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Abstract:

Introduction/purpose: The electroencephalography (EEG) signal has a
great impact on the development of prosthetic arm control technology. EEG
signals are used as the main tool in functional investigations of human
motion. The study of controlling prosthetic arms using brain signals is still in
its early stages. Brain wave-controlled prosthetic arms have attracted
researchers’ attention in the last few years.

Methods: Several studies have been carried out to systematically review
published articles as a means of offering researchers and experts a
comprehensive summary of the present, state-of-the-art EEG-based
control techniques used in the prosthetic arm and other technologies.

Results: 175 articles were studied, compared, and filtered to only include
the articles that have strong connections to the study.

Conclusion: This study has three goals. The first one is to gather,
summarize, and evaluate information from the studies published between
2011 and 2022. The second goal is to extensively report on the holistic,
experimental outcomes of this domain in relation to current research. It is
systematically performed to provide a wealthy image and grounded
evidence of the current state of research covering EEG-based control of
prosthetic arms to all experts and scientists. The third goal is to recognize
the gap in knowledge that demands further investigation and to recommend
directions for future research in this area.

Keywords: EEG, BCI, comprehensive study, prosthetic arms,
controllers.

Introduction

The absence of the upper limb results in severe impairment in
everyday life, which can further influence both the social and mental state
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(Abdulrahman Satam, 2021). For these reasons, developments in
cosmetic and body-driven prostheses date from some centuries ago, and
they have been evolving ever since. Research showed that the estimated
percentage of impaired people is rising up due to wars, conflicts, diseases,
accidents, and forgotten minefields from previous battles and wars.

A prosthesis is much more than a device; it also completes a wearer's
sense of wholeness. It gives emotional comfort. The history of prosthetics
isnot just about the advancement of medical science, it is a history of
human beings who miss an essential part of themselves. The earliest
known prosthetic wasnot an eye, leg, or arm. It was a toe, first made by
Egyptians around 3000 years ago. Then development continued with the
Roman Empire to the end of the Middle Ages and finally to the civil war in
the United States of America.

A decade ago, prosthetic limbs were developed as a practical
complementary system for impaired people. Prosthetics, or artificial limbs,
are used to replace limbs that were lost or absent limbs from birth. They
enable those with congenital limb differences and amputees alike to
improve function and mobility. Due to advances in medical science,
prosthetics have improved and are capable of remarkable things (Osama
& Allauddin, 2022).

In addition to the development of the prosthetic arm (Figure 1) design,
scientists are focusing on improving the control of the techniques for the
purpose of accuracy, performance enhancement, and the comfort of the
prosthesis.

Figure 1 — Prosthetic arm
Puc. 1 - lNpomes pyku
Cnuka 1 — lpocmemuyka pyka

Ensuring the smoothness and effective control technigques of the
prosthetic limb is an important factor in the interface between the wearable
prosthesis and the human since the prosthetic limb is donned by a human.
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Therefore, those control strategies can be classified according to the
human-robot interaction method. The control of the prosthetic arm is
influenced by electrophysiological signals. These signals have been well-
known tools to examine the capacity and conduct of the human movement
in ongoing research.

Electroencephalography (EEG) has been one of frequently used
physiological signals in the control techniques of prosthetic limbs,
especially in the upper limbs. EEG is considered a non-invasive and
convenient method that may be appropriate for realistic application.
Recently, it was found that fewer endeavors have been made to efficiently
audit these reviews, as a way of offering analysts and specialists a
synopsis of the current, best-in-class EEG-based control systems utilized
for assistive innovation. Hence, this research has three primary objectives.

The primary aim is to deliberately assemble, abridge, assess, and
organize data with respect to accuracy and estimations of the past
research distributed in the publications between 2011 and 2018.

The second objective is to broadly report on all the trial results of this
domain’s present research. It is methodically performed to give a clear
picture and grounded proof of the momentum conditions of research
covering EEG-based control uses and benefits for controlling assistive
robotics to every specialist and researcher. The third objective is to
perceive the whole of information that requests in-depth examination and
to suggest ways for future research in this domain (Mandekar et al, 2022).
To achieve these objectives, the following research questions (RQs) have
been put forward:

(Q1) What are the types of EEG signals that are used to control the
prosthetic arm?

(Q2) How do these signals translate to control commands?

The solutions to these questions will guide the reader and enhance
their knowledge of the recent development of prosthetic arms based on
EEG signals. A more extensive image of various emergent topics/themes,
experiments, and concepts will be offered. This paper is structured into six
sections.

The following section provides a background of EEG signals and
prosthetic limbs. The third section describes the methodology through
which the review processes were conducted. The fourth section presents
the SLR results, followed by the fifth section which reports on the results
of the research questions as organized according to their sequences.
Finally, the sixth section presents a discussion of the review and its

conclusion.
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Table 1 — Symbols
Tabnuua 1 — Obo3HayeHus1

Tabena 1 — Cumbonu

Symbol Meaning

EEG Electroencephalography

ECoGs electrocorticograms

MEGs magnetoencephalograms

fMRI functional magnetic resonance imaging
fNIRS Functional near-infrared spectroscopy
BCI Brain-Computer Interface

SVM Support Vector Method

FFT Fast Fourier transform

CSP Common spatial Pattern

LDA Linear discriminant analysis

PSD Power Spectral Density

LSTM Long*short term Memory

BPNN Back Propagation Neural Network
BMI Brain Machine Interface

PET Positron Emission Tomography
BFN Brain Functional Network

ANN Artificial Neural Network

ERP Event-related Potential

WT Wavelet transform

MLP Multi-layer Perceptron

K-NN K-Nearest Neighbor

NB Naive Bayes

FES Functional Electrical Simulation
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Preliminaries and literature review

In the BCI system, EEG signals are most commonly used not only for
prosthetics but also for any controllable devices such as robotics arms,
Exoskeletons, Wheelchairs, drones, etc. Bridges et al. (Bridges et al,
2011) and his team provide an overviewof human-machine interface
architecture. The article contains good information about the control
system. Yanagisawa et al. (Yanagisawa et al, 2011)shows a new method
of controlling a prosthetic arm using ECoG signals. The system proved its
effectiveness in decoding the hand movement of a patient who suffered
from a stroke and used that signal to control a prosthetic hand. Another
research implemented by Taha and his team (Beyrouthy et al, 2017) is
about a system that extracts the EEG signals from the brain and uses them
to control a smart 3D prosthetic arm. The system showed great results and
presented a reliable alternative for an invasive system. Researchers in
(Bright et al, 2016) succeeded in developing an EEG-based brain control
system for the prosthetic arm using a BCI Neurosky mind wave set. The
system reached an accuracy of 80 %. The team of researchers in (Elstob
& Secco, 2016) controlled a 5 DOF robotic and prosthetic hand. They used
two software frameworks. The method showed good results both
technically and economically. A study of experimenting how transradial
amputees could control grasp preshaping in a prosthetic arm using an
EEG-based closed Loop BMI system is done by Agashe et al. (Agashe et
al, 2016). The results showed that the EEG-based BMI system is a feasible
solution. Healthy participants involved in a study implemented by Vidaurre
et al. (Vidaurre et al, 2016) were able to use non-invasive Motor Imagery
BCI to achieve linear control of an Upper Limb FES controlled Neuro
Prosthesis. An embedded system was designed by (Rashid et al, 2018) in
order to control the finger movement of the prosthetic arm using EEG
signals. The signal classification accuracy of this study reached an
acceptable percent of 79 %. Faiman et al. (Faiman et al, 2018) investigated
whether spontaneous resting-state functional connectivity could predict
the degree of motor adaptation of the right (dominant) upper limb reaching
in response to a robot-mediated force field. Spontaneous neural activity
was measured using resting-state electroencephalography (EEG) in
healthy adults before a single session of motor adaptation. Noel & Snider
(Noel & Snider, 2019) used the Deep Neural Network to control the
prosthetic arm. The Neural Network was used to classify the signal to
detect person's intention of extending the right index finger. The model
achieved an accuracy of 63.3%. Gannouni et al. (Gannouni et al, 2020)
presented a study that uses machine learning in order to anticipate the
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movement of all five fingers. The proposed system achieved a signal
classification accuracy of 81%. A 62% accuracy was achieved for an
inexpensive mind-controlled prosthetic arm based on EEG signals. The
system was implemented by (Chinta et al, 2020). Fuentes-Gonzalez et al.
(Fuentes-Gonzalez et al, 2021) designed a prosthetic arm using blender
software. The control of the prosthetic arm was done using EEG signals.
The prosthetic arm was fitted to a 64-year-old man who had suffered from
an electric shock. Ali et al. (Ali et al, 2021) build an inexpensive smart
functional prosthesis arm in accordance with functional and non-functional
requirements to meet users’ goals and requirements. Setiawan et al.
(Setiawan et al, 2021) designed a system to control a prosthetic hand
using EEG signals to execute flexion and extension of fingers. Chaudhry
et all (Chaudhry et al, 2022) discussed EEG control algorithms for
prosthetic arms. They developed a cheap three-dimensional prosthetic
arm;however, it was only a prototype and couldnot be applied for
amputees. An EEG-based control system is not restricted to prosthetic
arms only sinceexoskeleton and robotic arms can also be included in that
area. Xu, et al. (Xu et al, 2011) developed a rehabilitation system for an
upper limb stroke patient where the assistive device was based on motor
imaginary EEG. The system proved feasibile and is fully capable of
exploring patient's motor initiatives and guiding stroke patients to perform
rehabilitation training effectively. The teams in (Ramos-Murguialday et al,
2012) developed a robotic hand exoskeleton based BCI to move fingers in
flexion and extension movements. The results suggest that feedback
contingency (proprioceptive stimulation paired with EEG SMR
desynchronization) influences the motor network enhancing significantly
SMR down-regulation. Formaggio et al. (Formaggio et al, 2013) present a
study to perform a robot assisted task using a Bi-Manu track robot assisted
arm trainer. Eight subjects patrticipated in the study. The results suggest
new perspectives for the assessment of patients with neurological disease.
Tung et al. (Tung et al, 2013) performed a study of EEG to track the effect
of a BCI based therapy on brain plasticity. The results suggest that motor
recovery improvement comes from increasing activation in the lesion
hemisphere during the BCI therapy. Krichner et al. (Krichner et al,
2014)carried out an experiment to prove that EEG and EMG can improve
the adaptability of assistive devices in accordance with demands of users.
The results show that both EEG and EMG predict a movement before it is
physically executed. Witkowski et al. (Witkowski et al, 2014) introduced
and tested a novel hybrid brain-neural computer interaction (BNCI) system
fusing electroencephalography (EEG) and electrooculography (EOG) to
enhance reliability and safety of continuous hand exoskeleton-driven
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grasping motions. Looned et al. (Looned et al, 2014) introduceda wearable
and portable system consisting of a novel lightweight Robotic Arm Orthosis
(RAO), a Functional Electrical Stimulation (FES) system, and a simple
wireless Brain-Computer Interface (BCI). This system is able to process
electroencephalographic (EEG) signals and translate them into motions of
the impaired arm. The researchers in (Hortal et al, 2015) created a system
based on a hybrid upper limb exoskeleton for neurological rehabilitation.
The movement was controlled by an EEG-based BMI. The system showed
the combined use of a hybrid upper limb exoskeleton. Brauchle and his
team in (Brauchle et al, 2015) tested the feasibility of a 3D robotic assistant
to produce movements with a multi-joint exoskeleton during Mi
synchronization of sensorimotor oscillations in the B-band. The team of
researchers in (Elnady et al, 2015) tested the feasibility of using FES.
Robotic training devices facilitate motor task completion in post-stroke
individuals. A robotic training device was operated to assist a pre-defined
goal-directed motor task. The results showed that the participants' ability
to use proprioception to control a motor output did not affect their ability to
use the BCI-driven exoskeleton with FES. A novel system for the neuro-
motor rehabilitation of upper limbs was presented in (Comani et al, 2015).
The system was validated in three sub-acute post-stroke patients. The
system permits synchronized cortical and kinematic measures by
integrating high-resolution EEG, a passive robotic device and Virtual
Reality. The brain functional re-organization was monitored in association
with motor patterns replicating activities of daily living (ADL). The patients
underwent 13 rehabilitation sessions. Soekadar et al. (Soekadar et al,
2015) introduced a novel brain/neural-computer interaction (BNCI) system
that integrates electroencephalography (EEG) and electrooculography
(EOG) to improve control of assistive robotics in daily life environments. In
(Bhagat et al, 2016), researchers demonstrated the feasibility of detecting
a motor intent from the brain activity ofchronic stroke patients using an
asynchronous electroencephalography (EEG)-based brain machine
interface (BMI). Another investigation was implemented in (Tang et al,
2016). They investigated whether self-induced variations of the
electroencephalogram (EEG) can be useful as control signals for a man-
made upper-limb exoskeleton. A BMI based on event-related
desynchronization/synchronization (ERD/ERS) is proposed. The study
showed that the system is effective to control the upper limb exoskeleton.
A rehabilitation approach based on BCI providing contingent sensory
feedback of brain activity was presented by Frolov et al. (Frolov et al,
2017). The results proved that adding BCI control to exoskeleton assistive
devices can improve the rehabilitation process for post stroke patients.
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The researchers in (Buerkle et al, 2021) presented a novel approach of
how upper-limb movement intentions can be measured with a mobile
electroencephalogram (EEG). The results suggested high detection
accuracies and potential time gains of up to 513 ms to be achieved in a
semi-online system. Thus, the time advantages included in a simulation
demonstrated the potential to increase a system’s reaction time and
therefore improve the safety and the fluency of Human-Robot
Collaboration. The EEG based control systems have application in the field
of robotic arms. Steinisch et al. (Steinisch et al, 2013) proposed a system
for neuro-motor rehabilitation of the upper limbs in stroke survivors. The
system is composed of a passive robotic device (Trackhold) for kinematic
tracking and gravity compensation, five dedicated virtual reality (VR)
applications for training of distinct movement patterns, and high-resolution
EEG for synchronous monitoring of cortical activity. Another study was
conducted by Shedeed et al. (Shedeed et al, 2013). They presented a BMI
system based on EEG signals to control three movements (open arm,
close arm, and closehand). The signal classification accuracy reached up
91%. The researchers in (Bhattacharyya et al, 2014) proposed a novel
approach toward EEG-driven position control of a robot arm by utilizing
motor imagery. The results showed that the system is effective in the
rehabilitation process. The team in (Xu et al, 2015) designed a BCl-based
online robot control system. The study included 30 participants. The
system proved its effectiveness and reliability. The total accuracy of the
system reached up to 91 %. Meng et al.(Meng et al, 2016) designed a
system to control a robotic arm to perform reach and grasp based on non-
invasive BCI technology. Thirteen participants were included in this
research. The system showed that the subjects can control the arm
through modulation of their brain with the training. Karakoe et al. (Karakoc
et al, 2017) designed a robotic arm using solidwork software. The arm can
be controlled using brainwaves. The study was successful —however,
although the arm was successfully controlled, it was not applicable (only a
prototype). Bousseta et al. (Bousseta et al, 2018) proposed a novel BCI
system that consists of controlling a robot arm based on the user’s
thoughts. Four subjects (1 female and 3 males) aged between 20 and 29
participated in the experiment. They were instructed to imagine the
execution of movements of the right hand, the left hand, both right and left
hands or the movement of the feet depending on the protocol established.
A dynamical system conceptual and preliminary design together with
system modeling are introduced in (Szabolcsi, 2019). Both dynamical
system design and analysis tasks based on classical and modern control
engineering approaches are handled in (Szabolcsi, 2020) using MATLAB.
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Research methodology used in the study

An extensive literature search was carried out. The search covered
studies between 2011 and 2018. Only full-text papers published in English
were considered. In this research, the combination of keywords (BCI or
Brain-Computer Interface or EEG or Electroencephalography) and
(Prosthetic Limb, Prosthetic Arms or Robot) and ( Control Method ) is used.
Figure 2 shows the process of how the chosen papers were selected in
this research.

Paper publishing sites ( Google
scholar, IEEE, Research Gate,
Scopus, etc. )

175
papers

A 4

English Language » 145

Full text

r

Removing

ag EEG-Based . 75 * Duplicate

Figure 2 — Research method
Puc. 2 — Memod uccnedosaHusi

Cnuka 2 — Memod ucmpaxueara

From the figure above, the number of selected papers was decreased
due to the application of several filters depending on the type of the
papers,e.g. full text or not.Only English language papers were chosen,
also depending on the type of input signals, i.e. EEG signals. Only the
articles that dealt with an upper limb (Arm, Hand) were included.

Figure 3 shows the distributions of the articles regarding the EEG-
Based Control method for artificial upper limbs (as prosthetic arms or
assistive devices or robotic arms). Years from 2013 till mid of 2016
witnessed a rise in research interest in this area.
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Figure 3 — Publication distribution
Puc. 3 — PacnipocmpaHeHue rybnukayud
Cnuka 3 — Pacnodena nybnukayuja

Background

Prosthetic limbs
In this section, the focus of the prosthetic limb will be on the prosthetic

arms type. The prosthetic arm consists of several components that work
together to make the arm useful.

Limb. The limbs of a prosthetic arm are formed out of lightweight, yet
durable materials.

Socket. The socket connects the prosthesis to the residual limb to
ensure that it fits securely. A poor fit can cause considerable discomfort
and reduce the function of the prosthetic arm. To circumvent this
problem, prosthetics are made using a personalized mold to fit the
exact shape of the residual limb.

Suspension system. The suspension system is the component that
secures the prosthetic to the residual limb. There are different
suspension systems, including a harness, an elastic sleeve, a suction
socket, or a self-suspending socket.

Control system. While the brain controls a natural limb and nerve
impulses, a prosthetic arm cannot be controlled the same way. Control
systems are myoelectric, body-powered, or motor-controlled.

Electroencephalography (EEG)
Electroencephalography (EEG) is the most common brain signal that

has been utilized in brain-machine interface applications. This popularity
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is due to several facts: EEG signals are non-invasive, low cost, compatible,
portable and have a high temporal resolution in comparison with other
brainwave measurements such as electrocorticograms (ECoGs),
magnetoencephalograms (MEGs), functional magnetic resonance
imaging (fMRI) and near-infrared spectroscopy (fNIRS).

Electroencephalography can be defined as the measurement of the
electric brain activity caused by currents induced by neurons within the
brain (Murphy et al, 2017). The EEG signhal can be detected in a non-
invasive way by placing the electrode on the scalp. This justifies why the
EEG measurement is the most widespread brain activity measurement
technique. In addition, it is comparatively affordable and provides a high
temporal resolution (about 1 ms). However, it has a weak signal and is
prone to several artifacts and relatively poor spatial resolution.

In EEG measurement, detected waveforms reveal cortical electrical
activity. The signal intensity of EEG activity is often quite small and
measured in the microvolt (uV) range (Ubeyli, 2009; Acharya et al, 2019).
The main EEG rhythms are classified based on the frequency range as
alpha (a), beta (B), delta (d), theta (6) and gamma as shown in Table 1a.

Table 1a — EEG frequencies
Tabnuua 1a — Yacmombi 33"

Tabena 1a— EEI chpekseHyuje

EEG Frequencies Description

Delta 0.5-4 Appear in infant and deep sleep

Theta © 4-8 Appear in partial and temporal areas in children
Alpha a 8-13 Occur in awaken adults in the parietal and

frontal region of the scalp

These waves are related to the movements and
commonly appear in the frontal and central lope.
The decreasing of the Beta rhythm indicates a
movement, preparation of movements, planning
a move, or imagining a movement. This
decrease is most dominant in the contralateral
motor cortex. This attenuation in Beta waves is
called event-related desynchronization. The
rhythms increase after the movement and are
known as event-related synchronization.

These are higher rhythms that have frequencies
of more than 30 Hz.

Beta B 13-30

Gammay >30

>
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Results

During the systematic review, 39 articles were chosen for principal
studies and all of them were using EEG as an input signal.

However, the output was either a prosthetic limb, an exoskeleton
device, or a robotic arm.

Figure 4 shows the number of studies that dealt with each one
considered in this paper.

18

16

14

12

10

Prosthetic arm Exoskeleton Robotic Arms

Figure 4 — Articles dealing with EEG application
Puc. 4 — Cmamsbu o npumeHeHuu 33

Cnuka 4 — Ynaruyu o npumeru EEI annukayuje

The systematic review results in 39 papers, chosen as principal
studies and published in the field of EEG-based control of prosthetic arms,
exoskeleton, and robotic arms, are shown in Tables 2, 3, and 4,
respectively.
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Table 2 — Prosthetic arm

Tabnuua 2 — lNpome3s pyku

Tabena 2 — [lpocmemuyka pyka

Reference . Controller | No. of
No. EEG Extraction Method Used movements year
(Bridges et . Not
al, 2011) Not specified specified Grasp 2011
Feature extraction: Grasp,
bandpass filter (Fast extension of
(Yanagisawa | Fourier Transform) Not the second and 2011
et al, 2011) Classifier : Support Vector Specified third finger
Machine SVM (' scissor
shape)
Raspberry
g?eal)l/r%t{% Not specified Pi + %?%e and open 2016
' Arduino
. . Flexion
(Bright et al, . Arduino Ny
2016) Not specified UNO extension, 2016
pinch
(Elstob & CSP spatial filter for
extraction Arduino
Secco, . L Open, close 2016
2016) Llnear_Dlscrlmlnant 3 UNO
analysis LDA for classifier
High-pass and low-pass .
(Agashe et second-order Butterworth Built-in Grasp 2016
al, 2016) . controller
filters
. Band Pass filter for Control, right
;Y'%%ligf et Extraction, ’s\loécified hand or left 2016
’ LDA as a classifier P hand
Data Processing: low and
high pass filter
Feature extraction :
(Rashid et calculation o band power Arduino Finger flexion 2018
al, 2018) from PSD UNO and extension
Classification: Logistic
regression classifier
network
Data was filtered with
(Faiman et Bandpass and Notch filter Not .
al, 2018) Data extraction using Fast | specified Reaching 2018

Fourier Transform
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Ece)ference EEG Extraction Method Sggéroller r'\rl1cc)).v%fments year
(Noel & Extraction and analygls : Flexion and
; Power spectral density Not h
Snider, e - extension of 2019
2019) Classmcatlor_] : Support specified fingers
vector machine
(Gannouni et | Extracting CSP Not Finger 2020
al, 2020) Classifying: LDA specified movements
. Classification : LSTM Upward and
(zc(?)gl(r)])ta etal, (Long-Short Term Memory goécified downward arm | 2020
Model P movement
(Fuentes- .
Gonzalez et | Not specified Gr’\cligmo hogrfg and close 2020
al, 2021)
Arm
(Ali et al, - Not movement,
2021) Not specified specified fingers open 2021
and close
(Setiawan et | RC Filter OP AMP for Arduino E:(?:Irs)sr;oarlwngf 2021
al, 2021) Signal Extraction UNO :
fingers
(Chaudhry et | Extraction : FFT Arduino Fingers flexion 2022
al, 2022) Classification: SVM UNO and extension
Table 3 — Exoskeleton
Tabnuua 3 — 3k3o0ckenem
Tabena 3 — Ez3ockenem
Reference EEG Extraction Method Controller | No. of year
No. Used movements
(Xu et al, Extraction: WT Not .
2011) Classification: LDA specified Rightand leftarm { 2011
(Ramos- Spatial filter Not Fingers flexion
Murguialday specified and extension 2012
et al, 2012) P
(Formaggio | Sampling : Band Pass Filter | Not Hand movement 2013
etal, 2013) | and FFT specified
(Tung et al, Not Upper arm 2013
2013) specified movement

<>




Reference . Controller | No. of
No. EEG Extraction Method Used movements year
. Sampling: FFT Band Pass
gfrggfj)r et Filter and Spatial filter ’s\]o(;cifie d #g?;rmaerm 2014
! Classification: SVM P

wkousy | SepingBanaPaseFler g | Hanamovement [
et al, 2014) rep g- Lap specified

filter
(Looned et Extraction: Spatial Filter Not Arm movement 2014
al, 2014) Classifier: Linear Classifier specified and grasp

Sampling : Notch Filter )

g: . . 2015

al, 2015) Classifier: SVM specified extension

Digitization: High Pass Filter Arm reaching
(Brauchle et Classification : Linear Not . movement 2015
al, 2015) e specified

Classification

Extract: common spatial Elbow flexion ,
(Elnady et pattern Algorithm Not extension 2015
al, 2015) Classifier: Linear specified hand open and

Discriminant Analysis LDA close
(Comani et | Samplings: notch and Not Upper arm 2015
al, 2015) Bandpass filter specified movement
(Soekadar | SECE e g Laplacian +- | MOt movement 2015
et al, 2015) ﬁlterr) 9-Lap specified

Sampling : High then Low Elbow flexion
g?h;gfé)et Pass Filter ’S\IO‘;Ciﬂe d extension 2016

' Classification: SVM P

Sampling : Notch and Band Right- and left-
(Tang et al, | Pass Filter Not hand movement 2016
2016) Classifier: LDA, SVM, specified both feet

BPNN movement
(Frolov et Extraction: Band Pass Filter | Not Hand open and 2017
al, 2017) classify: Bayesian classifier | specified close
(Buerkle et | Extraction :FFT Not .
al, 2021) Classification: SVM specified Right and left hand | 2021

B
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Table 4 — Robotic arm
Tabnuya 4 — PobomusuposaHHasi (buoHu4eckasi) pyka
Tabena 4 — Pobomuyka pyka

QVOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2023, Vol. 71, Issue 1

EEG
Reference No. Extractio Sgg(tjroller No. of movements year

n Method
Sampling :

1| (Steinisch et al, 2013) Notch and | Not . Arm movement 2013
Bandpass | specified
filter
Extraction:
WT, FFT, Not Close and open arm

2 | (Shedeed et al, 2013) | Pca fied | Cloge hand p 2014
Classifier: | SPecifie ose han
SVM
Extraction:

3 (Bhattacharyya et al, FFT Not Arm movement, left, right and 2014

2014) Classifier: specified forward

SVM
Extraction:
WT Not Arm move upward and

4| Ruetal, 2015) Classifier: specified downward 2015
LDA

5| (Meng et al, 2016) Not Not Arm movement: left, right, up, 2016
specified specified down
Not .

6 | (Karakoc et al, 2017) specified Arduino Open and close hand 2017
Extraction:
FFT Not Arm base right, left

7| (Bousseta etal, 2018) Classifier: specified Elbow up and down 2018
SVM

= Arm Movement
Hand

Fingers

Figure 5 — EEG signal control in the prosthetic arm research studiesfrom Table 2
Puc. 5 — YnpaeneHue cuzsHanom O3I 8 uccriedosaHuusix 0 MPOMe3upo8aHuUU PyKu U3
Tabnuub! 2
Cnuka 5 — Ynpaerparwe EEI cueHanoMm y ucmpaxueadykum cmydujama Koje ce bage
npocmemuykom pykom (mabena 2)

=
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EEG signal types

EEG is nowadays considered a successful non-invasive realistic and
practical Brain-Machine Interface BMI Technique. This is due to the fact
that other techniques are considered high cost, e.g.
magnetoencephalography (MEG) and positron emission tomography
(PET).

Three key elements characterise the EEG-based prosthetic arm: the
type of EEG signals, which part of the prosthetic arm is under control, and
how to translate the EEG signal to a control command to manage the
prosthesis. Figure 8 shows these key elements.

EEG based
Prosthetic arm

ranslating the

EEG signalsto
control

command

Prosthetic Arm
Part
undercontrol

Types of EEG
Signals

Endogenous
Exogenous
Fingers
Hands
Elbow
Full arm

Figure 8 — Research elements
Puc. 8 — OnemeHmbi uccrnedosaHusi

Cnuka 8 — EnemeHmu ucmpaxueara

Endogenous and exogenous EEG signals

Depending on the movementtype, the prosthetic arm can be managed
by utilizing exogenous or endogenous EEG signals.

Table 5 shows the differences between these two types.
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Table 5 — EEG signal types
Tabnuua 5 — Tunbl cueHanos 33
Tabena 5 — Tunosu EEI cueHana
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Prosthetic arm parts

The control of a prosthetic arm has different paradigms represented
by whether the control includes only fingers, hand, elbow, or a full arm.
Every part requires different types of signals. Besides, the time of training
is dependent on the parts.

A - Fingers

Both human hands have four fingers and a thumb each. The fingers
have two main moves: flexion and extension. The flex movement is mainly
for grasping, while extension is for reaching things. Due to flexion, several
modes can be made, i.e. bending, making a fist, gripping, grasping and
folding fingers. On the other hand, the extension of fingers includes the
following modes: pointing, stretching out, and spreading out.

The thumb is responsible for 50% of the hand function. The thumb
has two joints at the end and middle which flex and extend, just like the
fingers. The next joint down, however, is highly specialized and allows
several unigue movements not possible in the fingers. These are the
following motions: circumduction, abduction, adduction, and retropulsion.

There are several studies regarding finger movements using EEG
signals implemented over the last few years. Paek et al. (Paek et al, 2014)
investigated how the finger tapping movement ca be decoded from the
scalp EEG signals. The study shows that finger kinematics can be inferred
from delta band filtered fluctuation of the amplitude of EEG signals across
the scalp using linear decoders with memory. Ketenci & Kayikcioglu
(Ketenci & Kayikcioglu, 2019) studied the effect of theta brainwaves on
movement detection. Four right-handed participants performed extensions
with their fingers using EEG. They proved that theta signals participate in
movement execution. Mohamed & Aharonson (Mohamed & Aharonson,
2021) studied the movement of wrist and fingers together (i.e. left finger
and wrist or right finger and wrist). The results suggest that a combination
of classifiers and features from different frequency bands could improve
BCI performance to enable more dexterous control of a bionic hand.
Rashid and his team (Rashid et al, 2018) designed a system that can be
used to control the fingers of a prosthetic limbs using EEG signals. For this
system, a two-staged classifier was used. The classifier was able to
distinguish between three finger movements, the thumb, and the fist with
an accuracy of 70%. A novel method of classification of four finger
movements (thumb movement, index finger movement, middle and index
finger combined movement, and fist movement) of the right hand on the
basis of EEG (Electroencephalogram) data of the movements was
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presented by Javed’s team (Javed et al, 2017). The PSD and Linear
Regression models were used to classify the signals. These classifiers had
an accuracy of 65%. Liao et al. (Liao et al, 2014) investigated the
discrimination of individual fingers from one hand using non-invasive EEG.
The experimental results demonstrated that a movement-related spectral
structure could be decoupled from EEG power spectrum density data
using the Principal Component Analysis with an accuracy achieved of
77.11% .

B - Hand

The hand movements include the fingers and the wrist movements.
The wrist joint flexes and extends, but also deviates radially and ulnarly
(moves from side to side). The word radially means “toward the thumb
side”. The term ulnarly means “toward the pinky side”. One might use this
motions when swinging a hammer. A study of implementing an algorithm
for wrist movement detection was implemented by Ghaniet al. (Ghani et
al, 2013) - the movements of the hand were flexion and extension. The
accuracy achieved by this algorithm was up to 91.93 % using discrete
cosine transformation of energy and entropy. Huong et al. (Huong et al,
2018) used Event-Related Potential (ERP) components of P300, and the
advanced features combined in Artificial Neural Network (ANN) were used
to classify the electroencephalogram (EEG) signals associated with the
left and right-hand movements. The results of classification are quite good
and promising for the application in a BCI context to mentally control a
computer or a machine.

Ting Li et al. (Li et al, 2018) proposed a model of voluntary hand
movement decoding based on an HLM. The original intention of this design
was to identify a computing architecture that could contain and describe
complex data, such as that of an EEG BFN. Ramalingam et al.
(Ramalingam et al, 2016) use machine learning algorithms to extract and
classify signals from the brain to execute the motion of fingers and wrist
rotation. four classes of right-hand movements were considered. The
descriptive statistical features were computed from EEG signals. Feature
selection was carried out to reduce the classifier complexity and an
accuracy of 80.55% was achieved using the C4.5 decision tree algorithm.

C - Elbow

The elbow is one of the most important parts of the arm because it
allows the hand to move in almost any position so that various activities
can be done. The movements that can be done with the elbow are flexion
and extension. Ji-hoon et al. presented a study of the classification of
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forearm movements according to elaborated rotation angles using
electroencephalogram (EEG) signals (Jeong et al, 2020). They used the
Hierarchical Low Convolutional Neural Network (HF-CNN) model for
robust classification. The experimental results demonstrate the possibility
of decoding complex kinematics information using EEG signals. Ghani et
al. (Ghani et al, 2012) used EEG to analyze brain activity in order to
translate human elbow movements to the movements of an artificial
actuator. The work achieved 73% accuracy in the classification of the
elbow movements using EEG. Faizal et al. designed an orthosis control
system as a rehabilitation device by using a classification method with
EEG and EMG signals, so that subjects who use this tool can carry out
rehabilitation in upper arm movements, especially in the elbow joint. The
system reached an accuracy of 85.2% with three movements: relax,
flexion, and extension (Ferdiansyah et al, 2020).

Translating the EEG signal to the control command

EEG signal decoding has several stages in order to reach the desired
output. These common stages are preprocessing, feature extraction, and
classification. At each stage, an algorithm is applied.

A - Preprocessing

EEG records electrical potentials generated by nerve cells. Electrodes
are placed on the scalp and recorded by amplification. By this procedure,
the obtained data shows a continuous graphic with the spatial distribution
of the voltage changes over time. In order to translate brain activity into
commands, there are three steps to be applied. First, the brain activity is
recorded with an acquisition device. Then, artifacts are unwanted faulty
parts of signals that are removed from signals (Gupta & Singh,1996).

B - Feature extraction

Relevant features are extracted by methods such as Fast Fourier
Transform (FFT), Wavelet Transform (WT), and Eigenvectors (Zhang et
al, 2008). There are different methods for feature extraction of the signal
such as FFT, WT, Eigenvectors, Time-frequency Distributions, and
Autoregressive Method. Table 6 shows every method mentioned earlier
with their advantages and disadvantages.
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Table 6 — Feature extraction techniques
Tabnuua 6 — MemoOdb! 8bisi8rIeHUSs MPU3HaK08
Tabena 6 —TexHuke usdeajaHba Kapakmepucmuka

Name Advantages Disadvantages

1- Good tool for stationary

signal processing

2- Itis more appropriate for 1- Not good with

narrowband signals, such as nonstationary signals like
FFT sine wave EEG.

3- It has an enhanced speed | 2- Suffers from large noise

over virtually all other sensitivity

available methods in real-time

applications

1- It is better suited for the Needs selecting a proper
WT analysis of sudden and gaprop

transient signal changes

mother wavelet

Eigen vector

Provides suitable resolution to
evaluate the sinusoid from the
data

Lowest eigenvalue may
generate false zeros when
Pisarenko’s method is
employed

Time
frequency
distribution

1- It gives the feasibility of
examining great continuous
segments of the EEG signal
2- TFD only analyzes clean
signals for good results

1- Time-frequency methods
are oriented to deal with the
concept of stationary; as a
result, a windowing process is
needed in the preprocessing
module

2- It is quite slow (because of
the gradient ascent
computation)

3- Extracted features can be
dependent on each other

Autoregressive

1- AR limits the loss of
spectral problems and yields
improved frequency resolution
2- Gives good frequency
resolution

3- Spectral analysis based on
the AR model is particularly
advantageous when short
data segments are analyzed,
since the frequency resolution
of an analytically derived AR
spectrum is infinite and does
not depend on the length of
analyzed data

1- The model order in AR
spectral estimation is difficult
to select

2- The AR method will give
poor spectral estimation once
the estimated model is not
appropriate, and the models’
orders are incorrectly selected
3- Itis readily susceptible to
heavy biases and even large
variability
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C - Classification

A classifier utilizes values for independent variables (features) as
inputs to predict the corresponding class to which an independent variable
belongs. A classifier has a number of parameters that require training from
a training dataset (Wen et al, 2021). A trained classifier will model the
association between classes and corresponding features and is capable
of identifying new instances in an unseen testing dataset. Several
techniques of classification are explained in Table 7.

Table 7 — Classification techniques
Tabnuuya 7 — Memods! knaccughukayuu
Tabena 7 —TexHuke Knacughukayuje

No

Meth
od

Description

SVM

The SVM is a supervised learning algorithm that uses a kernel trick to transform
input data into higher dimensional space, after which it segregates the data via a
hyper-plan with maximal margins. Due to its ability to manage large datasets, the
algorithm is widely used for binary classification problems in machine learning.

MLP

The MLP is a non-linear neural network based method comprising three sequential
layers: input, hidden and output, respectively, where the hidden layer transmits input
data to the output layer. However, the MLP model can cause over-fitting due to
insufficient or excessive numbers of neurons.

NB

The NB classifier provides simple and efficient probabilistic classification based on
Bayes' theorem, which posits that extracted features are not dependent. The NB
model uses (i) a maximum probability algorithm to determine the class of earlier
probabilities, and (ii) a feature's probability distribution from a training dataset.
Results are then employed with a maximized posteriori decision tree to find the
specific class label for a new test instance.

K-NN

The k-nearest neighbor is a supervised learning algorithm that identifies a testing
sample's class according to the majority class of k-nearest training samples; i.e., a
class label is allocated to a new instance of the most common class amongst KNN in
the “feature” space. In this study, the k value was set to three.

fold
cross
valid
ation

All classification models in the present work were trained and tested with EEG data
and then confirmed using k-fold cross validation, which is a commonly used
technique that compares (i) performances of two classification algorithms, or (ii)
evaluates the performance of a single classifier on a given dataset (Wong, 2015). It
has the advantage of using all instances in a dataset for either training or testing,
where each instance is employed for validation exactly once.

LDA

It consists of the statistical properties of the data calculated for each class. For a single
input variable (x), these are the mean and the variance of the variable for each class.
For multiple variables, these are the same properties calculated over the multivariate
Gaussian, namely the means and the covariance matrix. These statistical properties
are estimated from the data and plug into the LDA equation to make predictions. These
are the model values that would be saved to file for the model.
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Conclusion

The study of EEG-based prosthetic arms includes a wide range of
fields to be familiar with, such as anatomy, signal processing, control
methods, and design. All these fields represent sciences in themselves.
Although researchers have done good work regarding prosthetic arm
control, more needs to be done, such as increasing the accuracy in EEG
signal extracting and faster control.

The use of automatic prosthetic arms is already an accepted method.
It is considered one of the methods that aim to be applicable for lower
limbs, wheelchairs, cars, and even drones.

In future researchbased ona Ph.D. thesis,the five extraction methods
mentioned in Table 6 and the six classification methods mentioned in
Table 7 will be used to control the full motion of the arm moving an object
from one place to another using LabView or MATLAB
simulation.Subsequently, a method with high accuracy will be applied for
an actual prosthetic arm using Raspberry pi 4 controller.
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Pesome:

BeedeHue/uenb: CueHan a51IeKmposHuyeganoepaguu (33r)
oka3sbigaem 60/1bLWOE 8/IUSIHUE Ha pa3sumue MexHo102uU yrpaeneHus
rnpome3om pyku. CueHasibl 33 ucnonb3yrmcesi 8 Ka4ecmee 0CHO8HO20
UHCmMpyMeHma 6 (byHKUUOHAalbHbIX UCCiedoeaHusix O8uUXeHul
yeriogeka. W3ydyeHue ynpaeneHusi MPOmMe3oM pPyKU C MOMOULbHO
Cu2Hasi08 20/108H020 MO32a 8ce euwe Haxodumcsi Ha paHHel cmaduu,
mak kak OaHHbIl eud yrnpaeneHuUss Hayanu uccredosamb 8cCez20
HEeCcKosbKO iem Hasad.

Memodbi: Bbino npoeedeHO HeCKONbKO uccriedosaHuli ¢ Uesnbio
cucmemamu4ecko2o ob3opa orybnukosaHHbIx cmamedl, Ons moeo
4mobbl uccnedosamenu u crieyuanucmsl Moasu O03HaKOMUMbLCS C
Hoseliwumu Memodamu yrnpasneHusi ¢ NoMowbro cuzsHanos 33,
ucrionb3yeMbix He mofibko 8 obmacmu  [Ipome3uposaHusi
KOHe4YHocmel, HO U 8 Opyaux MexHOI02usiX.

Pesynbmamebi: B xo0e uccrnedoeaHusi npoaHanusuposaHo 175
cmamel, U3 KOomopbiX 0mobpaHbl MOJIbKO HEeNnocpedcmeeHHO
omHocsawuecss K meme 0aHHO20 Uccriedo8aHus.

Bbigodnbi: [laHHOe uccnedosaHue rnpecnedyem mpu uenu. lNepeas yesb
3aknoyaemcs 8 cbope, cucmemamu3sayuu uccriedosaHull U OUeHKe
rony4yeHHol uHgopmauyuu u3 mpyoos, onybruKo8aHHbIX 8 nepuod ¢
2011 no 2022 e200. Bmopasi uenb cocmoum 8 rpedcmasieHuu
MnodpobHo2o0 omyema O  UEJIOCMHbIX  3KCHEPUMEHMarbHbIX
docmuxXeHusix 8 samol obriacmu, a makxe 0 meKyu,ux uccredosaHusix.
Takum obpa3om cucmemamu3uposaHHbIl Mamepuar rpedocmasnsem
bonbwoe  Konudecmeo - puMepos,  OMUCaHHbIX 8  Hoselwux
uccnedosaHusix 06 yrnpasrieHuu npome3oM pyKu € rnomowbro 33l
Tpembsi uyenb cocmoum 8 8blsigrieHuUU npobnem, mpebyowux
OanbHeliWweao U3y4YyeHUsl, U 8 peKkoMeHOauuu HarnpasneHul ons
6ydywux uccnedosaHuli 8 daHHoU obsiacmu.

Kntoyessie cnosa: 33I, OMI, komnnekcHoe uccnedogaHue, npome3s
PyKU, yripasrieHue.

OncexHa cTyauvja o0 ynpasrbaky BELTa4ykoMm pykOM nomohy
enekTpoeHuedanorpadguije (eer)

Uxab AbpynpaxmaH Cartam

YHuepautet Obygaa, LLkona gokropckux 6e36eaHoCHUX cTyavja,
ByoumnewTa, Mahapcka;
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Caxxemak:

Yeod/yurb: CueHan y enekmpoeHueghanoepachuju (EEl) uma eenuku
ymuuaj Ha pa3eoj mexHosoauje yrpaerbaksa npocmemuy4kom pykom. lpu
OyHKUUOHaIIHOM ucriumusarby fbydCcKo2 rnoKpemakao e/1agHo cpedcmeo
kopucmece EEI cueHanu. KoHmpona rnpocmemudyke pykKe rymem
MoxxOaHux marnaca je jow y paHuUM ¢hazama ucrnumuearsa. Vicmpaxusadu
ce mek 00 rpe HeKosIuKo 200uHa bage 0OBOM 8PCIMOM yrpPas/bar-a.

Memode: Hekornuko cmyduja je umario 3a yurb 0a cucmemamu4Ho obpadu
0o cada objasrbeHa ucmpaxuearba Kako 6u ce ucmpaxueayuma U
cmpyyrsauyumMa rnpyxuo ceeobyxeamHu rpeaned HajHoBUjUX MEXHUKa
ynpaerbara nymem EEI cueHana Koje ce Kopucme He camo 3a
rnpocmemudyke pyke eeh u 3a Opyee mexHosnoauje.

Pesynmamu: YnopeheHo je 175 unaHaka, a uzabpaHu cy caMo OHU Koju cy
Hajmeuwre rnosesaHu ca cmyoOujom.

Sakbyyak: Oea cmyduja uma mpu uurba. [lpeu je da ckynu,
cucmemamusyje U rnpoueHu uHgopmayuje objasrbeHe y cmyldujama y
nepuody 0d 2011. do 2022. zoduHe. [pyau je Oa npyxu OemarbHuju
useewimaj 0 XonuCMUYKUM, eKcriepuMeHmanHum nocmueHyhuma y 0eoj
obracmu, Kao u ocadwrbUM ucmpaxusaruma. CucmemamuyHo ypaheHa
cmyduja obe3behyje MHOWMEBO rpuMepa U3 caspeMeHUxX ucmpaxkuearba
ynpaesrbarea rnpocmemuykom pykom rymem EEI cueHnana. Tpehu yurb
jecme 0Oa ce ykaxe Ha obriacmu Koje 3axmesajy darba ucmpaxusearba, Kao
u 0a ce nperiopyde rnpasyu 3a HUX080 criposoherse.

KbyuHe peyu: EET, BCI, ceeobyxeamHa cmyduja, npocmemudyka pyka,
KOHmMpornepu.
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