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Abstract:

Introduction/purpose: To study the adequacy of applying numerical
methods in the modal analysis of complex carrying structures of cranes.

Methods: Comparative application of the analytical method and the
numerical method - FEM.

Results: Some comparative values of the modal parameters were obtained
both analytically and numerically for the derived solution of a gantry crane
carrying structure.

Conclusion: It is shown that the numerical method can give a reliable
general quality estimate of the structural behaviour of a complex carrying
structure from the aspect of modal analysis.
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Introduction

The problem of structural dynamics is of great importance in
constructions and design engineering. Modal analysis of conceptual
designs of carrying structures of hoisting machinery is the first and most
essential element of dynamic analysis for the estimation of their dynamic
stability. The process of determining eigenvalues in complex systems with
a large number of degrees of freedom is the most expensive phase in
dynamic analysis (Cori¢ et al, 1998). The first motive for making this paper
is the development of a model of a gantry crane with one pair of rigid legs
and the second pair of hinge-elastic legs for modal analysis. Modal
analysis and continuation of the analysis of dynamic behaviour should
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enable the design of a light and reliable structure. The second motive of
this paper is to present a modern approach to problems in the dynamics
of structures. According to the authors, this type of the gantry crane
structure has not been researched so far.

In older research works, the determination of natural frequencies of
complex carrying structures was based on the use of approximate
expressions and methods (Filippov, 1970). Analytic determination of
natural frequencies was limited to simple carrying structures (e.g. simple
beam and cantilever). In a complex elastic system, solving the frequency
equation was difficult because it contains trigonometric and hyperbolic
functions. Today, mathematical software packages (e.g. Mathematica,
MATLAB, and the others) enable easy solving of the frequency equation
of the oscillation of complex elastic systems. recise determination of
natural frequencies is fundamental from the aspect of optimizing carrying
structures. The method with distributed masses has been treated in
numerous literature books, e.g. (Karanovsky & Lebed, 2001; Krodkiewski,
2008).

However, the use of analytical methods in complex carrying structures
is still limited. In this case, for determining the natural frequencies of a
carrying structure, some of the numerical methods are used. The main
advantage of numerical methods is that very complex structures can be
viewed as reduced models whose analysis from the aspect of engineering
accuracy is sufficient to evaluate the behaviour of complex structures.
Today, the method with consistent masses is very common. For more
details on the finite element method (FEM), see (Bathe, 2016; Zienkiewicz
et al, 2005; Zaimovi¢-Uzunovi¢ & Lemes, 2002).

Analytical and numerical methods for structural dynamics are
considered in a number of papers. In the first selected paper
(Alexandropoulo et al, 1986), for a simple elastic system (a simple frame
with two elements), the effect on the bending eigenfrequencies of the
longitudinal motion, alone or in combination with other parameters, is
thoroughly discussed. In the paper (Oguamanam et al, 2001), the
dynamics of a 3D model of an overhead crane system is considered. The
transverse and longitudinal vibrations of a frame structure caused by a
moving trolley and a hoisted object using a moving finite element are
treated by (Wu, 2008). The paper (Lazarevi¢ & Lazarevi¢, 2018), deals
with the research into the dynamic characteristics (natural frequencies and
movements) of hydraulic excavators. A comparative approach of analytical
and numerical solutions for a jib crane system was explored in (Umar et
al, 2019). The paper (Vasiljevi¢, 2019) focused on comparative modal
analysis of the portals of a type “H” and “X” portal cranes. In a recent paper,
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(Milana et al, 2021) investigates the moving load problem for the lifting
boom of a ship unloader.

Description of the problem

In this paper, the object of the research is a double girder gantry crane
with one side cantilever. Depending on the main girder support method,
gantry cranes can be executed in two ways, as follows:

¢ with both pairs of rigid legs, and
e with one pair of rigid legs and the second pair of hinge-elastic legs.

Gantry cranes with both rigid legs are simpler from the aspect of the
complexity of the carrying structure. So, in papers from the field of dynamic
analysis of gantry cranes, subject studies were only gantry cranes with
rigid connections of both pairs of legs with the main girders. For this
reason, the author of this paper has opted for a modal analysis of the
carrying structure of gantry cranes with one rigid connection and one
flexible (hinged) connection of the legs with the main girders (Figure 1).
For more details on gantry cranes, see (Ostri¢ & Tosi¢, 2005).

The carrying structure of a gantry crane (Figure 1) consists of two
main box girders which are on ends connected to crossbars. The main
girders rely on the boxed legs, one of which is rigid and the other hinge-
elastic. The flexible (hinged) connection is located at the cantilever of the
main girder. The rigid leg receives influences from the trolley braking, while
both legs receive the influence from the crane braking.

This type of the carrying structure of the gantry crane is shown in
Figure 2. For the defined type of the gantry crane carrying structure, modal
analysis will be conducted in the following sections. In this paper, the
modal analysis considering the gantry crane was conducted analytically
and numerically. In the first step, the continuous model is presented, i.e.
the analytical approach for modal analysis. In the second step, the finite
element models are presented, i.e. the numerical approach for modal
analysis.

To obtain all eigenvalues and eigenvectors, it is necessary to perform
a large number of numerical operations. In order to reduce the scope of
dynamic calculation, only the adequate eigenvectors are selected. The
mode shape with a frequency close to the frequency of load of most
influence on the dynamic response of the system is defined as dynamic
load and assumed to be the dominant mode shape.
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Figure 1 — Sketch of a gantry crane system
Puc. 1 — 3cku3 cucmembi KO3/108020 KpaHa
Cnuka 1 — Ckuya cucmema pamHe ousanuue

(
L

LY K T
Rigid Flexible /

connection connection

) A Tf;l/

<]

£l
%

K

KAXY 9.9.3

Figure 2 — Type of the carrying structure of the gantry crane
Puc. 2 — Tun Hecywel KOHCMPYKYUU KO3/108020 KpaHa
Cnuka 2 — Tun Hocehe KOHCmpyKuyuje pamHe du3anuye
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Continuous model

The continuous model of the gantry crane carrying structure was
adopted (Figure 3). The continuous model is a model with uniformly
distributed masses. This model is a plane frame with the following
assumptions (idealization):
¢ the material of the elements is homogeneous and isotropic,
e the main structural elements are uniform beams,
esthe elements are significant by the transverse oscillation in the
Bernoulli-Euler beam theory,

¢ the transverse displacements of the center of the section are normal
to the longitudinal axis and small in relation to the length of the
element, and

¢ the cross-sections of the elements remain plane and normal to the

elastic line.

The axial and shear deformations and the influences of rotation inertia
can be ignored due to the known structural behaviour of gantry cranes.

zZ Z5

—
? I ZI” s

Z3

A

Figure 3 — Continuous model
Puc. 3 — HenipepbigHass modesib
Cnuka 3 — KoHmuHyanHu moden

Partial differential equations of free undamped transverse oscillations
of the frame elements read:

a2y, (z,t) a%v. (z,t)
! +c2 |

0, i=12234 (1)
at2 o074
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The notations in Eq. (1) are as follows:
e Vi(z,t) — transversal displacements of the element i,
e z—spatial coordinate,
e t—time, and
e C—speed of wave propagation.
The speed of wave propagation c is equal:

_El
pA

c? )

where:
e E — elastic modulus,
o p— material mass density,
e A — area of the cross-section of the element i, and
e |;—moment of inertia of the cross-section of the element i.
Let us look at the solution of differential equation (1) in the form:

Vi (z,t)=Z,(2)T (). 3)
The notations in Eg. (3) are two functions:
e Z{(z) — mode shapes of the element i, and

e T(t) —time function.
The transversal displacements for each element of the frame read:

v, =vy(z,t)=2,(z)T(t), 0<z<L,

V, =V,(Z,t)=Z,(2)T(t), 0<z<L,

Vo =V, (2,t)=Z,(2)T(t), 0<z<H, )

v, =V, (z,t)=2Z,(2)T(t), 0<z<H.

The functions of the mode shapes and the function of time are equal:
Z;(z)=Cych(k;z) + Cysh(k;z) +
+ C,; cos(k;z) + C,; sin(k; z), (5)

T (t) = B, cos(at) + B, sin(at).

Due to the complexity of the elastic system, the functions Zi(z) will be
presented by Krylov functions:

Z,(2)=CyS(kiz) +C, T (kiz) + .
+CaU (k2) + C,V (k;2). ©)

The circular frequency w in the time function in Eq. (5) is equal to:
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@ = ck? =k? i. (7

PA

The frequency of the oscillation f is calculated by the expression:

w k? |El
f=—= : (8)
27 2n '\ pA

Boundary conditions

As the structure consists of four beam elements, it is necessary to
define sixteen boundary conditions. The boundary conditions can be
(Karanovsky, 2004):

e geometric boundary conditions (deflections and inclinations), and
¢ load boundary conditions (transverse forces and bending moments).

On the support of the rigid leg (element 3) there are two boundary

conditions:

Z,(0)=0, (9.1)
—El,Z;(0)=0. (9.2)

At the location of the rigid connection between the main girder and
the rigid leg (elements 1 and 3), there are three boundary conditions:

Z,(0)=0, 9.3)
~E1,Z;(0)=0, (9.4)
—El,Z; (0)=—El;Z;(0). (9.5)

At the location of the rigid connection between the main girder and
the cantilever (elements 1 and 2), there are four boundary conditions:

Z,(0)=0, (9.6)
Z,(L)=0, 9.7)
Z,(L)=2,(0), (9.8)
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~El,Z; (L)=—E1,Z;(0). (9.9)

At the end of the cantilever (element 2), there are two boundary
conditions:

~El,Z;(L)=0, (9.10)
—El,Z; (L) =0. (9.11)

At the location of the flexibly connection between the main girder and
the hinge leg (elements 1 and 4), the following boundary condition is valid:

—El,Z;(0)=0. (9.12)

On the support of the hinge leg (element 4), there are two boundary
conditions:

Z,(H)=0, (9.13)
—El,Z;(H)=0. (9.14)

The boundary condition on the basis of equality displacements of the
end of rigid leg and the end of hinge-elastic leg reads:

Z;(H)=2,(0). (9.15)

Finally, the dynamic boundary condition on the basis of the Law on
motion of the centre of mass of the main girder (element 1) and the action
of the transverse forces at the places of its connection with the rigid leg
and the hinge leg (elements 3 and 4) reads:

—p(AL+ AL )Y, (0,t)=Elv; (H,t)+ELY; (0,t).  (9.16)

This condition, after replacing vz and vafor Eq. (4) and Eq. (6) in Eq.
(9.16i), obtains the following form:

p(AL+AL)Z,(0)w? =El,Z; (H)+ELZ;(0).  (9.16)

Frequency equation
From Eg. (7), the characteristic values k; defined by ki:
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AL i
ki—kl“ﬂ_klgi"_l’z’&él' (10)

From the defined boundary conditions (Egs. (9.1-9.16)), a
homogeneous system of linear equations is formed, from which the
frequency equation follows:

det(F) =0. (11)

The notice F in Eqg. (11) is defined by Eq. (12) and Egs. (13.1) to
(13.11). The frequency equation is very complex because the
combinations of trigonometric and hyperbolic functions depend on a
number of parameters, so that its solution in the algebraic form cannot be
found.

[F]llxll :[Fl FEREREREFRRKRRR Fll]' (12)
The vectors Fiin Eq. (12) read:

F.={-10 T(kL)S(kL)V(kL)000000} (13.1)
F,={0-1LU(kL)T(kL)S(kL)000000} , (132

F, ={00V (kL)U (kL)T (kL)000000}", (13.3)
F,={000-¢& 0V (kL)U (kL)0000}', (13.4)

T
FS:{OOOO—II—Z ;s(le)v(le)oooo} e
1
F, ={00000T (kL)S(kL)0000} (13.6)

F ={&S(k&H) 1,63V (k&H) 0000000

T (k&H) 1:63U (ki &H )}T , (13.7)
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R ={&U (k&H ) 1L,ET (k&H) 0000000

V (k&H) 1,88 (k&GH) (13.8)
F,={0000000S(ké&H)U (k&H)
—1k1|T‘11(A&L+A2L1)}T, (13.9)
Fo={0000000T (k&H)V (k&H)00), (1310
F,={0000000V (k&H)T (k&H)00) . (13.11)

Finite element models

For the gantry crane carrying structure, the finite element models
were adopted:

e Case I: model with 7 finite elements (Figure 4), and

e Case Il: model with 14 finite elements (Figure 5).

The finite element model is a model with consistent masses. The
models are plane frames divided into beam finite elements (plane-frame
element).

This element was adopted based on the following assumptions:

ethe axial deformations of the elements are in accordance with

Hooke's law, and

o the transverse deformations of the elements are in accordance with

the Bernoulli-Euler theory.

The adopted finite element is a combination of a plane element of the
bar type and the element of the carrier type. All elements of the plane
frame are made of steel. The basic characteristics (mechanical and static)
of the element i are:

e pi—mass density of the material,

e E — elastic modulus,

o A —area of the cross-section, and

¢ |;—moment of inertia of the cross-section.
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Figure 4 — Finite element model — 7 FE
Puc. 4 — KoHe4Ho-anemeHmHasi mooesnb — 7 K3
Cnuka 4 — KoHayHoernemeHmHu moodern — 7 KE
LD 2 @30 4D s O ® 7D s ® s D@y
= - > = ) 2 . ° : =
4 ©®9
oD /"\
(11) 13
12 14
15 o
12) (14)
Ny N’
L»X 5

Figure 5 — Finite element model — 14 FE
Puc. 5 — KoHeyHo-anemeHmHasi mooesb — 14 K3
Cnuka 5 — KoHayHoernemeHmHu moodern — 14 KE

The numerical method consists of determining the inertial load along
the element during the movement of the girder, and then replacing the
inertial load with the equivalent nodal load.

The formed reduced models are coarse models based on the
methodology of the reduction of the number of degrees of freedom of the
node, so the box-section is replaced by a beam element.

The carrying structure is modelled with two types of beam finite
elements:

o finite element ik - type (Figure 6a), and
o finite element ig - type (Figure 6b).
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Figure 6 — Types of finite elements
Puc. 6 — Turbl KOHEYHbIX 3/1EMEHMO8
Cnuka 6 — Tunosu KoHa4YyHUX eriemeHama

The beam element type ik is a planar frame element with 3DOF in
each node. The beam element type ig is a planar frame element with 3DOF
in the first node and 2DOF in the second node.

In case I, the girder of the carrying structure is divided into 5 finite
elements, while both legs were modelled as one finite element.

In case Il, the girder of the carrying structure is divided into 10 finite
elements, while both legs were modelled as 2 finite elements.

The formed finite element models of the structure are relatively
simple, but they enable sufficiently accurate static and dynamic analyses.
In research, this is a common measure of discretization. Furthermore,
increase in the number of finite elements relate to an increase in the
number of programming operations. Also, the time required to obtain the
dynamic parameters in the software package increases.

For the restrained element on both sides of the constant cross-
section, the vector of the interpolation functions reads:

_1—5 0
0 1-£2 4283
NT = 0 I(&-2L2+¢&%) ’ 9525
& 0 | (14)
0 E2+ 283
0 (2&2+e0) |

For the element that is on the one side restrained and on the other
side with a hinge connection, with a constant cross section, the vector of
the interpolation functions reads:
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1-¢ , 0 .
0 1—35(5)2;51(5)33 )

Ng=[ 0 x=Z1(E) +31(E) | &= (15)
3 0
K GG

The corresponding matrix of masses and stiffness of the line element
i are defined on the basis of the interpolation functions (Eq. (14) or Eq.
(15)) and their first and second derivatives and they read:

— T
M, _Vij NdV, 16)
a — T ! . — "T "
K; —IEN N'dV; Kit—IEN N"dV. an
V \%

The transformation matrix element of the type ik is:

cos® —singd 0 0 0 O]

sin@ coséd O 0 0O O

T - 0 0 1 0 0 O
1o 0 0 cosd sing O (18)

0 0 0 -sin@ cosé O

0 0 0 0 0 1]

while the transformation matrix element of the type ig is:
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[cos® —singd 0 0 0
sin@ cos@ O 0 0
Tg=| O 0 1 0 0 (19)
0 0 0 cos@ sin@
0 0 0 -singd cosd|

The symbol 6 in Eq. (18) and Eqg. (19) takes the following values:
m Case |: 6=0° for i=1...5; 6=270° for i=6; 6=90° for i=7.
m Case Il: 6=0° for i=1...10; 6=270° for i=11,12; 6=90° for i=13,14.

The mass matrix in the global coordinate system is equal to:

G _ 71T
M;” =T, M;T (20)
The stiffness matrix in the global coordinate system is equal to:
G _ T
Ky =T, KT 21)
m Case [:
7
M= Z M, (20.1)
7
K= Z Ki (21.1)
m Case ll:
14
M :ZM“ (20.11)
14
K= Z.: K 21.11)

Similarly to the system mass matrix, the system stiffness matrix is also

decomposed into submatrices. The submatrix of the system mass matrix
by the unknown M, is obtained by decomposing the matrix in Eq. (20.1) or
in Eq. (20.11), while the submatrix of the system stiffness matrix per the
unknown K, is obtained by decomposing the matrix in Eq. (21.1) or the
matrix in Eq. (21.11).
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The circular frequencies of the carrying structure are obtained by
solving the algebraic equations:

det( Ky =@ Mpy ) =0 22)

Equation (22) is complex.
Numerical example

On the theoretical basis given in the previous sections, a numerical
example was given for the derived solution for a gantry crane (MaSinska
industrija Ni§ — Fabrika dizalica, 1981).

Starting data

Table 1 gives the general information about the gantry crane.

Table 1 — General information about the gantry crane
Tabnuua 1 — Obujue ceedeHusi 0 KO3/1080M KpaHe
Tabena 1 — Onwme uHgopmayuje 3a pamHy ousanuuy

Technical characteristics \Value
Payload, Q 10 [t]
Span of the main girder, L 20 [m]
Span of the cantilever, L1 4 [m]
Height of legs, H 8 [m]

The material of the carrying structure is steel S235J2G3. The main
mechanical characteristics of the carrying structure are equal: E=2.1x10"!
Nm?; p=7850 kgmMm3.

Figure 7 shows the cross-sections of the main girder, the rigid leg and
the hinge-elastic leg.

490 B”
i —_ |
B,
|
f m: [ ]
8 10 10 E
+
418 b?! bn
= " a) © B, b) = B, o)

Figure 7 — The cross sections: a) main girder, b) rigid leg, c) hinge-elastic leg
Puc. 7 — lNonepeyHble cevyeHusi: a) anasHol barku, 6) xxecmkol 0fopsbl, 8) WapHUPHO-
no08uUXHOU Ornopb!
Criuka 7 — lNornpeyHu rpeceyu: @) enasHuU Hocad, 6) Kpyma Hoea, 8) 32/106Ho-enacmu4yHa Hoaa
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Results of the continuous model
Table 2 presents the data for the continuous model of the carrying

structure of the gantry crane.

Table 2 — Characteristics of the continuous model

Tabnuua 2 — XapakmepucmuKu HernpepbIigHOU Modesnu
Tabena 2 — Kapakmepucmuke KOHMuUHyarHoa moodesna

Element (i) li [m] Hn [mm] Bn [Mmm] bn [mm]
1 Z1 1000 - -

2 Z> 851 - -

3 Z3 570 587.5 557.5
4 Z4 - 603.5 573.5

Frequency equation (12) is solved using Mathematica software
(Wolfram Research, Nd). In the first step, the characteristic values of k; of
the frequency equation are graphically determined (Figure 8).

In the second step, the characteristic values of k; are localized first
and then their exact values are determined using the command FindRoot.
The first four values are k;={0.0808, 0.16794, 0.23261, 0.2955}. Based on
the characteristic values of ki, according to Eq. (7), the first four own
circular frequencies of the model of the gantry crane carrying structure are
determined (Table 3).

detF
0.10 -

0.05

0'00 L w 1 1 1 1 L L 1 L L L 1 L L | k]

~0.05 |

—0.10"

Figure 8 — Dependence of detF on ki1
Puc. 8 — 3asucumocms detF om ki
Cnuka 8 — 3asucHocm detF 00 ki
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Table 3 — Frequencies of the continuous model
Tabnuua 3 — Yacmomesl HenpepbigHOU Modenu
Tabena 3 — ®pekseHyuje KOHMUHyanHo2 Modena

Circular frequenc Frequenc Period
Mode No [rad/s] eney [Hz? / [s]
1st 12.710 2.023 0.4943
2nd 54.882 8.735 0.1145
3rd 106.146 16.894 0.0592
4th 169.999 27.056 0.0367

Results of the finite element model

m Case |

Table 4 presents the data for the FE model with 7 finite elements of

the gantry crane carrying structure.

Table 4 — Characteristics of the model with 7 finite elements
Tabnuua 4 — Xapakmepucmuku Modesiu ¢ 7 KOHeYHbIMU 3r1ieMeHmamu
Tabena 4 — Kapakmepucmuke modesna ca 7 KOHa4YHUX efleMeHama

Element (i) li [m] Hn [mm] Bn [Mmm] bn [mm]
1.4 5 1000 - -

5 4 851 - -

6 8 570 587.5 557.5
7 8 - 603.5 573.5

Due to its complexity, equation (22) for case | is solved through the
programming code “RV.ModAn-FEM7x7” written in a Mathematica

software package (Wolfram Research, Nd).

Table 5 shows the values of the first four frequency oscillating carrying

structures of the gantry crane (model | - with 7 finite elements).

Table 5 — Frequencies of the model with 7 finite elements
Tabnuuya 5 — Yacmomasi modernel ¢ 7 KOHEeYHbIMU 351eMeHmamu
Tabena 5 — ®pekseHyuje modena ca 7 KOHa4YHUX efleMeHama

Circular frequenc Frequenc Period
Mode No (rad/s] neney [Hz? Y [s]
1st 11.818 1.881 0.5317
2nd 54.682 8.703 0.1149
3rd 140.334 22.335 0.0448
4th 170.249 27.096 0.0369
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m Case Il
Table 6 presents the data for the FE model with 14 finite elements of
the gantry crane carrying structure.

Table 6 — Characteristics of the model with 14 finite elements
Tabnuuya 6 — Xapakmepucmuku mMooesiu ¢ 14 KOHEeYHbIMU 351eMeHmamu
Tabena 6 — Kapakmepucmuke modena ca 14 KoHayHUX efleMeHama

Element (i) li [m] Hn [Mmm] Bn [mm] bn [mm]
1.8 2.5 1000 - -
9...10 2 851 - -
11...12 4 570 587.5 557.5
13...14 4 - 603.5 573.5

Analogically, equation (22) for case Il, due to the complexity, is solved
through the programming code “RV.ModAn-FEM14x14” written in
Mathematica software.

Table 7 shows the values of the first four frequency oscillating carrying
structures of the gantry crane (model Il - with 14 finite elements).

Table 7 — Frequencies of the model with 14 finite elements
Tabnuua 7 — Yacmombi modenel ¢ 14 KOHeYHbIMU 3remeHmamu
Tabena 7 — ®pekseHyuje modesna ca 14 KoHa4yHUX ennemMeHama

Circular frequenc Frequenc Period
Mode No [rad/s] e [Hz]q / [s]
1st 12.525 1.993 0.5016
2nd 56.226 8.949 0.1117
3rd 109.350 17.404 0.0575
Ath 168.327 26.790 0.0373

Mode shapes

Figures 9 and 10 present the shapes of the first two eigenmodes of the
oscillation of the carrying structure of the considered type of the gantry crane.

There are two main mode shapes of the considered structure which are
of the greatest significance for the analysis of the structure dynamic
behaviour. The first mode shape is called the basic form of oscillation.
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A

Figure 9 — 15t mode shape of the crane carrying structure
Puc. 9 — 1 ¢hopma konebaHuli Hecyujeli KOHCMPYKUUU KpaHa
Cnuka 9 — psu 0bnuk ocyunosarba Hocehe KoHcmpykyuje dusanuuye

Figure 10 — 2" mode shape of the carrying structure
Puc. 10 — 2 gpopma konebaHuli Hecywell KOHCMPYKYUU KpaHa
Criuka 10 — [pyeau obnuk ocyunosarwa Hocehe KOHcmpyKyuje du3anuue

Analysis of the results

The analysis of the results shows that the results for the natural
frequencies of the numerical method correspond well with the results of the
analytical method. For a greater accuracy in numerical methods, it is
necessary to apply a greater number of finite elements.
From the aspect of modal analysis, the worst dynamic behaviour of the
construction is reflected in the first mode of oscillation. Also, based on the
same aspect, a good dynamic behaviour requests high first frequency. The
first lowest (basic) vibration frequency of the gantry crane carrying structure
is within the limits of 0.5-3.5 Hz, so the condition for small mass, or its
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slimness, is fulfilled. In accordance with these conclusions, the carrying
structure of the considered gantry crane has the necessary dynamic stability.

The diagram in Figure 11 shows the influence of the number of finite
elements of the carrying structure of the gantry crane on the accuracy results
of the numerical method. This influence is particularly expressed in the third
mode. Of particular importance is the accuracy of the first mode of oscillation.

15k B CM
: B FEM-14
10k O FEM-T

Mode

Mot 1 Mo 2 Mods 3 Mot 4

Figure 11 — Influence of the number of finite elements on the accuracy results
Puc. 11 — BriusiHue Konu4ecmea KOHeYHbIX 371IeMEeHIM08 Ha MOYHOCMb Pe3ybmamos
Cnuka 11 — Ymuuyaj 6poja KoHauyHUX enleMeHama Ha mayHocm pe3ynmama

Based on the results in the previous section, Table 8 shows the
comparative results for the first four natural frequencies of the mathematical
model. The disparity between the analytical method (AM) and the FEM
method is calculated according to the expression:

p=AM-FEM 150 9

Table 8 — Comparative values of the frequencies for the two models
Tabnuya 8 — CpasHumernbHble 3Ha4YeHus1 Yacmom o 08ym MoOesisim
Tabena 8 — YnopedHe spedHocmu hpekseHyuja 3a dsa modena

[FHrif'”e”Cy Continuous model [ 1ne element [Egs]pa”ty
1 2,023 1.993 1,48
f 8.735 8.949 2,45
z 16.894 17.404 3,02
i 27.056 26.790 0,98
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Comparing the values of the natural frequencies obtained by the
analytical method with those obtained by the numerical method leads to
the conclusion that the maximum relative error for the first two modes is
1.48% and 2.45%. The results for the first and fourth frequencies match
best.

Conclusion

The conclusions of the comparison of the continuous model and the
finite element model of the carrying structure of a double girder gantry
crane with one cantilever for modal analysis are:

e Analytical approach is recommended for structures where it is
possible to find solutions of dynamic parameters in the analytical
form;

¢ It is shown that the priority of the numerical approach is reflected
in its possibility to view very complex structures as reduced models
whose analysis results in an estimate that is precise enough from
the aspect of engineering accuracy;

¢ Inthe numerical method, it has been shown with high accuracy that
the results are obtained by dividing a discretized model into a high
number of finite elements;

e It is shown that it is possible to detect the causes of undesirable
behaviour of a structure with the numerical method;

¢ ltis shown that the numerical method can provide a reliable general
estimate of the quality of structural behaviour from the aspect of
modal analysis;

e It was determined that the values of the modal parameters
obtained by the analytical method and the numerical method (FEM)
coincide well from the aspect of engineering accuracy;

e For the first mode, a relative error of natural frequencies obtained
by the FEM (method with consistent masses) in relation to the
exact value (method with distributed masses) amounts to 1.48%;

e The study in this paper can be useful in selecting methods for
researching dynamic behaviours of carrying structures.
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Pe3some:

BeedeHue/uenb: Llenb daHHOU cmambu 3aknodanacb 8 U3y4YeHuu
coomeemcmsyioweao MPUMEHeHUsI  YUCIMEHHbIX Memodos  npu
MOOanbHOM aHaru3e CrIoXHbIX HEeCYLWUX KOHCMPYKUUL KpaHos.

Memoobkl: B cmambe npumeHeH Memod cpasHUMmMesibHo20 aHanusa u
YucrieHHbIU memod — MKO.

Pesyrnbmamai: C noMowbto aHanumuyeckoz20 U YUuciaeHHo20 Memooos
6b1r1U N0OTyYeHbl cpagHUMerlbHbIe 3Ha4eHUs1 ModalrbHbIX napamempos
Orid MPUMEHEHHO20 peweHUsT Hecywel KOHCMPYKUUU KO3/108020
KpaHa.

Bbigo0bi:  Bbino  nmokazaHO, 4MO  YUCMEHHbIU Memod Moxem
obecrieyumsb HadexHyro 2robasibHyt0 OUEHKYy Kadecmea rnogedeHuUs
C/IOXKHOU Hecyuwel KOHCMPYKUUU C MOYKU 3peHusi ModasibHO20
aHarnusa.
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Caxemak:

Yeod/yure: Lurs pada jecme ucmpaxueare adekeamHOCMU MpuMeHe
HyMepuykux Memola KoO molarHe aHanu3e CrioKeHUx Hocehux
KOHCcmpyKuuja Au3anuya.

Memode: CriposedeHa je yrnopedHa rnpumMeHa aHanumuydke u Hymepuyke
memode — MKE.

Pesynmamu: Nomohy aHanumu4koa u HyMmepudkoza memoda 0obujeHe cy
yriopedHe epedHocmu MoJOarnHuUx rnapamemapa 3a U38e0eHO peuleH-e
Hocehe KoHCcmpyKyuje pamHe Ou3arnuuye.

Sakrbyyak: lNokasaHo je Oa ce HymepuykoMm mMemodom moxe dobumu
rnoysdaHa eniobasiHa oueHa Keanumema roHawara crioxeHe Hocehe
KOHCMpYKUuje ca acriekma mModasiHe aHanuse.
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