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Abstract:

Introduction/purpose: The paper presents a new state-of-the-art method
that involves NASA satellite imagery with the latest deep learning model
for a spatiotemporal sequence forecasting problem. Satellite-retrieved
aerosol information is very useful in many fields such as PM prediction or
COVID-19 transmission. The input data set was MODAL2 E AER _OD
which presents global AOT for every 8 days from Terra/MODIS. The im-
plemented machine learning algorithm was built with ConvLSTM2D lay-
ers in Keras. The obtained results were compared with the new CNN
LSTM model.

Methods: Computational methods of Machine Learning, Artificial Neural
Networks, Deep Learning.

Results: The results show global AOT prediction obtained using satellite
digital imagery as an input.

Conclusion: The results show that the ConvLSTM developed model
could be used for global AOT prediction, as well as for PM and COVID-19
transmission.
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Introduction

Technological development together with rapid development of informa-
tion technologies forms a modern basis for various scientific disciplines.
One of such disciplines is Environment and Environmental protection. In
recent decades, the development of remote sensing and open access of
satellite images, as a part of the big data revolution, has provided scien-
tists with a new opportunity for their research (Lin et al., 2018; Wang et al.,
2013). One of many remote sensing applications is satellite data sets of
aerosol optical thickness (AOT) or aerosol optical depth (AOD) (Shi et al.,
2020; Wei et al., 2020). It is the same measurement that may be made
from the ground using a sun photometer or from satellites like Moderate
Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite.
Satellite measurements of aerosols are based on the fact that particles
change the way the atmosphere reflects and absorbs visible and infrared
light.

Today, scientists use arrays of satellite, aircraft, and ground-based in-
struments to monitor aerosols. The key quantity they report on is AOT, a
measure of the amount of light that aerosols scatter and absorb in the at-
mosphere (Filonchyk et al., 2019). AOT is the fundamental measurement
of quantity and distribution of aerosols. The Sun provides the energy that
drives Earth’s climate, but not all of the energy that reaches the top of the
atmosphere finds its way to the surface. That is because aerosols, and
clouds seeded by them, reflect about a quarter of the Sun’s energy back to
space (Colbeck & Lazaridis, 2013).

AOT is a measure of in what amount airborne particles prevent light from
traveling through the atmosphere. Aerosols absorb and scatter incoming
sunlight, thus reducing visibility and increasing optical thickness. An optical
depth of less than 0.05 indicates a clear sky with relatively few aerosols and
maximum visibility, whereas a value of 1 indicates hazy conditions. Optical
depths above 2 or 3 represent very high concentrations of aerosols.

Aerosol particle pollution, i.e. airborne solid particles and liquid droplets,
comes in a range of sizes. Particles smaller than 2.5 micrometers pose
the greatest risk to human health because they are small enough to be
breathed deep into the lungs and, in some cases, to enter the bloodstream.
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These fine particles, about 30 times smaller than the width of a human hair,
are also a major cause of poor visibility. Different specialists describe par-
ticles based on their shape, size, and chemical composition. Toxicologists
refer to aerosols as ultrafine, fine, or coarse matter. Regulatory agencies,
as well as meteorologists, typically call them particulate matter PM, 5 or
PM,q, depending on their size. In some fields of engineering, they are
called nanoparticles. The media often uses everyday terms that hint at
aerosol sources, such as smoke, ash, and soot (Nikezi¢ et al., 2017).

Aerosols or airborne particulate matters (PM), which originate from both
natural and anthropogenic emission sources, substantially influence the cli-
mate, environment and human health. Satellite remote sensed AOT repre-
sents columnar aerosol loading of the atmosphere and can be empirically
converted into PM mass as the primary predictor (You et al., 2016). In
literature review of the related work, there are studies that show a connec-
tion and a relationship between aerosols and PM prediction (Elperin et al.,
2017; Kumar et al., 2007). It follows that the model presented in this study
can also be applied to forecast PM and not only AOT.

Data and methodology

In the era of big data, to find the right piece of data as well as to prepare
it for use, is quite a challenge. With globalization and the Internet many
data sets are available as open sources. NASA's data policy ensures that
all NASA data are available fully, openly, and without restrictions. Satellite
imagery from NASA Earth Observations (NEO) is available for bulk down-
loading and analysis. The resolution of satellite images varies depending
on the instrument used and the altitude of the satellite’s orbit. Different
global data sets are represented with daily, weekly, and monthly snapshots,
and images are available in a variety of formats.

Scientists use measurements from the MODIS sensor aboard NASA’s
Terra and Aqua satellites to map the amount of aerosol that is in the air
all over the world. Because aerosols reflect visible and near-infrared light
back to space, scientists can use satellites to make maps of where there
are high concentrations of these particles. Although most aerosols remain
suspended in the atmosphere for short periods, typically between 4 days
and a week, they can travel vast distances. Particles moving within the
atmosphere at 5 meters per second will travel thousands of kilometers in a

week.
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Figure 1 — AOT from Terra/MODIS on 2021-07-12
Puc. 1 = AOT om Terra/MODIS Ha 12.07.2021 .
Cnuka 1 - AOT ca Terra/MODIS Ha 0aH 12.07.2021.

Dust plumes from the Sahara frequently cross the Atlantic and reach
the Caribbean. Winds sweep a mixture of Asian aerosols - particularly
dust from the Gobi Desert and pollution from China - eastward over Japan
and toward the central Pacific Ocean. Smoke from wildfires in Siberia and
Canada can find its way to the Arctic ice cap.

NEO data sets are available in RGB as PNG files among other formats
and all files are at full NEO resolution (3600x1800 pixels). Fig. 1 shows
one sample of the data set MODAL2_E_AER_OD which presents global
AOT for every 8 days from the Terra/MODIS (NASA NEO Nasa Earth Ob-
servations, 2022a; NASA NEO Nasa Earth Observations, 2022b). Optical
thickness of less than 0.1 (palest yellow) indicates a crystal clear sky with
maximum visibility, whereas a value of 1 (reddish brown) indicates very
hazy conditions.

The MODIS aboard NASA's Terra and Aqua satellites is used to monitor
AOT over most of the globe (oceans and the moist parts of the continents)
on a daily basis, every 8 days and monthly. The MODIS is used to moni-
tor aerosols’ mass concentration, optical properties, and radiative forcing.
MODIS’ aerosol information is used to study aerosol climatology, to monitor
the sources and sinks of specific aerosol types (such as sulfates and other
industrial/urban aerosol and biomass burning aerosol), to serve as inputs
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for climate modeling and detection of the fingerprints of anthropogenic cli-
mate change, and to perform atmospheric corrections of remotely-sensed
surface reflectance over the land. By (Kumar et al., 2007) MODIS’ aerosol
information can be used for PM prediction. The report by (Lin et al., 2018)
states that the estimation of PM, 5 concentrations from AOT requires a ver-
tical correction and a humidity correction. Except for the prediction of AOT
and PM, MODIS’ aerosol information can be used for COVID-19 transmis-
sion (Tang et al., 2020; Zoran et al., 2021; Eleftheriadis et al., 2021). By
(Zoran et al., 2021) it has been more than one year since the first cases
of the new coronavirus variant SARS CoV-2 that invades host cells using
an endocytic pathway were detected in Wuhan, Hubei province in China.
This coronavirus is a new enveloped virus positive-sense, single-stranded
RNA with roughly spherical or moderately pleomorphic virions of approx-
imately 60—-140 nm with an average to 0.1 um in diameter (Zoran et al.,
2021). Several epidemiologic studies linked exposure to ambient air pollu-
tion with PM and gaseous pollutants and occurrence of numerous respira-
tory viral infectious diseases transmission during several seasons (Zoran
et al., 2021). Under laboratory conditions, it was demonstrated that there
is a long time viability of SARS-CoV-2 in ambient aerosols, as an impor-
tant source of COVID-19 transmission (Zoran et al., 2021). The report
by (Tang et al., 2020) presents prevention and control countermeasures
to reduce the potential aerosol transmission under different occasions be-
cause current evidence on SARS-CoV-2 has limitations, but is strongly in-
dicative of aerosols as one of several routes of COVID-19 transmission
(Tang et al., 2020). The present study takes satellite-retrieved AOT from
MODAL2_E AER_OD which presents the snapshots from the year 2000
to present time on every 8 days (NASA NEO Nasa Earth Observations,
2022a; NASA NEO Nasa Earth Observations, 2022b). This data set is
input data in the used deep learning (DL) model. The promise of DL is
that it can solve complex problems automatically, faster and more accu-
rately than a manually specified solution and at a larger scale. Traditional
time series forecasting methods focus on univariate data with linear rela-
tionships and fixed and manually-diagnosed temporal dependence. Neural
networks add the capability of learning possibly noisy and nonlinear rela-
tionships with arbitrarily defined but fixed numbers of inputs and outputs
supporting multivariate and multi-step forecasting.
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DL is part of a broader family of ML methods based on artificial neural
networks (ANN) with representation learning. In DL, a convolutional neural
network (CNN, or ConvNet) is a class of ANN, most commonly applied to
analyze visual imagery. In a CNN, the input is a tensor with the shape:
(number of inputs) x (input height) x (input width) x (input channels). After
passing through a convolutional layer, an image becomes abstracted to a
feature map, also called an activation map, with the shape: (number of in-
puts) x (feature map height) x (feature map width) x (feature map channels)
(Valueva et al., 2020; Vaddi & Manoharan, 2020). A common application
of a CNN is to extract spatial information from images.

Recurrent neural networks (RNN) add the explicit handling of ordered
observations and the promise of learning temporal dependence from con-
text. Long Short-Term Memory (LSTM) networks are a type of RNN that
are capable of learning the relationships between elements in an input se-
quence. LSTM can process not only single data points (such as images),
but also entire sequences of data. LSTM networks are well-suited to classi-
fying, processing and making predictions based on time series data, since
there can be lags of unknown duration between important events in a time
series (Hochreiter & Schmidhuber, 1997).

Spatio-temporal prediction (STP) in DL is usually done by a CNN and
LSTM where a CNN (Convolution2D) serves well for capturing image or
spatial features, whilst LSTM is used to detect correlations over time (Dey
et al., 2021). However, by stacking these kinds of layers, the correlation
between space and time features may not be captured properly. To solve
this, the authors in (Shi et al., 2015) proposed a network structure capa-
ble of capturing spatiotemporal correlations, namely ConvLSTM (Shi et al.,
2015). In Keras, this is reflected in the ConvLSTM2D class, which com-
putes convolutional operations in both the input and the recurrent transfor-
mations to capture spatiotemporal data at the same time. ConvLSTM2D
is a Recurrent layer, just like LSTM, but internal matrix multiplications are
exchanged with convolution operations. As a result, the data that flows
through the ConvLSTM cells keeps the input dimension instead of being
just a 1D vector with features (Shi et al., 2015; Donahue et al., 2015; Hu
et al., 2020; Valueva et al., 2020). The main difference between ConvL-
STM and LSTM is the number of input dimensions. As LSTM input data is
one-dimensional, it is not suitable for spatial sequence data such as video,
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satellite, or a radar image data set. ConvLSTM is designed for 3D data as
its input.

Deep Learning Model

Shapes of the required input and output data for individual layers may
vary with different types of layers used in the Deep Neural Networks. There
are many possibilities to manage and manipulate data shapes through the
network to achieve the desired goal. For reshaping data between two lay-
ers, we can use additional Reshape layers with the condition that the num-
ber of elements that are reshaped stays the same. If we need to add time
steps for recursive purposes, we can add a TimeDistributed layer. Also, in
the existing recursive layers like LSTM and ConvLSTM, there are attributes
called return_sequences that allow that layer input and output data stay in
the same shape for next layer.

The data input shape for an LSTM layer is always in the form (samples,
time steps, features) that is a 3D tensor, and its output is the same with
the option return_sequences = True. When this option is False, the output
is in the form (samples, features). Considering that ConvLSTM combines
the performance of both Conv and LSTM layers, its data input shape is
(samples, time steps, rows, cols, channels), that is a 5D tensor. Its output
with the option return_sequences = True has a similar 5D shape except that
the number of channels becomes the number of filters. When this option
is set to False, time steps are restricted (Xavier, 2019).

The DL model used in this study consists of 3 x ConvLSTM2D layers
and the final layer Conv3D as an output. The Conv3D layer creates a con-
volution kernel that is convolved with the layer input to produce a tensor of
outputs, i.e. height, width, and channel of the image. The ConvLSTM2D
layer was followed by Dropout and BatchNormalization. In ML, early stop-
ping is a form of regularization used to avoid overfitting and it was used in
the model with a Reduce learning rate when a metric has stopped improv-
ing. The DL model is done in Keras. Keras is an open-source software
library that provides a Python interface for artificial neural networks. Keras
acts as an interface for the TensorFlow library.

The input data set was MODAL2_E_AER_OD, a set of PNG satellite-
retrieved images from 2000-02-18 to 2021-09-14 on every 8 days (993
snapshots in PNG format with 3600x1800 pixels resolution). The im-
ages were resized to 288x144 pixels (hardware could not support origi-
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nal resolution of images), converted to JPG, normalized by dividing with
255 and stored in the NumPy array with a sequence of 10 frames.
MODAL2_E_AER_OD data set was split on train and test subsets. The
train/test ratio during the testing phase was 70/30, 80/20 and 90/10. The
optimum was achieved with the 80/20 train/test split.

After many trials and tests, it was concluded that the most optimal result
was obtained for the batch size=5 and epochs=50. Also, the best results
gave the activation function 'hard_sigmoid’ for the Conv3D layer and the
optimizer’adam’ (learning_rate = 0.001) for a model compile. An activation
function is a mathematical gate between the input feeding the current neu-
ron and its output and the idea of activation functions is derived from the
neuron-based model of the human brain which consists of a complex net-
work of biological neurons in which a neuron is activated based on certain
input from the previous neuron.

As part of the optimization algorithm, the error for the current state of
the model must be estimated repeatedly. This requires the choice of an
error function, conventionally called a loss function, which can be used
to estimate the loss of the model so that the weights can be updated to
reduce the loss on the next evaluation. A regression predictive modeling
problem involves predicting a real-valued quantity, so, for the loss function,
the Mean-Squared Error (MSE) was used, and for the metrics Root-Mean-
Squared Error (RMSE). Figure 2 depicts the used DL model.

After the process of DL model training was finished, prediction of the
first image from the test dataset was done and it was compared with the
original first image from the test dataset. This type of prediction is known
as sequence-to-one and it is possible to predict more images (sequence-
to-sequence type of prediction) (Nikezi¢ et al., 2022).

Results and discussions

The saved DL model was loaded to predict the first image from the
test dataset, Fig. 3a. Fig. 3b shows the original first image from the test
dataset.

The evaluation of the DL model is based on the evaluation metrics i.e.
MSE=0.0116. The MSE is always positive regardless of the sign of the
predicted and actual values and a perfect value is 0.0 while the range is
from zero to infinity. These results prove that the proposed ML model can
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input: | [(None, None, 144, 288, 3)]
output: | [(None, None, 144, 288, 3)]

conv Ist m2d 3 input: InputLayer

) J
input: (None, None, 144, 288, 3)

output: | (None, None, 144, 288, 32)

conv_lst m2d_3: ConvLSTM2D

input: | (None, None, 144, 288, 32)

dropout_3: Dropout
output: | (None, None, 144, 288, 32)

A 4

input: | (None, None, 144, 288, 32)

batch_normalization_3: BatchNormalization

output: | (None, None, 144, 288, 32)

Y
input: | (None, None, 144, 288, 32)

output: | (None, None, 144, 288, 32)

conv Ist m2d 4: ConvLSTM2D

input: | (None, None, 144, 288, 32)
output: | (None, None, 144, 288, 32)

dropout_4: Dropout

A J

input: | (None, None, 144, 288, 32)

batch_normalization_4: BatchNormalization

output: | (None, None, 144, 288, 32)
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Y
input: | (None, None, 144, 288, 32)

output: | (None, None, 144, 288, 32)

conv_Ist m2d_5: ConvLSTM2D

input: | (None, None, 144, 288, 32)

dropout_5: Dropout
output: | (None, None, 144, 288, 32)

input: | (None, None, 144, 288, 32)

batch normalization 5: BatchNormalization

output: | (None, None, 144, 288, 32)

Y
input: | (None, None, 144, 288, 32)

output: | (None, None, 144, 288, 3)

conv3d_1: Conv3D

Figure 2 — Plot of the ConvLSTM model graph
Puc. 2 — UsobpaxeHue epagha modenu ConvLSTM
Cnuka 2 - lNpukas epagha ConvLSTM modena
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be used for AOT forecasts. Figure 4 shows the line plots of loss over 50
training epochs.

0 50 100 150 200 250

0 50 100 150 200 250

Figure 3 — Global AOT a) predicted and b) actual (real)
Puc. 3 — obanbHeili AOT a) npoeHosupyembil u 6) hakmuyeckul (peasibHbil)
Cnuka 3 — mobanHu AOT a) npedsufjeHu u 6) peanHu

For STP, as mentioned, itis common to use CNN + LSTM models (Ding
etal., 2020). To compare ConvLSTM and CNN LSTM, the new CNN LSTM
model has been developed. Figure 5 depicts the new CNN LSTM model.
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The evaluation metrics was for MSE 0.1117 and in comparison with the
ConvLSTM model (MSE 0.0116) presents a higher value. Lower values of
MSE indicate a better fit.

— frain
validation
2.0 1
15 -
1]
1]
S 10
0.5 1 !
0.0 1
0 10 20 0 40 50

Epochs

Figure 4 — Line plots of loss over 50 training epochs
Puc. 4 - JluHeliHoe u3obpakeHue nomeppb 3a 50 mMpeHUpPOBOYHbLIX Nepuodos8
Cnuka 4 — l'ybuyu mokom 50 ernoxa mpeHupara

For better comparison, the next statistics was done. The Mean Abso-
lute Error (MAE) is a measure of errors between the paired observations
expressing the same phenomenon and is used for predictions in a segment
of 9 frames per image, Table 1.

The range for the MAE is from zero to infinity and lower values are better.
From the obtained results, it can be concluded that the ConvLSTM model
required well-structured input data, right selection and optimal tuned model
hyperparameters before it could be utilized for reliable AOT predictions.
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[ input: | [(None, 10, 144, 288, 3)] |

input_3: InputL.
PR PUEAYET [ output: | [(Nome, 10, 144, 288, 3)] |

[ input: [ (None, 10, 144, 288, 3) |

time_distributed_12(conv2d_4): TimeDistributed(Conv2D) ‘ oat |(N 10, 144, 288, 32) |
output: one, 10, , ,

[ input: [ (None, 10, 144, 288, 32) |

time_distributed_13(batch_normalization_4): TimeDistributed(BatchNormalization) ‘ pr—s ‘ Y 10, 144, 288, 32) |
output: one, 10, , ,

I

\ input: | (None, 10, 144, 288, 32) |
time_distributed_14(conv2d_5): TimeDistributed(Conv2D)

[ output: | (None, 10, 144, 288, 3) |
[ input: ] (None, 10, 144, 288, 3) |

time_distributed_15(batch_normalization_5): TimeDistributed(BatchNormalization) ‘ ot ‘ ~ 10, 144, 288, 3) |
output: one, 10, , 3

}

time_distributed_16(reshape_4): TimeDistributed(Reshape)

[ input: [ (None, 10, 144, 288, 3) |
| output: | (None, 10, 41472, 3) |

| input: \ (None, 10, 41472, 3) \
time_distributed_17(Istm_2): TimeDistributed(LST'M)| gt | (None, 10,30) |
output: one, ,

input: | (None, 10, 30)

dropout_2: Dropout
- output: | (None, 10, 30)

[ imput: [ (None, 10,30) |
| output: | (None, 10, 124416) \

dense_2: Dense

| input: \ (None, 10, 124416) \

| output: [ (None, 10, 144, 288, 3) ]

Figure 5 — Plot of the CNN LSTM model graph
Puc. 5 - lpagpuk modenu CNN LSTM

Cnuka 5 — lNpuka3s epacha CNN LSTN modena

reshape_5: Reshape

Table 1 — MAE for predictions in a segment of 9 frames per image
Tabnuua 1 — MAE 0nsi npoeHo3a 8 ceameHme u3 9 kadpoe o u3obpakeHuro
Tabena 1 — MAE 3a npedsuharba y ceameHmy 00 9 kadpoea ro cruuu

ConvLSTM | CNN LSTM
0.02200718 | 0.24474642
0.02213584 | 0.2462145
0.02251104 | 0.24545886
0.02263835 | 0.2449535
0.0227564 | 0.24526556
0.02259156 | 0.24504275
0.02232519 | 0.24720876
0.02259231 | 0.2456902
0.02278301 | 0.24560421
0.23362 0.24605619
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Conclusions and future research

Atmospheric aerosols play a major role in the Earth’s radiation budget.
Yet, aerosols are one of the greatest sources of uncertainty in climate mod-
eling. Radiative forcing by aerosols may explain the difference between the
observed and modeled trends in average global temperature. In fact, the
interaction of aerosols with solar and terrestrial radiation perturbs the radi-
ation budget via scattering and absorption of sunlight. Many recent studies
show the importance of including aerosols in climate models to observe and
measure human influence on atmospheric chemistry and climate change.
Besides, some studies acknowledge that inhalation of aerosols is one way
how COVID-19 spreads. Even when an infectious person is more than two
meters away, aerosols have the ability to travel and infect others. These
are some of the most important reasons why it is useful to predict global
AOT.

The present study investigated the possibility of a new ConvLSTM
model to forecast global AOT from MODIS satellite imagery. DL with big
data is a new powerful tool which could help scientists in their research. A
relatively new ConvLSTM2D layer in Keras merges spatial and temporal
components and allows them to be used in STP.

Satellite images are helpful in seeing long-range transport of pollutants
from other regions, but they do not give information about pollution levels on
the ground. They see pollutants in the entire atmosphere, so the pollutants
one sees in the satellite image could be kilometers above the ground. To
find out whether the AOT in the satellite image is on the ground nearest to
the surface, ground measurements need to be compared to satellite mea-
surements. This can be done with AErosol RObotic NETwork (AERONET)
like in the study (Beer et al., 2020). The AERONET project represents a
federation of ground-based remote sensing aerosol networks established
by NASA and PHOTONS (NASA Goddard Space Flight Center, 2022).
Therefore, the next step in future research should be the validation of the
ML model by comparing it with AERONET.

Another step for the developed ConvLSTM model should be to research
how meteorological parameters such as wind speed, temperature, rela-
tive humidity, and rainfall improve AOT forecasting and accuracy. Further,
deep neural networks showed to be very successful with time-stepped data
(Radivojevic¢ et al., 2021) which should be concatenated with the input data

of this study.
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Pesrome:

BsedeHue/uenb: B daHHOU cmambe npedcmaesrnieH HO8bIlU COo-
8peMeHHbIl MemoO0, Ucronb3youwuli criymHuUKoeble cHUMKU HA-
CA c Hoseliweli moderibio arlyboko20 0bydeHus Onsl peweHus
3ada4yu Mpo2HO3UPOBaHUSs MPOCMPaHCMEeHHO-8PEMEHHbIX 10~
crnedosamernibHocmed. [lonydyeHHasi Co CrymMHUKO8 UH¢hopma-
yusi 06 aspo30s1siX 0O4eHb M0f1e3Ha 80 MHO_UX 0bracmsix, makux
Kak ducrniepaupoeaHue Yacmuy, unu nepedaqya COVID-19. [Ansa
8X00HbIX OaHHbIX rocnyxuna modens MODAL2 E AER OD,
Komopas npedcmaensem earobaribHbIl MPo2HO3 onNMuYecKou
monuwUHbI aspo3orisi Ha Kaxoble 8 OHel ¢ Terra/MODIS. Pe-
anu3oeaHHbIli an2opumm MalWUuHHO20 O0byYeHUsT eKrr4Yaem
cocmasHble HelipoHHble crou ConvLSTM2D e 6ubnuomeke
Keras. [MonyyeHHble pe3ynbmamabi 6biiu cONOCMaeneHbl ¢ HO-
eoli modesnbio CNN LSTM.

Memodbi: BbiuucriumernbHble MemoObl MawUHHO20 0by4YeHUs,
UCKyccmeeHHbIe HelipOHHbIe cemu, arlybokoe obydeHue.

Pesynbmamai: Pe3ynbmamsi rnokasbieatom 2r1o0banbHbIl po-
2HO03 0rIMUYeCcKoU MOosUWUHbI a3p0O307Is1 C UCMONb308aHUEM yuch-
pOBbIX CrTYMHUKO8bIX CHUMKO8 8 Ka4ecmee 8X00HbIX OaHHbIX.

Bbi800bi: lNony4eHHbIe pe3yrbmamabl IoKasbieaom, 4mo paspa-
6omatHasi modesnb ConvL STM npuzodHa 01 2106anbHO20 rpo-
2HO3UpPOBaHUST MONUWUHbI amMOChEPHO20 aspo30ris, a makxe
0ns pacripocmpaHeHusi ammocgepHbix yacmuy u COVID-19.

Knirowesble criosa: onmuyeckasi monujuHa asposaorsisi, Habro-
OeHusi Bemnu HACA, Con-vLSTM2D, COVID-19, ducnepcusi
meepOdbix Yacmuuy,

CaTenuTtcko ocmatpare 1 oy6oKo yderse 3a npeasuharse
aepocorna

Hukona C. Mupkos, [ywaH+ C. Pagusojesuh, UeaH M. Jlasosuh,
Y3axup P. Pamaganu, ywan 1. Hukesunh, aytop 3a npenucky
YHusep3uteT y Beorpagy, VIHCTUTYT 3a HykneapHe Hayke "BuHua’-

WHCTUTYT of HaumoHanHor 3Havaja 3a Penybnuky Cpbuijy,
Beorpapn, Penybnuka Cpbuja

OBJIACT: nHxewepcTBo
BPCTA YJTIAHKA: opurnHanHu HayyHu pag

Y800: WUsnoxeHa je yHanpeheHa memoda koja ykrby4dyje Ha-
CUHe camesiumcke CHUMKe ca HajHosujum moderiom OybokKoe

G



y4yera Koju ce oOHocu Ha npobriem rpedsuhar-a npocmopHo-
8peMeHCKUX cueHana. MHgopmauyuja o aepocosniuma ca came-
JIUMCKUX CHUMaKa je epJio 3HayajHa 3a npedsufarbe oucrep3u-
je vecmuya y ammocgbepu u npeHoca supyca COVID-19. Yna-
3HU nodauyu MODAL2 E AER OD npedcmasrbajy anobasnHu
AOT 3a ocam OaHa ca Terra/MODIS. Anzopumam MauwUuHCKo2
yqera je cadurbeH 00 KOMMo3UMHUX HeypOHCKUX criojesa Con-
vLSTM2D y 6ubnuomeuu Keras. [obujeHu pe3ynmamu cy yro-
peheHu ca Hosum moderiom CNN LSTM.

Memode: lNpopayyHcke memode MawlUHCKOe y4erba, selimadke
HeypoHcKe Mpexe, OybOKO yderse.

Pesynmamu: Pesynmamu nipuka3syjy enobanHo npedsuhare
onmuyke OebrbuHe aepocona ca duaumarHuM camesnumcKum
CHUMUUMa Koju cy KopuwheHu Kao yna3Hu nodauyu.

Bakmpyyak: [lokaszaHo je Oa je passeujeHu moden ConvLSTM
rnoeofaH 3a enobanHo npedsuhame ammo-cgpepcke debrbuHe
aepocora, Kao u 3a fpeHoc ammocghepcKux Yyecmuuya u eupyca
COVID-19.

KrbyuHe pequ: onmuuka 0ebrbuHa aepocona, NASA Earth Ob-
servations, ConvLSTM2D, COVID-19, ducnep3uja yecmuya.
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