for a periodical function within one single peak
domain, 11 sampling points (in one dimension), 17 sampling points (in
two dimensions), or 19 sampling points (in three dimensions) are needed
for the calculation of a definite integral, respectively, while the sampling
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points are deterministically distributed according to the rule of the uniform
design method and GLP. In the following sections, we will check the
applicability of the above descriptions.

Efficient approach for numerical integration on the
basis of the uniform test design method and GLD for a
single peak function

According to Hua and Wang, a set of good lattice points (GLP) could
give an efficient value for a definite integral with low-discrepancy (Hua &
Wang, 1981; Fang et al, 1994, 2018), and the discrepancy of the sum
approximation of its function values in the discretized GLPs with respect
to its precise value of integration in one dimension is not greater than
V(f)-D(n), where V(f) is the variation of the function f(x) in its domain by
the n uniformly distributed sampling points, D(n) is the discrepancy of the
point set with the n uniformly distributed sampling points, and D(n) =
O(n™?) (Hua & Wang, 1981; Fang et al, 1994, 2018).

The previous sections indicate that 11 uniformly distributed sampling
points of the circumference in the one dimensional case could provide an
appropriate approximation for the peak value of the function with a
relative error not greater than 4% to its peak value. So, the relative error
of the summation of the sinusoidal function in the discretized GLPs with
respect to its precise value of integration is expected to be around 4% x
O(n™?) = 4%x 0(111)~0.4% in one dimension.

Similarly, the consequences in the last sections present that 17 and
19 uniformly distributed sampling points in one periodical range could
provide an appropriate approximation with a relative error of around 0.4%
as compared to its precise value of integration for the sinusoidal function
in 2 and 3 dimensions, respectively.

In addition, other functions can be expanded as sine or cosine
functions generally.

Hence, here in this section, let us conduct some typical definite
integrals to show the rationality of the approach. The sampling points are
with the characteristics of GLP so as to give low-discrepancy (Hua &
Wang, 1981; Fang et al, 1994, 2018).

1) One dimensional problems

Al) Approximation for the probability integral
Our first example is the probability integral (Navidi, 2020),
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j: exp(—x?) - dx = g ~0.886227 , @)
i.e.,
jo“’ exp(—x?) - dx = jo“’ f (x) - dx ~ 0.886227 . (8)

In Eq. (8), f(x) = exp(-x?) is the integrand function. As to exp(-x?), at Xy
= 4 its value is f(x,) = 1.125x107, therefore the upper limit of the integral
could be set as x, = 4.

According to the uniform design method (Fang et al, 1994, 2018), the
distribution of the sampling points in the integral domain [0, 4] is shown in
Table 1, and the integration Eq. (8) is thus discretized as

IO:_[OAf(x)-dXz%;f(xi). )

The positions of the distribution of the sampling points in the domain
[0, 4] are obtained according to the following formula (Hua & Wang, 1981,
Fang et al, 1994, 2018),

X = 4x(2j — 1)/(2x11), ] €1, 2, 3, ..., 11. (10)

Table 1 — The positions of the distribution of the sampling points
in the integral domain [0, 4]
Tabnuua 1 — MNo3uyuu pacnpedeneHusi moyek 8bI6OpPKU 8 UHMeepansHol obnacmu [0, 4]
Tabena 1 — lNosuyuje pacrnodene mayaka y30pkoearba y 0omeHy uHmezpauuje [0, 4]

Point

No. 1 2 3 4 5 5 7 8 9 10 11

Location | 0.182 | 0.545 | 0.909 | 1.273 | 1.636 | 2.0 | 2.364 | 2.727 | 3.091 | 3.455 | 3.818

The summation of the right-hand side of Eq. (9) indicates a value of
0.886227, which equals to the probability integral of 0.886227 fortunately,
which is with a higher accuracy (Navidi, 2020).

A2) Approximation of the elliptic integral calculus for the magnetic
induction intensity of an elliptical current-carrying ring

Take an elliptical current-carrying ring as an example, which is with
the major axis a, the minor axis b, the distance between the focal point F
and the center O is c; the distance from a point M on the ellipse to the
center O is r, see Fig.1. The problem is to find the magnetic induction
intensity at the center of the ellipse.
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Y

Fig. 1 — Polar coordinate of the elliptical current-carrying ring
Puc. 1 — lNonsapHbie KoopOuHambl 3AUMNMUYECKO20 CKOMIb3SU,e20 Konbua
Cnuka 1 — lNonapHe KoopOuHame enunmu4YyHo2 Ku3Ho2 rnpcmeHa

The solution:
In the polar coordinate system, the elliptic equation with the center 0
is

r=./a?cos? ¢ +b’sin’p = a/1-k’sin’ g, (11)
in Eqg. (11), k =c/a = (a® — b%)*%/a.
Thus, the expression of the magnetic induction at the center of the

current- carrying eIIipse can be written as (Ju et al 2005),
72

2z
I J1- kzsrn @ ﬂaj J1- kzsrn o

(12)

In Eq. (12), I and o represent the intensity of the electric current and
the permeability of vacuum, respectively.

Let us mark the integration part in Eg. (12) as Q, i.e.,
#l2 w2 then Eq. (12) can be rewritten as

Q= de>
B_tlg. (13)
ma
Under the condition of k = 0.3, one could try to evaluate the value of
Q by our approximate approach.

Again, according to the uniform experimental design method (Fang et
al, 1994, 2018), the distribution of the sampling points in the integral
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domain [0, n/2] is shown in Table 2, and thus the integration Eq. (13) is
discretized as

712 w23
Q=J, “alp)-do~ =2 o). (14)

Table 2 — Distribution of the sampling points in the integral domain [0, 7/2]
Tabnuua 2 — PacrnipedeneHue mo4yek 8bl60pkuU 8 uHmezpasnbHol obnacmu [0, 2]
Tabena 2 — Pacrniodena mayvaka y30opkosara y 0omeHy uHmezpauyuje [0, 2]

Point

No. 1 2 3 4 5 5 7 8 9 10 11

Loca- | 0.0714 | 0.2142 | 0.3570 | 0.4998 | 0.6426 | 0.7854 | 0.9282 | 1.0710 | 1.2138 | 1.3566 | 1.4994
tion

The approximate result of the right-hand side of Eq. (14) gets a value
of 1.608049, which equals to the exact value of the elliptic integral of
1.608049 luckily (Ju et al, 2005; Byrd & Friedman, 1971), implying a
much higher accuracy of the approximate approach.

2) Two dimensional case

Under the condition of two or three dimensions, Fang and Wang
developed a series of uniform design tables and their utility tables
according to GLP and number — theoretic methods (Fang et al, 1994,
2018), which are specific for uniform design. Here the uniform design
table U*17(17°) is the proper selection for our usage, which contains 17
sampling points.

2.0 1.5
Here, let us take the integration of J =j 14dxi.[ 10In(x1+2x2)dx2 as
X =1. Xp=1.

an example.

1.5

, _ 20 20 _
The integration of J :j 14dxlj loIn(x1+2x2)dx2 :j 14d)(1j OJ(xl,xz)dles
%=1 Xo=1. %=L !

15
%=1
with the precise value of 0.429560 (Song & Chen, 2004).
The distribution of the sampling points in the integral domain [1.4, 2.0]
x [1.0, 1.5] is shown in Table 3, in which Xi30 and Xz indicate the original
positions from the uniform design table U*17(17°) for [1, 17] x [1, 17]
domain (Fang et al, 1994, 2018).
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Table 3 — Distribution of the sampling points in the integral domain [1.4, 2.0] x [1.0, 1.5]
Tabnuua 3 — PacnipedeneHue moyvek 8bI60pKU 8 uHMeepasbHol obnacmu [1.4, 2.0] x
[1.0, 1.5]

Tabena 3 — Pacniodena mayaka y30pkogar-a y domeHy uHmeezpayuje [1.4, 2.0] x [1.0, 1.5]

Z
e
x
o
o

X20 X1 X2

7 1.4176 1.1912
14 1.4529 1.3971
3 1.4882 1.0735
10 1.5235 1.2794
17 1.5588 1.4853
6 1.5941 1.1618
13 1.6294 1.3676
1.6647 1.0441
9 1.7 1.25

OO |IN(ojga|dh|W|IN|F
OO |IN(ojga|dh|W|IN|F

10 10 16 1.7353 1.4559
11 11 5 1.7706 1.1324
12 12 12 1.8059 1.3382
13 13 1.8412 1.0147
14 14 8 1.8765 1.2206
15 15 15 1.9118 1.4265
16 16 4 1.9471 1.1029

17 17 11 1.9824 1.3088

According to the uniform design method (Fang et al, 1994, 2018), the
integration J in the domain [1.4, 2.0] x [1.0, 1.5] is discretized as

06><05ZJ( X1 %) (15)

The summation result of the right-hand side of Eq. (15) indicates a
value of 0.429609, which gives a relative error of 1.14x10%% with
respect to its precise value of 0.429560 (Song & Chen, 2004).

3) Three dimensional problem

Chen et al (2010) took the integration
S :Lllzodxlﬁfode;o(xf+X1'X23'st”e) dx, @s an example to study the validity

of the integration of multivariate functions by orthogonal arrays (Chen et
al, 2010). Let us reanalyze it by using our newly developed approximate
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approach for a definite integral on the basis of the uniform test design
method and the “good lattice point” (GLP) method here.

The integration  of g_ r . Xm'[l L%, f O X ) dxg

_J::del.[:z:odxz.[;:os(xi’XZ’XB)dXGiS with the precise value of 19/24 = 0.791667

(Chen et al, 2010). The uniform design table U*19(197) is a proper
selection for our usage, which contains 19 partition points. The
distribution of the sampling points in the integral domain [0, 1] x [0, 1] x
[0, 1] is presented in Table 4 (Fang et al, 1994, 2018), in which Xio, X20
and xszo indicate the original positions from the uniform design table
U*19(197) for the [1, 19] x [1, 19] x [1, 19] domain (Fang et al, 1994,
2018).

Tablg 4 — Distribution of the sampling points in the integral domain [0, 1] x [0, 1] x [0, 1]

Tabnuya 4 — PacnpederneHue mouyek 8bI60pKU 8 uHmeepasnbHol obnacmu [0, 1] x [0, 1]

Tabena 4 — Pacnodena mayvaka ysopKOGZES‘i;zi/]domeHy uHmeepauuje [0, 1] x [0, 1] x [0,
1

No. | Xio X20 X30 X1 X2 X3

1 1 11 13 0.0263 | 0.5526 | 0.6579
2 2 2 6 0.0789 | 0.0789 | 0.2895
3 3 13 19 0.1316 | 0.6579 | 0.9737
4 4 4 12 0.1842 0.1842 0.6053
5 5 15 5 0.2368 | 0.7636 | 0.2368
6 6 6 18 0.2895 0.2895 0.9211
7 7 17 11 0.3421 0.8684 0.5526
8 8 8 4 0.3947 0.3947 0.1842
9 9 19 17 0.4474 0.9737 0.8684
10 10 10 10 0.5 0.5 0.5

11 11 1 3 0.5526 0.0263 0.1316
12 12 12 16 0.6053 | 0.6053 | 0.8158
13 13 3 9 0.6579 0.1316 0.4474
14 14 14 2 0.7105 0.7105 0.0789
15 15 5 15 0.7632 0.2368 0.7632
16 16 16 8 0.8158 0.8158 0.3947
17 17 7 1 0.8684 | 0.3421 | 0.0263
18 18 18 14 0.9211 0.9211 0.7105
19 19 9 7 0.9737 0.4474 0.3421
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According to the uniform design method (Fang et al, 1994, 2018), the
integration S in the integral domain [0, 1] % [0, 1] x [0, 1] is discretized as

1 19
S~ > S(X, Xy )0 X)) - (16)
19 <

The summation result of the right-hand side of Eq. (16) results in a
value of 0.801534, which gives a relative error of 1.25% with respect to
its precise value of 0.791667, while Chen et al gave a relative error of
0.04% by simulation calculation with 100 tests in Li100(2%) orthogonal
arrays (Chen et al, 2010). Obviously, their amount of simulation
calculation is really huge.

Discussion

The above studies including the analysis and example calculations
indicate that the efficient result for a definite integral of a function with an
accuracy of around 0.4% within its single peak domain could be obtained
by using the new approach with 11 sampling points for one dimension,
17 sampling points for two dimensions, and 19 sampling points for three
dimensions. This result is much better than those of classic methods on
the one hand; besides, the approach is even better than the MC
simulation in the sense of workload of calculation. The novelty and
contribution of this study is to use a small number of sampling points to
obtain an efficient result for a definite integral with a certain accuracy. As
to this target, the aim is fulfilled. Of course, more sampling points could
further improve the accuracy provided the distribution of sampling points
follows the rules of uniform design and good lattice points at this stage.

Exploration of much better distributions of sampling points might be
one of future directions for a more efficient assessment of a definite
integral. Applications of the present approach might be another
orientation for future studies.

Conclusion

The efficient approach to a definite integral developed here on the
basis of the uniform test design method is promising from the viewpoint
of practical application. An efficient result for a definite integral of a
function could be obtained by using this approach with 11 sampling
points for one dimension, 17 sampling points for two dimensions, and 19
sampling points for three dimensions within its single peak domain. The
sampling points are deterministically and uniformly distributed according
to the rule of the uniform design method and “good lattice points”. The
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efficient approach developed in this article will be beneficial to relevant
research and application.
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QOOEKTMBHbIA MOOXOL K BbIYUCIEHWIO OMPEAENEHHOIO
WMHTEMPAIA C MPUMEPHO AECATBIO TOYKAMW BbIBOPKU

[xu Vio?, MaoweHa YxaHS, koppecnoHaeHT, XainaH TeH®, u BoH®

CeBepo-3anagHbii MONUTEXHUYECKNA YHUBEPCUTET,
r. CnaHb, HapogHas Pecny6nuka Kutan

3 (hakynbTET €CTECTBEHHBIX HayK
6 thakynbTET XMMUYECKON UHKEHEePUN

PYBPUKA TPHTW: 27.47.00 MaTemaTnyeckas knbepHeTumka,
27.47.19 WNccneposaHve onepawmin,
81.09.00 MaTepuanoBeaeHue,
45.09.00 OnekTpoTexHmyeckne matepuanbl
BWO CTATbW: opurmHanbHasa Hay4Has cTaTtbs

Pesrome:

BeeoeHue/uernb: lpubnuxeHHbIl nooxoo K 8bI4UCIIeHUO
ornpederieHHo20 UHMeezparna eceada bbin rpusnekamersibHol 3adayel
C camMoz20 3apoXO0eHusi UHmeapasibHO20  UCYUC/leHus  Uu3-3a
npakmu4eckux rnompebHocmel 8 Hay4YHbIX U UHXEHEePHbIX obnacmsix.
Ha npakmuke 8 6onbwuHcmee criydaes nodbiHmezparsnbHas OyHKUUs
bbigaem croXHOU, YmMo 3ampyOHsiem rosly4eHUe MOYHO20 3Ha4YeHusl
UHMe2puposaHusi, noamomy O fnpakmuyeckux yenel 0ocmamo4yHo
Halmu rnpubsiuXXeHHoe 3Ha4vyeHue orpedesieHHo20 UHmezpana ¢
Hekomopol moyHocmblo. B daHHOU cmambe npednazaemcs
agbgpekmusHbIli MoOX00 K 8bI4YUCIIEHUK OrpedesieHHO20 UHMmezpana
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rnpu HebonbWoM 4Yucsie mo4yek OUCermusauuu, OCHOBaHHbIU Ha
memode e0uHO20 rIpoeKmupoeaHus ¢ mMoOYKU 3PeHUs rpakmu4yecKkoeo
TIPUMEHEHUH.

Memodbi: PacnpedeneHue moyek Ouckpemu3ayuu 6 obracmu
U30/1UPOBaAHHO2O  MNuka  sensgemcsi  0emepMUHUPOBaHHbLIM U
pasHoMepHbIM, 4mo cnedyem u3 npasusn  Memodog8 edOuHO20
npoekmuposaHusi U moyek udeasbHOU peuwemku.

Pesynbmamei: SghghekmusHasi oueHka orpedesieHHO20 UHmeeparna
nepuoduyeckol @yHKyuu 6 obracmu ee Uu30/1Upo8aHHO20 [lUKa
Moxem b6bImb roslydeHa npu ucronb3oeaHuu 11 moyek 8bibOpKU 8
00HOM u3mepeHuu, 17 mouek 8bIbOpKU 8 d8yx u3MepeHusix u 19
mouyek 8bI60pKU 8 MPEX U3MEPEHUSIX.

Bbigodbl: PaspabomaHrHbili aghchekmusHbill modxod K orpedereHHOMY
uHmepesarny Ha OCHoge eOuHbIX Memodo8 [MPOEeKMUPo8aHuUs
MepcrnekKmueeH C MOYKU 3PEHUST MPaKmu4ecKoao rnpumeHeHusi. Touku
8bI60pKU  0emepMUHUPOBaHO U pPasHOMEPHO pacrnpederieHbl 8
coomeemcmeuu ¢ rnpasunamu Memodos eOUHO20 NMPOeKMUpPO8aHUsI U
moyek udearsnbHoU pewemku. OgbbekmusHnbll nodxoo,
paspabomaHHbIli 8 OQaHHOU cmambe, OKaXemcsi [10/1Ie3HbIM 8
coomeemcmaeyowux Ucc1edo8aHuUsIX U MPUMEeHEHUU Ha rpakmuke.

Knioueeble crnoga: €O0uHbIl Memod [POeKMuUpPo8aHUs, MOYKU
udeanbHoli pewemku, onpedeneHHbIl UuHMeepasn, obnacmb ¢
U30J1UPOBaHHbLIM MUKOM, KOHEYHbIE MOYKU 8bI6GOPKU.

EPUNKACAH NPUCTYMN N3PAYYHABAHY OOPEBEHOI
MHTEMPAJTA CA OKO OECETAK TAHAKA Y3OPKOBAHA

he Jy2, MaoweHe LleHr®, aytop 3a npenucky, XauneHa TeHr®, Ju BaHa®
YHusepanutet CeBeposanag, CujaH, HapogHa Peny6nvka KuHa

@ pakynTeT NPMPOAHUX HayKa

6 bakynTeT XeMWjCKOr MHXeH-epcTBa

OBJIACT: maTtemaTtuka, matepujanu
BPCTA UJTIAHKA: opyruHanHu Hay4Hu pag

Caxxemak:

Yeod/yurs: lNpubnuxHu npucmyn udpadyHasary oopeheHoe uHmezpana
npedcmaerbao je npobnem jow 00 rnoYemaka uHmezpasHoe padyHa 3602
nompeba y obriacmuma Hayke U UHXerepcmea. Y eehuHu criyyajesa y
npakcu, uHmezpaHd je CcrioXeH, wmo omexasa 0obujarbe madyHe
gpedHocmu uHmMezpayuje, maxko 0Oa je, 3a npakmuyHe rompebe,
doeos/bHO Hahu  npubnuxHy epedHocm odpeheHoe uHMezpana ca
uszeecHom mayHowhy. Y osom pady ripednaxe ce ecpukacaH ripucmyin
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uspayyHasarwy o00peheHoe2 UHmMezpana ¢ Manum 6pojeM mayaka
y30pKoearba, 3acHogaH Ha Memody YHUGOPMHOZ [pojekmogara ca
cmaHosuWIma rpakmuyHe rnpumeHe.

Memode: Lucmpubyyuja mavaka y30pkosaw-a y rnodpydjy u30eojeHoe
epxa je OdemepMmuHUCMUYKa U YyHUGbOPMHA, Wmo criedu u3 npasusa
Memoda yHUGhOPMHO2 fpojekmosarba U mayvaka 0obpe pewemke.

Pesynmamu: EcpukacHa rpoueHa oOpefjeHoe uHmMeepana 3a
nepuoduyHy byHKUUjy y HeHOM nodpydjy u30eojeHoz epxa Moxe ce
dobumu rnomohy 11 madaka y3opkosarba y jeOHoj OumeHsuju, 17 madyaka
y30pKkoearba y Ose OumeH3uje u 19 mayaka y3opkosaHa y mpu
oumeHa3uje.

Sakrbyuak: EpukacaH nipucmyn odpeheHoMm uHmepesary, Koju je y pady
pasgujeH Ha oOcHogy Memoda  yHUOPMHOZ2  [pojekmosara,
repcriekmueaH jfe ca cmaHosuwma npakmu4yHe rpuMmeHe. Tayke
y30pKosarba Cy OemepMUHUCMUYKU U YyHUGOPMHO pacriopefieHe y
cknady ¢ npasunuma memoda YyHUGOPMHO2 Mpojekmosar-a U mayaka
dobpe mpexe. EcbukacaH npucmyn 6uhe o0 Kopucmu 3a periegaHmHa
ucmpakusarba U rpakmuyHe rnpumeHe.

KrbyyHe pequ: memod yHUOpMHOZ rpojekmosara, madyke Oobpe
mpexe, olOpeheHu uHmeeparn, nodpydje u308ojeHo2 epxa, Mmadke
KOHa4HO2 y30pK0oB8ak-a.
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