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Abstract: 

Introduction/purpose: The electroencephalography (EEG) signal has a 
great impact on the development of prosthetic arm control technology. EEG 
signals are used as the main tool in functional investigations of human 
motion. The study of controlling prosthetic arms using brain signals is still in 
its early stages. Brain wave-controlled prosthetic arms have attracted 
researchers’ attention in the last few years.  

Methods: Several studies have been carried out to systematically review 
published articles as a means of offering researchers and experts a 
comprehensive summary of the present, state-of-the-art EEG-based 
control techniques used in the prosthetic arm and other technologies. 

Results: 175 articles were studied, compared, and filtered to only include 
the articles that have strong connections to the study. 

Conclusion: This study has three goals. The first one is to gather, 
summarize, and evaluate information from the studies published between 
2011 and 2022. The second goal is to extensively report on the holistic, 
experimental outcomes of this domain in relation to current research. It is 
systematically performed to provide a wealthy image and grounded 
evidence of the current state of research covering EEG-based control of 
prosthetic arms to all experts and scientists. The third goal is to recognize 
the gap in knowledge that demands further investigation and to recommend 
directions for future research in this area. 

Keywords: EEG, BCI, comprehensive study, prosthetic arms, 
controllers. 

Introduction  

The absence of the upper limb results in severe impairment in 
everyday life, which can further influence both the social and mental state 

http://orcid.org/
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(Abdulrahman Satam, 2021). For these reasons, developments in 
cosmetic and body-driven prostheses date from some centuries ago, and 
they have been evolving ever since. Research showed that the estimated 
percentage of impaired people is rising up due to wars, conflicts, diseases, 
accidents, and forgotten minefields from previous battles and wars.  

A prosthesis is much more than a device; it also completes a wearer`s 
sense of wholeness. It gives emotional comfort. The history of prosthetics 
isnot just about the advancement of medical science, it is a history of 
human beings who miss an essential part of themselves. The earliest 
known prosthetic wasnot an eye, leg, or arm. It was a toe, first made by 
Egyptians around 3000 years ago. Then development continued with the 
Roman Empire to the end of the Middle Ages and finally to the civil war in 
the United States of America.  

A decade ago, prosthetic limbs were developed as a practical 
complementary system for impaired people. Prosthetics, or artificial limbs, 
are used to replace limbs that were lost or absent limbs from birth. They 
enable those with congenital limb differences and amputees alike to 
improve function and mobility. Due to advances in medical science, 
prosthetics have improved and are capable of remarkable things (Osama 
& Allauddin, 2022). 

In addition to the development of the prosthetic arm (Figure 1) design, 
scientists are focusing on improving the control of the techniques for the 
purpose of accuracy, performance enhancement, and the comfort of the 
prosthesis.   

 

Figure 1 – Prosthetic arm 
Рис. 1 – Протез руки 

Слика 1 – Простетичка рука 

 
Ensuring the smoothness and effective control techniques of the 

prosthetic limb is an important factor in the interface between the wearable 
prosthesis and the human since the prosthetic limb is donned by a human.  
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Therefore, those control strategies can be classified according to the 
human-robot interaction method. The control of the prosthetic arm is 
influenced by electrophysiological signals. These signals have been well-
known tools to examine the capacity and conduct of the human movement 
in ongoing research.  

Electroencephalography (EEG) has been one of frequently used 
physiological signals in the control techniques of prosthetic limbs, 
especially in the upper limbs. EEG is considered a non-invasive and 
convenient method that may be appropriate for realistic application. 
Recently, it was found that fewer endeavors have been made to efficiently 
audit these reviews, as a way of offering analysts and specialists a 
synopsis of the current, best-in-class EEG-based control systems utilized 
for assistive innovation. Hence, this research has three primary objectives.  

The primary aim is to deliberately assemble, abridge, assess, and 
organize data with respect to accuracy and estimations of the past 
research distributed in the publications between 2011 and 2018.  

The second objective is to broadly report on all the trial results of this 
domain’s present research. It is methodically performed to give a clear 
picture and grounded proof of the momentum conditions of research 
covering EEG-based control uses and benefits for controlling assistive 
robotics to every specialist and researcher. The third objective is to 
perceive the whole of information that requests in-depth examination and 
to suggest ways for future research in this domain (Mandekar et al, 2022). 
To achieve these objectives, the following research questions (RQs) have 
been put forward: 

(Q1) What are the types of EEG signals that are used to control the 
prosthetic arm? 

(Q2) How do these signals translate to control commands? 
 
The solutions to these questions will guide the reader and enhance 

their knowledge of the recent development of prosthetic arms based on 
EEG signals.  A more extensive image of various emergent topics/themes, 
experiments, and concepts will be offered. This paper is structured into six 
sections.   

The following section provides a background of EEG signals and 
prosthetic limbs.  The third section describes the methodology through 
which the review processes were conducted. The fourth section presents 
the SLR results, followed by the fifth section which reports on the results 
of the research questions as organized according to their sequences. 
Finally, the sixth section presents a discussion of the review and its 
conclusion. 
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Table 1 – Symbols 
 

Таблица 1 – Обозначения 
 

Табела 1 – Симболи 
 

Symbol Meaning 

EEG Electroencephalography  

ECoGs electrocorticograms 

MEGs magnetoencephalograms 

fMRI functional magnetic resonance imaging  

fNIRS Functional near-infrared spectroscopy  

BCI Brain-Computer Interface 

SVM Support Vector Method 

FFT Fast Fourier transform 

CSP Common spatial Pattern 

LDA Linear discriminant analysis 

PSD Power Spectral Density 

LSTM Long*short term Memory 

BPNN Back Propagation Neural Network 

BMI Brain Machine Interface 

PET Positron Emission Tomography 

BFN Brain Functional Network 

ANN Artificial Neural Network 

ERP Event-related Potential 

WT Wavelet transform 

MLP Multi-layer Perceptron 

K-NN K-Nearest Neighbor 

NB Naïve Bayes 

FES Functional Electrical Simulation 
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Preliminaries and literature review 

In the BCI system, EEG signals are most commonly used not only for 
prosthetics but also for any controllable devices such as robotics arms, 
Exoskeletons, Wheelchairs, drones, etc. Bridges et al. (Bridges et al, 
2011) and his team provide an overviewof human-machine interface 
architecture. The article contains good information about the control 
system. Yanagisawa et al. (Yanagisawa et al, 2011)shows a new method 
of controlling a prosthetic arm using ECoG signals. The system proved its 
effectiveness in decoding the hand movement of a patient who suffered 
from a stroke and used that signal to control a prosthetic hand. Another 
research implemented by Taha and his team (Beyrouthy et al, 2017) is 
about a system that extracts the EEG signals from the brain and uses them 
to control a smart 3D prosthetic arm. The system showed great results and 
presented a reliable alternative for an invasive system. Researchers in 
(Bright et al, 2016) succeeded in developing an EEG-based brain control 
system for the prosthetic arm using a BCI Neurosky mind wave set. The 
system reached an accuracy of 80 %. The team of researchers in (Elstob 
& Secco, 2016) controlled a 5 DOF robotic and prosthetic hand. They used 
two software frameworks. The method showed good results both 
technically and economically. A study of experimenting how transradial 
amputees could control grasp preshaping in a prosthetic arm using an 
EEG-based closed Loop BMI system is done by Agashe et al. (Agashe et 
al, 2016). The results showed that the EEG-based BMI system is a feasible 
solution. Healthy participants involved in a study implemented by Vidaurre 
et al. (Vidaurre et al, 2016) were able to use non-invasive Motor Imagery 
BCI to achieve linear control of an Upper Limb FES controlled Neuro 
Prosthesis. An embedded system was designed by (Rashid et al, 2018) in 
order to control the finger movement of the prosthetic arm using EEG 
signals. The signal classification accuracy of this study reached an 
acceptable percent of 79 %. Faiman et al. (Faiman et al, 2018) investigated 
whether spontaneous resting-state functional connectivity could predict 
the degree of motor adaptation of the right (dominant) upper limb reaching 
in response to a robot-mediated force field. Spontaneous neural activity 
was measured using resting-state electroencephalography (EEG) in 
healthy adults before a single session of motor adaptation. Noel & Snider 
(Noel & Snider, 2019) used the Deep Neural Network to control the 
prosthetic arm. The Neural Network was used to classify the signal to 
detect person's intention of extending the right index finger. The model 
achieved an accuracy of 63.3%. Gannouni et al. (Gannouni et al, 2020) 
presented a study that uses machine learning in order to anticipate the 
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movement of all five fingers. The proposed system achieved a signal 
classification accuracy of 81%. A 62% accuracy was achieved for an 
inexpensive mind-controlled prosthetic arm based on EEG signals. The 
system was implemented by (Chinta et al, 2020).  Fuentes-Gonzalez et al. 
(Fuentes-Gonzalez et al, 2021) designed a prosthetic arm using blender 
software. The control of the prosthetic arm was done using EEG signals. 
The prosthetic arm was fitted to a 64-year-old man who had suffered from 
an electric shock. Ali et al. (Ali et al, 2021) build an inexpensive smart 
functional prosthesis arm in accordance with functional and non-functional 
requirements to meet users’ goals and requirements. Setiawan et al. 
(Setiawan et al, 2021) designed a system to control a prosthetic hand 
using EEG signals to execute flexion and extension of fingers. Chaudhry 
et all (Chaudhry et al, 2022) discussed EEG control algorithms for 
prosthetic arms. They developed a cheap three-dimensional prosthetic 
arm;however, it was only a prototype and couldnot be applied for 
amputees. An EEG-based control system is not restricted to prosthetic 
arms only sinceexoskeleton and robotic arms can also be included in that 
area. Xu, et al. (Xu et al, 2011) developed a rehabilitation system for an 
upper limb stroke patient where the assistive device was based on motor 
imaginary EEG. The system proved feasibile and is fully capable of 
exploring patientʹs motor initiatives and guiding stroke patients to perform 
rehabilitation training effectively. The teams in (Ramos-Murguialday et al, 
2012) developed a robotic hand exoskeleton based BCI to move fingers in 
flexion and extension movements. The results suggest that feedback 
contingency (proprioceptive stimulation paired with EEG SMR 
desynchronization) influences the motor network enhancing significantly 
SMR down-regulation. Formaggio et al. (Formaggio et al, 2013) present a 
study to perform a robot assisted task using a Bi-Manu track robot assisted 
arm trainer. Eight subjects participated in the study. The results suggest 
new perspectives for the assessment of patients with neurological disease. 
Tung et al. (Tung et al, 2013) performed a study of EEG to track the effect 
of a BCI based therapy on brain plasticity. The results suggest that motor 
recovery improvement comes from increasing activation in the lesion 
hemisphere during the BCI therapy. Krichner et al. (Krichner et al, 
2014)carried out an experiment to prove that EEG and EMG can improve 
the adaptability of assistive devices in accordance with demands of users. 
The results show that both EEG and EMG predict a movement before it is 
physically executed. Witkowski et al. (Witkowski et al, 2014) introduced 
and tested a novel hybrid brain-neural computer interaction (BNCI) system 
fusing electroencephalography (EEG) and electrooculography (EOG) to 
enhance reliability and safety of continuous hand exoskeleton-driven 
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grasping motions. Looned et al. (Looned et al, 2014) introduceda wearable 
and portable system consisting of a novel lightweight Robotic Arm Orthosis 
(RAO), a Functional Electrical Stimulation (FES) system, and a simple 
wireless Brain-Computer Interface (BCI). This system is able to process 
electroencephalographic (EEG) signals and translate them into motions of 
the impaired arm. The researchers in (Hortal et al, 2015) created a system 
based on a hybrid upper limb exoskeleton for neurological rehabilitation. 
The movement was controlled by an EEG-based BMI. The system showed 
the combined use of a hybrid upper limb exoskeleton. Brauchle and his 
team in (Brauchle et al, 2015) tested the feasibility of a 3D robotic assistant 
to produce movements with a multi-joint exoskeleton during MI 
synchronization of sensorimotor oscillations in the B-band. The team of 
researchers in (Elnady et al, 2015) tested the feasibility of using FES. 
Robotic training devices  facilitate motor task completion in post-stroke 
individuals. A robotic training device was operated to assist a pre-defined 
goal-directed motor task. The results showed that the participants' ability 
to use proprioception to control a motor output did not affect their ability to 
use the BCI-driven exoskeleton with FES. A novel system for the neuro-
motor rehabilitation of upper limbs was presented in (Comani et al, 2015). 
The system was validated in three sub-acute post-stroke patients. The 
system permits synchronized cortical and kinematic measures by 
integrating high-resolution EEG, a passive robotic device and Virtual 
Reality. The brain functional re-organization was monitored in association 
with motor patterns replicating activities of daily living (ADL). The patients 
underwent 13 rehabilitation sessions. Soekadar et al. (Soekadar et al, 
2015)  introduced a novel brain/neural-computer interaction (BNCI) system 
that integrates electroencephalography (EEG) and electrooculography 
(EOG) to improve control of assistive robotics in daily life environments. In 
(Bhagat et al, 2016), researchers demonstrated the feasibility of detecting 
a motor intent from the brain activity ofchronic stroke patients using an 
asynchronous electroencephalography (EEG)-based brain machine 
interface (BMI). Another investigation was implemented in (Tang et al, 
2016). They investigated whether self-induced variations of the 
electroencephalogram (EEG) can be useful as control signals for a man-
made upper-limb exoskeleton. A BMI based on event-related 
desynchronization/synchronization (ERD/ERS) is proposed. The study 
showed that the system is effective to control the upper limb exoskeleton. 
A rehabilitation approach based on BCI providing contingent sensory 
feedback of brain activity was presented by Frolov et al. (Frolov et al, 
2017). The results proved that adding BCI control to exoskeleton assistive 
devices can improve the rehabilitation process for post stroke patients. 
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The researchers in (Buerkle et al, 2021) presented a novel approach of 
how upper-limb movement intentions can be measured with a mobile 
electroencephalogram (EEG). The results suggested high detection 
accuracies and potential time gains of up to 513 ms to be achieved in a 
semi-online system. Thus, the time advantages included in a simulation 
demonstrated the potential to increase a system’s reaction time and 
therefore improve the safety and the fluency of Human-Robot 
Collaboration. The EEG based control systems have application in the field 
of robotic arms. Steinisch et al. (Steinisch et al, 2013) proposed a system 
for neuro-motor rehabilitation of the upper limbs in stroke survivors. The 
system is composed of a passive robotic device (Trackhold) for kinematic 
tracking and gravity compensation, five dedicated virtual reality (VR) 
applications for training of distinct movement patterns, and high-resolution 
EEG for synchronous monitoring of cortical activity. Another study was 
conducted by Shedeed et al. (Shedeed et al, 2013). They presented a BMI 
system based on EEG signals to control three movements (open arm, 
close arm, and closehand). The signal classification accuracy reached up 
91%. The researchers in (Bhattacharyya et al, 2014) proposed a novel 
approach toward EEG-driven position control of a robot arm by utilizing 
motor imagery. The results showed that the system is effective in the 
rehabilitation process. The team in (Xu et al, 2015) designed a BCI-based 
online robot control system. The study included 30 participants. The 
system proved its effectiveness and reliability. The total accuracy of the 
system reached up to 91 %. Meng et al.(Meng et al, 2016) designed a 
system to control a robotic arm to perform reach and grasp based on non-
invasive BCI technology. Thirteen participants were included in this 
research. The system showed that the subjects can control the arm 
through modulation of their brain with the training. Karakoe et al. (Karakoc 
et al, 2017) designed a robotic arm using solidwork software. The arm can 
be controlled using brainwaves. The study was successful –however, 
although the arm was successfully controlled, it was not applicable (only a 
prototype). Bousseta et al. (Bousseta et al, 2018) proposed a novel BCI 
system that consists of controlling a robot arm based on the user’s 
thoughts. Four subjects (1 female and 3 males) aged between 20 and 29 
participated in the experiment. They were instructed to imagine the 
execution of movements of the right hand, the left hand, both right and left 
hands or the movement of the feet depending on the protocol established. 
A dynamical system conceptual and preliminary design together with 
system modeling are introduced in (Szabolcsi, 2019). Both dynamical 
system design and analysis tasks based on classical and modern control 
engineering approaches are handled in (Szabolcsi, 2020) using MATLAB. 
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Research methodology used in the study 

An extensive literature search was carried out. The search covered 
studies between 2011 and 2018. Only full-text papers published in English 
were considered. In this research, the combination of keywords (BCI or 
Brain-Computer Interface or EEG or Electroencephalography) and 
(Prosthetic Limb, Prosthetic Arms or Robot) and ( Control Method ) is used. 
Figure 2 shows the process of how the chosen papers were selected in 
this research.  

 

Figure 2 – Research method 
 

Рис. 2 – Метод исследования 
 

Слика 2 – Метод истраживања 
 

From the figure above, the number of selected papers was decreased 
due to the application of several filters depending on the type of the 
papers,e.g. full text or not.Only English language papers were chosen, 
also depending on the type of input signals, i.e. EEG signals.  Only the 
articles that dealt with an upper limb (Arm, Hand) were included.  

 
Figure 3 shows the distributions of the articles regarding the EEG-

Based Control method for artificial upper limbs (as prosthetic arms or 
assistive devices or robotic arms). Years from 2013 till mid of 2016 
witnessed a rise in research interest in this area.  
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Figure 3 – Publication distribution 
Рис. 3 – Распространение публикаций 

Слика 3 – Расподела публикација 

Background 

Prosthetic limbs 

In this section, the focus of the prosthetic limb will be on the prosthetic 
arms type. The prosthetic arm consists of several components that work 
together to make the arm useful. 
• Limb. The limbs of a prosthetic arm are formed out of lightweight, yet 

durable materials. 
• Socket. The socket connects the prosthesis to the residual limb to 

ensure that it fits securely. A poor fit can cause considerable discomfort 
and reduce the function of the prosthetic arm. To circumvent this 
problem, prosthetics are made using a personalized mold to fit the 
exact shape of the residual limb. 

• Suspension system. The suspension system is the component that 
secures the prosthetic to the residual limb. There are different 
suspension systems, including a harness, an elastic sleeve, a suction 
socket, or a self-suspending socket. 

• Control system. While the brain controls a natural limb and nerve 
impulses, a prosthetic arm cannot be controlled the same way. Control 
systems are myoelectric, body-powered, or motor-controlled. 

Electroencephalography (EEG) 

Electroencephalography (EEG) is the most common brain signal that 
has been utilized in brain-machine interface applications. This popularity 
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is due to several facts: EEG signals are non-invasive, low cost, compatible, 
portable and have a high temporal resolution in comparison with other 
brainwave measurements such as electrocorticograms (ECoGs), 
magnetoencephalograms (MEGs), functional magnetic resonance 
imaging (fMRI) and near-infrared spectroscopy (fNIRS).  

Electroencephalography can be defined as the measurement of the 
electric brain activity caused by currents induced by neurons within the 
brain (Murphy et al, 2017). The EEG signal can be detected in a non-
invasive way by placing the electrode on the scalp.  This justifies why the 
EEG measurement is the most widespread brain activity measurement 
technique. In addition, it is comparatively affordable and provides a high 
temporal resolution (about 1 ms).  However, it has a weak signal and is 
prone to several artifacts and relatively poor spatial resolution.  

In EEG measurement, detected waveforms reveal cortical electrical 
activity. The signal intensity of EEG activity is often quite small and 
measured in the microvolt (μV) range (Übeyli, 2009; Acharya et al, 2019). 
The main EEG rhythms are classified based on the frequency range as 
alpha (α), beta (β), delta (δ), theta (θ) and gamma as shown in Table 1a. 

 
Table 1a – EEG frequencies 

 
Таблица 1a – Частоты ЭЭГ 

 
Табела 1a – ЕЕГ фреквенције 

 

EEG Frequencies Description 

Delta ẟ 0.5-4 Appear in infant and deep sleep 

Theta Ɵ 4-8 Appear in partial and temporal areas in children 

Alpha α 8-13 
Occur in awaken adults in the parietal and 
frontal region of the scalp 

Beta B 13-30 

These waves are related to the movements and 
commonly appear in the frontal and central lope. 
The decreasing of the Beta rhythm indicates a 
movement, preparation of movements, planning 
a move, or imagining a movement. This 
decrease is most dominant in the contralateral 
motor cortex. This attenuation in Beta waves is 
called event-related desynchronization. The 
rhythms increase after the movement and are 
known as event-related synchronization. 

Gamma ɣ >30 
These are higher rhythms that have frequencies 
of more than 30 Hz. 
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Results 

During the systematic review, 39 articles were chosen for principal 
studies and all of them were using EEG as an input signal.  

 
However, the output was either a prosthetic limb, an exoskeleton 

device, or a robotic arm.  
 
Figure 4 shows the number of studies that dealt with each one 

considered in this paper.  
 

 

Figure 4 – Articles dealing with EEG application 
 

Рис. 4 – Статьи о применении ЭЭГ 
 

Слика 4 – Чланци о примени ЕЕГ апликације 

 
The systematic review results in 39 papers, chosen as principal 

studies and published in the field of EEG-based control of prosthetic arms, 
exoskeleton, and robotic arms, are shown in Tables 2, 3, and 4, 
respectively.  
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Table 2 – Prosthetic arm 
 

Таблица 2 – Протез руки 
 

Табела 2 – Простетичка рука 
 
 

Reference 
No. 

EEG Extraction Method 
Controller 
Used 

No. of 
movements 

year 

(Bridges et 
al, 2011) 

Not specified 
Not 
specified 

Grasp 2011 

(Yanagisawa 
et al, 2011) 

Feature extraction: 
bandpass filter (Fast 
Fourier Transform) 
Classifier : Support Vector 
Machine SVM  

Not 
Specified 

Grasp,  
extension of 
the second and 
third finger 
( scissor 
shape) 

2011 

(Beyrouthy 
et al, 2017) 

Not specified  
Raspberry 
Pi + 
Arduino 

Close and open 
hand 

2016 

(Bright et al, 
2016) 

Not specified 
Arduino 
UNO 

Flexion, 
extension, 
pinch 

2016 

(Elstob & 
Secco, 
2016) 

CSP spatial filter for 
extraction  
Linear Discriminant 
analysis LDA for classifier 

Arduino 
UNO 

Open, close 2016 

(Agashe et 
al, 2016) 

High-pass and low-pass 
second-order Butterworth 
filters 

Built-in 
controller 

Grasp 2016 

(Vidaurre et 
al, 2016) 

Band Pass filter for 
Extraction, 
LDA as a classifier  

Not 
specified 

Control, right 
hand or left 
hand 

2016 

(Rashid et 
al, 2018) 

Data Processing: low and 
high pass filter 
Feature extraction : 
calculation o band power 
from PSD 
Classification: Logistic 
regression classifier 
network 

Arduino 
UNO 

Finger flexion 
and extension 

2018 

(Faiman et 
al, 2018) 

Data was filtered with 
Bandpass and Notch filter 
Data extraction using Fast 
Fourier Transform 

Not 
specified 

Reaching 2018 
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Reference 
No. 

EEG Extraction Method 
Controller 
Used 

No. of 
movements 

year 

(Noel & 
Snider, 
2019) 

Extraction and analysis : 
Power spectral density 
Classification : Support 
vector machine 

Not 
specified 

Flexion and 
extension of 
fingers 

2019 

(Gannouni et 
al, 2020) 

Extracting CSP 
Classifying: LDA 

Not 
specified 

Finger 
movements 

2020 

(Chinta et al, 
2020) 

Classification : LSTM 
( Long-Short Term Memory 
Model 

Not 
specified 

Upward and 
downward arm 
movement 

2020 

(Fuentes-
Gonzalez et 
al, 2021) 

Not specified  
Arduino 
UNO 

Open and close 
hand 

2020 

(Ali et al, 
2021) 

Not specified  
Not 
specified 

Arm 
movement, 
fingers open 
and close 

2021 

(Setiawan et 
al, 2021) 

RC Filter OP AMP for 
Signal Extraction  

Arduino 
UNO 

Flexion and 
extension of 
fingers 

2021 

(Chaudhry et 
al, 2022) 

Extraction : FFT 
Classification: SVM 

Arduino 
UNO 

Fingers flexion 
and extension 

2022 

 
 
 

Table 3 – Exoskeleton 
Таблица 3 – Экзоскелет 
Табела 3 – Егзоскелет 

 

Reference 
No. 

EEG Extraction Method 
Controller 
Used 

No. of 
movements 

year 

(Xu et al, 
2011) 

Extraction: WT 
Classification: LDA 

Not 
specified 

Right and left arm 2011 

(Ramos-
Murguialday 

et al, 2012) 

Spatial filter  
Not 
specified 

Fingers flexion 
and extension 2012 

(Formaggio 
et al, 2013) 

Sampling : Band Pass Filter 
and FFT 

Not 
specified 

Hand movement 
2013 

(Tung et al, 
2013) 

  Not 
specified 

Upper arm 
movement 

2013 
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Reference 
No. 

EEG Extraction Method 
Controller 
Used 

No. of 
movements 

year 

(Krichner et 
al, 2014) 

Sampling: FFT Band Pass 
Filter and Spatial filter 
Classification: SVM 

Not 
specified 

Upper arm 
movement 

2014 

(Witkowski 
et al, 2014) 

Sampling Band Pass Filter 
Preprocessing:  Laplacian 
filter 

Not 
specified 

Hand movement 
2014 

(Looned et 
al, 2014) 

Extraction: Spatial Filter 
Classifier: Linear Classifier 

Not 
specified 

Arm movement 
and grasp 

2014 

(Hortal et 
al, 2015) 

Sampling : Notch Filter 
Extracting : Band Pass Filter 
Classifier: SVM 

Not 
specified 

Elbow flexion and 
extension 

2015 

(Brauchle et 
al, 2015) 

Digitization: High Pass Filter 
Classification : Linear 
Classification 

Not 
specified 

Arm reaching 
movement 2015 

(Elnady et 
al, 2015) 

Extract: common spatial 
pattern Algorithm  
Classifier: Linear 
Discriminant Analysis LDA 

Not 
specified 

Elbow flexion , 
extension 
hand open and 
close 

2015 

(Comani et 
al, 2015) 

Samplings: notch and 
Bandpass filter 

Not 
specified 

Upper arm 
movement 

2015 

(Soekadar 
et al, 2015) 

Sampling band pass filter 
preprocessing: Laplacian +-
filter 

Not 
specified 

Upper arm 
movement 2015 

(Bhagat et 
al, 2016) 

Sampling : High then Low 
Pass Filter 

Classification: SVM 

Not 
specified 

Elbow flexion 
extension 2016 

(Tang et al, 
2016) 

Sampling : Notch and Band 
Pass Filter 
Classifier: LDA, SVM, 
BPNN 

Not 
specified 

Right- and left-
hand movement 
both feet 
movement 

2016 

(Frolov et 
al, 2017) 

Extraction: Band Pass Filter 
classify: Bayesian classifier 

Not 
specified 

Hand open and 
close 

2017 

(Buerkle et 
al, 2021) 

Extraction :FFT 
Classification: SVM 

Not 
specified 

Right and left hand 2021 
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Table 4 – Robotic arm  
Таблица 4 – Роботизированная (бионическая) рука 

Табела 4 – Роботичка рука 
 

  Reference No. 
EEG 
Extractio
n Method 

Controller 
Used 

No. of movements year 

1 (Steinisch et al, 2013) 

Sampling : 
Notch and 
Bandpass 
filter 

Not 
specified 

Arm movement 2013 

2 (Shedeed et al, 2013) 

Extraction: 
WT, FFT, 
PCA 
Classifier: 
SVM 

Not 
specified 

Close and open arm 
Close hand 

2014 

3 
(Bhattacharyya et al, 
2014) 

Extraction: 
FFT 
Classifier: 
SVM 

Not 
specified 

Arm movement, left, right and 
forward 

2014 

4 (Xu et al, 2015) 

Extraction: 
WT 
Classifier: 
LDA 

Not 
specified 

Arm move upward and 
downward  

2015 

5 (Meng et al, 2016) 
Not 
specified 

Not 
specified 

Arm movement: left, right, up, 
down 

2016 

6 (Karakoc et al, 2017) 
Not 
specified 

Arduino Open and close hand 2017 

7 (Bousseta et al, 2018) 

Extraction: 
FFT 
Classifier: 
SVM 

Not 
specified 

Arm base right, left  
Elbow up and down 

2018 

 

 
 

Figure 5 – EEG signal control in the prosthetic arm research studiesfrom Table 2 
Рис. 5 – Управление сигналом ЭЭГ в исследованииях о протезировании руки из 

Таблицы 2 
Слика 5 – Управљање ЕЕГ сигналом у истраживачким студијама које се баве 

простетичком руком (табела 2) 
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Figure 6 – EEG signal control in the exoskeleton research studiesfrom Table 3 
Рис. 6 – Управление сигналом ЭЭГ в исследованиях экзоскелета из Таблицы 3 
Слика 6 – Управљање ЕЕГ сигналом у истраживачким студијама које се баве 

егзоскелетом (табела 3) 
 
 

 
 

Figure 7 – EEG signal control in the robotic arm research studiesfrom Table 4 
Рис. 7 – Управление сигналом ЭЭГ в исследованиях роботизированной руки из 

Таблицы 4 
Слика 7 – Управљање ЕЕГ сигналом у истраживачким студијама које се баве 

роботичком руком (табела 4) 
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EEG signal types 

EEG is nowadays considered a successful non-invasive realistic and 
practical Brain-Machine Interface BMI Technique. This is due to the fact 
that other techniques are considered high cost, e.g. 
magnetoencephalography (MEG) and positron emission tomography 
(PET).  

Three key elements characterise the EEG-based prosthetic arm: the 
type of EEG signals, which part of the prosthetic arm is under control, and 
how to translate the EEG signal to a control command to manage the 
prosthesis. Figure 8 shows these key elements.  

 

 
Figure 8 – Research elements 

 
Рис. 8 – Элементы исследования 

 
Слика 8 – Елементи истраживања 

 
 
Endogenous and exogenous EEG signals   
 
Depending on the movementtype, the prosthetic arm can be managed 

by utilizing exogenous or endogenous EEG signals.  
 
Table 5 shows the differences between these two types. 
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Table 5 – EEG signal types 
Таблица 5 – Типы сигналов ЭЭГ 
Табела 5 – Типови ЕЕГ сигнала 

 

EEG 
Sign
al 

Description Advantages 
Disadv
antage
s 

Types Description 

E
x
o

g
e
n

o
u
s
 

Generated 
by applying 
external 
stimuli like 
auditory or 
virtual clue 

Minimum 
training for 
participants 

1- 
Require 
a lot of 
focus. 
2- 
Particip
ants 
can be 
really 
exhaust
ed from 
strong 
stimuli. 

Steady 
State 
Visually 
Evoked 
Potential 
(SSVEP) 

The reaction to the 
stimuli is at different 
frequencies. 
If the participant looks 
at a flashing light with 
specific frequency, 
the EEG signal from 
the visual cortex 
would be at the same 
frequency 

P-300 
Based 
Interface 

The same as SSVEP 
but the data transfer 
rate is lower 

E
n

d
o

g
e
n

o
u
s
 

Does not 
need 
external 
stimuli  

Participants 
with 
neurological 
problems 
can control 
prosthesis 

automatically 

1- Need 
more 
training 
2- Data 
transfer 
rate is 

lower 

Sensorimot
or Rhythms 
(SMR)  

Endure two kinds of 
amplitude 
modulations known 
as event-related 
desynchronization(E
RD) and event-
related 
synchronization 
(ERS) 

Slow 
Cortical 
Potentials 
(SCP) 

Slow event-related 
direct-current shifts 
of the 
electroencephalogr
am. Slow cortical 
potential shifts in 
the electrical 
negative direction 
reflect the 
depolarization of 
large cortical cell 
assemblies, 
reducing their 

excitation threshold. 
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Prosthetic arm parts 

The control of a prosthetic arm has different paradigms represented 
by whether the control includes only fingers, hand, elbow, or a full arm. 
Every part requires different types of signals. Besides, the time of training 
is dependent on the parts.     

A - Fingers 

Both human hands have four fingers and a thumb each. The fingers 
have two main moves: flexion and extension. The flex movement is mainly 
for grasping, while extension is for reaching things. Due to flexion, several 
modes can be made, i.e. bending, making a fist, gripping, grasping and 
folding fingers. On the other hand, the extension of fingers includes the 
following modes: pointing, stretching out, and spreading out.  

The thumb is responsible for 50% of the hand function. The thumb 
has two joints at the end and middle which flex and extend, just like the 
fingers. The next joint down, however, is highly specialized and allows 
several unique movements not possible in the fingers. These are the 
following motions: circumduction, abduction, adduction, and retropulsion. 

There are several studies regarding finger movements using EEG 
signals implemented over the last few years. Paek et al. (Paek et al, 2014) 
investigated how the finger tapping movement ca be decoded from the 
scalp EEG signals. The study shows that finger kinematics can be inferred 
from delta band filtered fluctuation of the amplitude of EEG signals across 
the scalp using linear decoders with memory. Ketenci & Kayikcioglu 
(Ketenci & Kayikcioglu, 2019) studied the effect of theta brainwaves on 
movement detection. Four right-handed participants performed extensions 
with their fingers using EEG. They proved that theta signals participate in 
movement execution. Mohamed & Aharonson (Mohamed & Aharonson, 
2021) studied the movement of wrist and fingers together (i.e. left finger 
and wrist or right finger and wrist). The results suggest that a combination 
of classifiers and features from different frequency bands could improve 
BCI performance to enable more dexterous control of a bionic hand. 
Rashid and his team (Rashid et al, 2018) designed a system that can be 
used to control the fingers of a prosthetic limbs using EEG signals. For this 
system, a two-staged classifier was used. The classifier was able to 
distinguish between three finger movements, the thumb, and the fist with 
an accuracy of 70%. A novel method of classification of four finger 
movements (thumb movement, index finger movement, middle and index 
finger combined movement, and fist movement) of the right hand on the 
basis of EEG (Electroencephalogram) data of the movements was 



 

29 

A
b

d
u

lr
a
h

m
a

n
 S

a
ta

m
, 

I.
, 

A
 c

o
m

p
re

h
e

n
s
iv

e
 s

tu
d
y
 o

f 
E

E
G

-b
a

s
e
d

 c
o
n

tr
o

l 
o

f 
a

rt
if
ic

ia
l 
a

rm
s
, 
p

p
.9

-4
1
  

presented by Javed’s team (Javed et al, 2017). The PSD and Linear 
Regression models were used to classify the signals. These classifiers had 
an accuracy of 65%. Liao et al. (Liao et al, 2014) investigated the 
discrimination of individual fingers from one hand using non-invasive EEG. 
The experimental results demonstrated that a movement-related spectral 
structure could be decoupled from EEG power spectrum density data 
using the Principal Component Analysis with an accuracy achieved of 
77.11% . 

B - Hand  

The hand movements include the fingers and the wrist movements. 
The wrist joint flexes and extends, but also deviates radially and ulnarly 
(moves from side to side). The word radially means “toward the thumb 
side”. The term ulnarly means “toward the pinky side”. One might use this 
motions when swinging a hammer. A study of implementing an algorithm 
for wrist movement detection was implemented by Ghaniet al. (Ghani et 
al, 2013) - the movements of the hand were flexion and extension. The 
accuracy achieved by this algorithm was up to 91.93 % using discrete 
cosine transformation of energy and entropy. Huong et al. (Huong et al, 
2018) used Event-Related Potential (ERP) components of P300, and the 
advanced features combined in Artificial Neural Network (ANN) were used 
to classify the electroencephalogram (EEG) signals associated with the 
left and right-hand movements. The results of classification are quite good 
and promising for the application in a BCI context to mentally control a 
computer or a machine. 

Ting Li et al. (Li et al, 2018) proposed a model of voluntary hand 
movement decoding based on an HLM. The original intention of this design 
was to identify a computing architecture that could contain and describe 
complex data, such as that of an EEG BFN. Ramalingam et al. 
(Ramalingam et al, 2016) use machine learning algorithms to extract and 
classify signals from the brain to execute the motion of fingers and wrist 
rotation. four classes of right-hand movements were considered. The 
descriptive statistical features were computed from EEG signals. Feature 
selection was carried out to reduce the classifier complexity and an 
accuracy of 80.55% was achieved using the C4.5 decision tree algorithm.  

C - Elbow  

The elbow is one of the most important parts of the arm because it 
allows the hand to move in almost any position so that various activities 
can be done. The movements that can be done with the elbow are flexion 
and extension. Ji-hoon et al. presented a study of the classification of 
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forearm movements according to elaborated rotation angles using 
electroencephalogram (EEG) signals (Jeong et al, 2020). They used the 
Hierarchical Low Convolutional Neural Network (HF-CNN) model for 
robust classification. The experimental results demonstrate the possibility 
of decoding complex kinematics information using EEG signals. Ghani et 
al. (Ghani et al, 2012) used EEG to analyze brain activity in order to 
translate human elbow movements to the movements of an artificial 
actuator. The work achieved 73% accuracy in the classification of the 
elbow movements using EEG. Faizal et al. designed an orthosis control 
system as a rehabilitation device by using a classification method with 
EEG and EMG signals, so that subjects who use this tool can carry out 
rehabilitation in upper arm movements, especially in the elbow joint. The 
system reached an accuracy of 85.2% with three movements: relax, 
flexion, and extension (Ferdiansyah et al, 2020). 

Translating the EEG signal to the control command 

EEG signal decoding has several stages in order to reach the desired 
output. These common stages are preprocessing, feature extraction, and 
classification. At each stage, an algorithm is applied. 

 
А - Preprocessing 

 
EEG records electrical potentials generated by nerve cells. Electrodes 

are placed on the scalp and recorded by amplification. By this procedure, 
the obtained data shows a continuous graphic with the spatial distribution 
of the voltage changes over time. In order to translate brain activity into 
commands, there are three steps to be applied. First, the brain activity is 
recorded with an acquisition device. Then, artifacts are unwanted faulty 
parts of signals that are removed from signals (Gupta & Singh,1996). 

 
B - Feature extraction 

 
Relevant features are extracted by methods such as Fast Fourier 

Transform (FFT), Wavelet Transform (WT), and Eigenvectors (Zhang et 
al, 2008). There are different methods for feature extraction of the signal 
such as FFT, WT, Eigenvectors, Time-frequency Distributions, and 
Autoregressive Method. Table 6 shows every method mentioned earlier 
with their advantages and disadvantages. 
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Table 6 – Feature extraction techniques  
Таблица 6 – Методы выявления признаков 

Табела 6 –Технике издвајања карактеристика 
 

Name Advantages Disadvantages 

FFT 

1- Good tool for stationary 
signal processing 
2-  It is more appropriate for 
narrowband signals, such as 
sine wave 
3-  It has an enhanced speed 
over virtually all other 
available methods in real-time 
applications 

1- Not good with 
nonstationary signals like 
EEG. 
2- Suffers from large noise 

sensitivity 

WT 
1- It is better suited for the 
analysis of sudden and 
transient signal changes 

Needs selecting a proper 
mother wavelet 

Eigen vector 
Provides suitable resolution to 
evaluate the sinusoid from the 
data 

Lowest eigenvalue may 
generate false zeros when 
Pisarenko’s method is 
employed 

Time 
frequency 

distribution 

1- It gives the feasibility of 
examining great continuous 
segments of the EEG signal  
2-  TFD only analyzes clean 
signals for good results 

1- Time-frequency methods 
are oriented to deal with the 
concept of stationary; as a 
result, a windowing process is 
needed in the preprocessing 
module 
2- It is quite slow (because of 
the gradient ascent 
computation) 
3-  Extracted features can be 

dependent on each other 

Autoregressive 

1- AR limits the loss of 
spectral problems and yields 
improved frequency resolution 
2-  Gives good frequency 
resolution 
3-  Spectral analysis based on 
the AR model is particularly 
advantageous when short 
data segments are analyzed, 
since the frequency resolution 
of an analytically derived AR 
spectrum is infinite and does 
not depend on the length of 
analyzed data 

1- The model order in AR 
spectral estimation is difficult 
to select 
2-  The AR method will give 
poor spectral estimation once 
the estimated model is not 
appropriate, and the models' 
orders are incorrectly selected 
3-  It is readily susceptible to 
heavy biases and even large 
variability 
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C - Classification 

A classifier utilizes values for independent variables (features) as 
inputs to predict the corresponding class to which an independent variable 
belongs. A classifier has a number of parameters that require training from 
a training dataset (Wen et al, 2021). A trained classifier will model the 
association between classes and corresponding features and is capable 
of identifying new instances in an unseen testing dataset. Several 
techniques of classification are explained in Table 7. 

Table 7 – Classification techniques 
Таблица 7 – Методы классификации 

Табела 7 –Технике класификације 
 

 

 

No 
Meth
od 

Description 

1 SVM 

The SVM is a supervised learning algorithm that uses a kernel trick to transform 
input data into higher dimensional space, after which it segregates the data via a 
hyper-plan with maximal margins. Due to its ability to manage large datasets, the 
algorithm is widely used for binary classification problems in machine learning. 

2 MLP 

The MLP is a non-linear neural network based method comprising three sequential 
layers: input, hidden and output, respectively, where the hidden layer transmits input 
data to the output layer. However, the MLP model can cause over-fitting due to 
insufficient or excessive numbers of neurons. 

3 NB 

The NB classifier provides simple and efficient probabilistic classification based on 
Bayes' theorem, which posits that extracted features are not dependent. The NB 
model uses (i) a maximum probability algorithm to determine the class of earlier 
probabilities, and (ii) a feature's probability distribution from a training dataset. 
Results are then employed with a maximized posteriori decision tree to find the 
specific class label for a new test instance. 

4 K-NN 

The k-nearest neighbor is a supervised learning algorithm that identifies a testing 
sample's class according to the majority class of k-nearest training samples; i.e., a 
class label is allocated to a new instance of the most common class amongst KNN in 
the “feature” space. In this study, the k value was set to three. 

5 

K-
fold 
cross 
valid
ation 

All classification models in the present work were trained and tested with EEG data 
and then confirmed using k-fold cross validation, which is a commonly used 
technique that compares (i) performances of two classification algorithms, or (ii) 
evaluates the performance of a single classifier on a given dataset (Wong, 2015). It 
has the advantage of using all instances in a dataset for either training or testing, 
where each instance is employed for validation exactly once. 

6 LDA 

It consists of the statistical properties of the data calculated for each class. For a single 
input variable (x), these are the mean and the variance of the variable for each class. 
For multiple variables, these are the same properties calculated over the multivariate 
Gaussian, namely the means and the covariance matrix. These statistical properties 
are estimated from the data and plug into the LDA equation to make predictions. These 
are the model values that would be saved to file for the model.  
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Conclusion 

The study of EEG-based prosthetic arms includes a wide range of 
fields to be familiar with, such as anatomy, signal processing, control 
methods, and design. All these fields represent sciences in themselves. 
Although researchers have done good work regarding prosthetic arm 
control, more needs to be done, such as increasing the accuracy in EEG 
signal extracting and faster control.  

The use of automatic prosthetic arms is already an accepted method. 
It is considered one of the methods that aim to be applicable for lower 
limbs, wheelchairs, cars, and even drones. 

In future researchbased ona Ph.D. thesis,the five extraction methods 
mentioned in Table 6 and the six classification methods mentioned in 
Table 7 will be used to control the full motion of the arm moving an object 
from one place to another using LabView or MATLAB 
simulation.Subsequently, a method with high accuracy will be applied for 
an actual prosthetic arm using Raspberry pi 4 controller. 
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Резюме:   

Введение/цель: Сигнал электроэнцефалографии (ЭЭГ) 
оказывает большое влияние на развитие технологии управления 
протезом руки. Сигналы ЭЭГ используются в качестве основного 
инструмента в функциональных исследованиях движений 
человека. Изучение управления протезом руки с помощью 
сигналов головного мозга все еще находится на ранней стадии, 
так как данный вид управления начали исследовать всего 
несколько лет назад. 

Методы: Было проведено несколько исследований с целью 
систематического обзора опубликованных статей, для того 
чтобы исследователи и специалисты могли ознакомиться с 
новейшими методами управления с помощью сигналов ЭЭГ, 
используемых не только в области протезирования 
конечностей, но и в других технологиях. 

Результаты: В ходе исследования проанализировано 175 
статей, из которых отобраны только непосредственно 
относящиеся к теме данного исследования. 

Выводы: Данное исследование преследует три цели. Первая цель 
заключается в сборе, систематизации исследований и оценке 
полученной информации из трудов, опубликованных в период с 
2011 по 2022 год. Вторая цель состоит в представлении 
подробного отчета о целостных экспериментальных 
достижениях в этой области, а также о текущих исследованиях. 
Таким образом систематизированный материал предоставляет 
большое количество примеров, описанных в новейших 
исследованиях об управлении протезом руки с помощью ЭЭГ. 
Третья цель состоит в выявлении проблем, требующих 
дальнейшего изучения, и в рекомендации направлений для 
будущих исследований в данной области. 

Ключевые слова: ЭЭГ, ЭМГ, комплексное исследование, протез 
руки, управление. 
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Сажетак: 

Увод/циљ: Сигнал у електроенцефалографији (ЕЕГ) има велики 
утицај на развој технологије управљања простетичком руком. При 
функционалном испитивању људског покретакао главно средство 
користесе ЕЕГ сигнали. Контрола простетичке руке путем 
можданих таласа је још у раним фазама испитивања. Истраживачи 
се тек од пре неколико година баве овом врстом управљања. 

Методе: Неколико студија је имало за циљ да систематично обради 
до сада објављена истраживања како би се истраживачима и 
стручњацима пружио свеобухватни преглед најновијих техника 
управљања путем ЕЕГ сигнала које  се користе не само за 
простетичке руке већ и за друге технологије. 

Резултати: Упоређено је 175 чланака, а изабрани су само они који су 
најтешње повезани са студијом. 

Закључак: Ова студија има три циља. Први је да скупи, 
систематизује и процени информације објављене у студијама у 
периоду од 2011. до 2022. године. Други је да пружи детаљнији 
извештај о холистичким, експерименталним постигнућима у овој 
области, као и осадшњим истраживањима. Систематично урађена 
студија обезбеђује мноштво примера из савремених истраживања 
управљања простетичком руком путем ЕЕГ сигнала. Трећи циљ 
јесте да се укаже на области које захтевају даља истраживања, као 
и да се препоруче правци за њихово спровођење. 

Кључне речи: ЕЕГ, BCI, свеобухватна студија, простетичка рука, 
контролери. 
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