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Abstract:

Introduction/purpose: The aim of this paper is to analyse the numerical
methods for solving differential equations of dynamic equilibrium in
technical problems.

Methods: The paper gives an overview of the following numerical methods:
the method of central difference, the method of linear acceleration, the
Newmark method, and the Wilson 8 method.

Results: Various problems in applying numerical methods in dynamics of
structures have been solved.

Conclusion: It has been shown that the application of numerical methods
has a fundamental importance in dynamics of structures.
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linear acceleration, Newmark method, Wilson 6 method.

Introduction

Numerical methods have played a very significant role in the
development of technical sciences. Today, these methods, above all, have
great importance and wide application in engineering (e.g. in mechanical
and civil engineering). They represent one approach to solving problems
in higher mathematics with the help of computers. The main advantage of
numerical methods is that the solution can be obtained even in cases
where it is not possible to obtain an analytical solution. Numerical methods
provide solutions that are always approximations, but mostly accurate
enough from the aspect of engineering accuracy.

Numerical methods are processed in humerous papers and books,
see (Hoffman, 2001; Rao, 2001; Wilson, 2001; Bathe, 2014; Subbaraj &
Dokainish, 1989; Newmark, 1959; Noh & Bathe, 2019; Jin et al, 2004; Liu
et al, 2018). Wilson in the ref. (2001) investigated dynamics of structures
using numerical integration. The paper of Liu et al. (2018) gives an

452



http://orcid.org/

improvement of the Wilson-6 and Newmark- methods for quasi-periodic
solutions of nonlinear dynamical systems.

Various problems are solved by numerical methods (e.g. solving large
systems of linear equations, solving systems of nonlinear equations,
solving all types of partial differential equations, solving eigenvalues and
eigenvectors, etc.).

In this paper, the emphasis is placed on applying numerical methods
in dynamics of structures. Using numerical methods, it is possible to obtain
the dynamic response of a structure excited due to various influences.
Depending on the specific problem, excitation can be given in the form of
mathematical functions or deterministic (very complex problems). Dynamic
responses of structures include the following dynamic parameters:
dynamic internal forces, dynamic strains, modal parameters, dynamic
displacements, dynamic velocities, dynamic accelerations, and others.
Problems from dynamics of structures have been solved by numerical
methods in numerous papers, e.g. (Wu, 2008; Bamer et al, 2021; Esen,
2017; Tapia Andrade & Torres Berni, 2021).

Numerical methods

Many numerical methods for analysis, simulation and design of
engineering processes and systems are described in (Hofman, 2001; Rao,
2001).

Equations of oscillation of a dynamic system in a closed form can only
be solved in the case of linear systems and under the action of simpler
forms of load which can be formulated analytically. For more complex
loads which are defined as a discrete function (e.g. moving load, seismic
load, and others), it is necessary to use numerical methods even in the
analysis of simpler linear systems. The inclusion of nonlinearity is achieved
by numerical approximation. Numerical solutions, in principle, are based
on iterative methods. The most famous iterative method is Runge-Kutta.

To determine the dynamic response of a structure excited by various
influences, it is necessary to solve a system of differential equations:

[M]{0} +[C]{U} +[K]{U} = {P}. <)
In EqQ. (1), the notations [M], [C] and [K] are the matrices of consistent
mass, damping and stiffness of the system. The notations {U}, { ¥} and
{U} are the acceleration, velocity and displacement vectors of the system.
The notation {P(t)} represents the vector of external forces in the nodes of

the system. For more information on structural dynamics, see (Dhatt &
Touzot, 1984; Wilson, 2001; Clough & Penzien, 2015).
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There are various methods for numerically determining dynamic
responses of structures. In this paper, the emphasis is placed on direct
integral numerical methods. To solve the problem of a dynamic response
of structures, the following four direct integral methods will be presented:

o method of central difference,

o method of linear acceleration,

¢ Newmark method, and

e Wilson 6 method.

The first two methods are explicit while the second two methods are
implicit. Explicit methods generally require a small time step At, but their
solution does not require a relatively long time. On the other hand, implicit
methods allow a relatively large time step At, but their solution requires a
much longer time. It is important to choose the appropriate time step At. It
affects the stability and accuracy of the solution, but also the total
calculation time. Too large a step can lead to inaccurate results and an
unstable response of the structure. On the other hand, too small a step
can result in an unnecessarily long time to solve the problem.

Method of central difference

The central differential method is used in systems with fast and short-
term oscillations and impulse loads. It is based on the approximation of
differential expressions by difference. It is conditionally stable. It is
excellent for small At, while it is unstable for large At. In order to obtain
results of satisfactory accuracy, the time interval must be chosen so that it
is small enough, i.e. At<T,/mr (e.g. At=0.1T,), where T, is the oscillation
period of the structure that coincides with the largest oscillation mode.
More details on this method are given in (Jin et al, 2004; Wilson, 2001).
The main steps of the central difference method are shown in Algorithm 1:

Algorithm 1 - Method of central difference
P, —Cu, —ku
m

1: U‘0=

2: Select At

(At
3: U71=U0—Atuo+ 2 UO
ak=—""_4,°

(At)z 2At
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5 a= —
(At)2 2At
6 b=k— 2"
(At)

7Py = p —au_4 —by;

8: Ui+1=ui +Aui, Ui+l=ui+AUi, ':jiJrl:l]i +AU|

Method of linear acceleration

The linear acceleration method is one of the most well-known step-
by-step integration methods. This method gives excellent results with
relatively little effort in computation. Its main characteristics are: the
acceleration changes linearly during the interval, the damping and stiffness
coefficients of the system remain constant during the time interval, the
accuracy of the method depends on the size of the selected time step, and
sudden changes of the stiffness and damping function must be taken into
account. It is very good for small At, while it is unstable for large At. A
detailed description of this method is given in (Bathe, 2014; Wilson, 2001).
The procedure of the linear acceleration method is shown in the form of
Algorithm 2:

Algorithm 2 - Method of linear acceleration
P, —Cu, —ku
m

1: Uoz

N

: Select At
dm 2

K=k+—+=
A2 At

5 Ay, :%

w

»

.. 4 . "
(at)
8 Ui,y =Uj +AU;, Uyg =U; +Al;, Ui,y =0; +AG;

455

Vasiljevi¢, R., Numerical methods and their application in dynamics of structures, pp.452-472



QVOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2023, Vol. 71, Issue 2

Newmark method

The Newmark method of direct integrations is a special case of the
linear acceleration method. It is the most well-known implicit method for
solving the dynamic equilibrium equation, which involves the choice of two
parameters. It is used in systems with fast and short-term oscillations.
Newmark established this method in 1959 (Newmark, 1959). In this
method, the parameters B and y are introduced, defining the change of
acceleration over a time interval, the stability and accuracy of the method.
The method is unconditionally stable. The time step At is chosen more for
accuracy than for stability, if the condition y>0.5 and 8>0.25(y+05)2. The
negative characteristic of this method is reflected in the numerical
extension of the period. It is described in more detail in (Bathe, 2014;
Newmark, 1959; Jin et al, 2004; Liu et al, 2018; Wilson, 2001; Anahory
Simoes et al, 2023; Karimi et al, 2018; Hassan, 2019). Solving system
oscillation equations using the Newmark method by direct integration is
shown by Algorithm 3.

Algorithm 3 - Newmark method
p, —cu, —ku
m

1 [jo =
2: Select At
m yC

3 k=k+ St
B(At) At

a=_m  7°
pat p
5:h=—" 4 at| L -1c
2p 2p
6: Af)l = Apl +aU| +bU|
7 Ay, :%
k
JEAN B 2p
9: AUI = 1 ZAUi— 1 U,—iul
paty? ' AB 2B

100 Ug,g = Uj + AUy, Uy = U + AU, Uiy =i +AG;
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Wilson 6 method

The Wilson 6 method is applied to slowly oscillating systems. The time
interval is defined by the condition 0<T<8-At. The accuracy of the method
depends on lengthening the period and decreasing the amplitude. The
method is unconditionally stable if the extended time step meets the
condition 6>1.37 (customary: 6=1.4). In this case, there is a very slight
extension of the period and a slight decrease of the amplitude. It is used
in systems with slow oscillations. The negative characteristics of this
method are the extension of the period and damping. It is described in
detail, see (Liu et al, 2018; Wilson, 2001; Mohammadzadeh et al, 2017).
In this paper, the Wilson 6 method is briefly described in Algorithm 4.

Algorithm 4 - Wilson 6 method
1: miiy = p, —cu, —ku
2: Select Ati 6

6m 3c

2t ot
o(at)” oAt
4 AP = pig +( P2 — Piaa ) (0-1)- by

e 6 . .. . OAt
5: AP = f; +m(%ui +3uij+C(3ui +7uij

3 k=k+

6: ki, = AP,

7: Al]l =—26 2 lji _iul —%UI
O° At OAt 2
A.".

8: Al; =S4
oAt

9: AU, = U; At —24;
. . 1. .., 1,.
10: Au; = U;At+ =G At += AU; At
2 6
Uiy = Ui + AU, Uy = Ui +AG;,

MU,y = Py +Cliyy — Ky

11:

Examples of codes in structural dynamics

There are several programming environments designed to perform
complex mathematical operations. On the one hand, programming is done
in different programming languages (e.g. Fortran, C, C++, C#, Java, and
others). On the other hand, ready-made software packages (e.g.
Mathematica, Matlab, Mathcad, and others) can be used. The author of
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this paper selected Wolfram Mathematica for solving the problem of
dynamic behaviour of complex structures. Mathematica is a software
package that shapes a fully integrated computing and communication
environment. It is based on symbolic problem solving. It handles both
complex analytical expressions and purely numerical values equally well.
For more detail on Mathematica, see (Wolfram, 2003).

In the continuation of this paper, some examples of the numerical
determination of dynamic parameters of real structures are illustrated,
using programs written in the Mathematica software package. The author
compiled and solved all the examples. The examples are given in order,
from simple problems to complex ones.

Example problem 1

The sketch and the discrete model of the single-degree system
(SDOF) of a bridge crane are shown in Figure 1.

Given: m=4485 kg, L=9.2 m, I=4.6 m, 1=0.00264 m*, E=2.1-10%!
N/m?,to =0's, yo=-0.06 m, y’0=0 m/s, and T=2 s.

Find: Response of free undamped oscillations of the crane's main

girder.
1 | ‘l
Main
girder T
a)
L

{ , l

A ‘m PaN

Y =

L»x b)

Figure 1 — a) Sketch of the bridge crane, b) Model with the concentrated mass of the
bridge crane
Puc. 1 —a) Ocku3 Mmocmosozo kpaHa, 6) Modernb Mocmogozo kpaHa ¢
€cocpedomoyeHHbIMU Hagpy3Kkamu
Cnuka 1— a) Ckuya MocHe dusanuue, 6) Moler ca KOHUeHmMpuUcaHOM MacoM MOcHe du3anuye
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Solution:

The computer code "RV-program_1" for solving free undamped
oscillations of the main girder of the bridge crane was written in the
program package (language) Mathematica based on the Newmark
method.

(*Input data*)

P[t ]:=0
m=4485;k=7.32x10"6;t0=0;q={-0.06};dq={0};T=2;

(*Initialisation*)
ddg=LinearSolve[m,P[t0]-k.q];
Print["t=",t0,",9=",q9,",dg=",dq,",ddg=",ddq]

Dt=0.01;

ut={t0};u={q};du={dq};ddu={ddq};
(*Loops*)

Do[DP=P[t+Dt]-P[t];

DPhat=DP+m.(4 dg/Dt+2 ddq);

khat=k+4 m/dt"2;

Dg=LinearSolve[khat,DPhat];

dDg=2 Dq/Dt-2 qd;

ddDqg=4(Dg-Dt dg-dt"2 ddg/2)/Dt"2;

q=q+Daq;

dg=dqg+dDq;

ddg=ddq+ddDq;

ut=Append[ut,t];u=Append[u,q];

du=Append[du,dq];ddu=Append[ddu,ddq];

(*Print["t=",t,",9=",9,",dg=",dq,",ddg=",ddq]*),{t,t0+Dt, T,Dt}]

Print["Total node:",n=Length[u]]

Print["ut=",ut,",u=",u]

(*Plot *)
ListPlot[{Table[{ut[[i]],u[[i]]}.{i,n}]},PlotStyle>{Thickness[0.005],{Blue}}},
Frame>True,FrameLabel>{"t(s)","qdin(m)"},GridLines>Automatic,
Joined->True]

The displacement diagram of free undamped oscillations of the crane
main girder is shown in Figure 2.
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Figure 2 — Response — displacement of the middle of the bridge
Puc. 2 — Omeem - cmeweHue cepeduHbl Mocma

Criuka 2 — Odz080p — nomepar-e cpeduHe Mocma

Example problem 2

The sketch of the physical representation and the discrete model of
the two-degree of freedom (2-DOF") system of a twin winch bridge crane
are shown in Figure 3.

Given: m;=10000 kg, m>=10000 kg, L=16 m, a=3 m, c=9 m, 1=0.00065

m4, E=2.1-1011 N/m2, =0 s, ylo=-0.0453 m, Yyao= -0.0582 m, y’lo=0

m/s, y'20=0 m/s, and T=2 s.

Find: Eigenfrequencies and the response of free undamped
oscillations of the crane main girder.
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| ] [ 1l

Main
girder

1
- a)

L
a . c
A my 2 é

Figure 3 — a) Sketch of a bridge crane with two winches, b) Model with the concentrated
masses of the carrying structure of the bridge crane
Puc. 3 — a) 9cku3 mocmoegozo kpaHa ¢ d8ymsi nebedkamu, 6) Moderb ¢
cocpedomoYeHHbIMU Hagpy3kamu Hecyuell KOHCMPYKYUU MOCMO8020 KpaHa
Crniuka 3 — a) Ckuua MocHe Ousarnuue ca 08a sumra, 6) Modes1 ca KOHUEHMPUCaHUM Macama
Hocehe KoHcmpyKuuje MocHe du3sanuue

Solution:

The code "RV-program_2" for calculating the frequencies and periods
of oscillations and for determining free damped oscillations of the main
girder of a bridge crane with two winches was written in the Mathematica
program package based on the Wilson 6 method.

(*Input data 1%*)
P[t_]:={0,0}
M={{10000,0},{0,10000}};C={{0,0},{0,0}};K=10"6{{3.64,-1.16667},
{-1.16667,1.12346}};

(*I - Frequencies and periods oscillation*)
ev=Sort[Eigenvalues[{K,M}]];
w=Sqrt[{ev}];w= w[[1]];n=2;
f=Table[w[[i])/(2*\[Pi]),{i,n}];
T=Table[(2X\[Pi])/wI[i]].{i,n}];
Print["cfreq=",w,",cfreq=",f,",period=",T]
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(*Il - Response - displacements, speeds and accelerations*)
(*Input data 2*)
t0=0;9={-0.0453,-0.0582};9’10={0,0};T=2;
(*Initialisation*)
ddg=LinearSolve[M,P[t0]-K.q];
Print["t=",t0,",g=",q9,",dg=",dq,",ddg=",ddq]
Dt =0.01;6=1.4;D1=6 Dt;
ut={t0};u={q};du={dq};ddu={ddq};
(*Loops™)
Do[DP=P[t+Dt]+(P[t+2 Dt]-P[t+Dt])(6—1)-PIt];
DPhat=DP+M.(6 dq/DT1+3 ddq)+C.(3 dg+Dt1 ddq/2);Khat=K+6 M/D1/2+3
C/Dr;
Dg=LinearSolve[Khat,DPhat];
Dddg=(6 Dq/D1*2-6 dg/D1-3 ddq)/6;
dDg=ddq Dt+Dddqg Dt/2;
Dqg=dq Dt+ddq Dt"2/2+Dddq Dt"2/6;
q=9+Dq;
dg=dg+Ddq;
ddg=LinearSolve[M,P[t]-C.dg-K.q];
ut=Append[ut,t];u=Append[u,q];
du=Append[du,dq];ddu=Append[ddu,ddq];
(*Print["t=",t,",9=",9,",dg=",dq,",ddg=",ddq]*),{t,t0+Dt, T,Dt}]
Print["Total node:",n=Length[u]]
Print["ut=",ut,",u=",u]
ul=u[[All,1]];u2=u[[All,2]];dul=du[[All,1]];du2=dul[[All,2]];ddul=ddu[[All,1]];
ddu2=ddul[[All,2]];
(*Plot*)
ListPlot[{Table[{ut[[i]],ud[[i]]}.{i,n}], Table[{ut[[i]],u2[[i]]}.{i,n}]},
PlotStyle->{{Thickness[0.005],Darker[Green]},{Dashed,Darker[Blue]}},
Frame->True,FrameLabel->{"t(s)","qdin(m)"},GridLines->Automatic,
Joined->True]

First, natural oscillation frequencies and oscillation periods of the
crane main girder carrier were obtained: f=(1.30, 3.20) Hz; T=(0.77, 0.31)
S.

The results of the execution of the program in the form of a diagram
of the functions of the free undamped displacement of the crane's main
girder, at the locations of the trolleys, are shown in Figure 4.
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Figure 4 — Response - displacements in the locations of the trolley
Puc. 4 — Omeem - cmelwjeHuUs1 8 Mecmax pPacriofioXeHUs1 Menexku

Criuka 4 — Od2080p — nomMepar-a Ha Mecmuma Kosuua

Example problem 3

The physical representation and the discrete model with the single
degree of freedom (SDOF') of the steel water tank are shown in Figure 5.

Given: m=15000 kg, k=18-10% N/m, c=20000 Ns/m; H=8 m, to =0 s,
T=1s, and P(t) — (see Figure 6).

Find: Determine the response of the vertical carrying column of the
tank due to the action of the impact force P(t).

Vasiljevi¢, R., Numerical methods and their application in dynamics of structures, pp.452-472
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a) b)

(1)

Y

o]

[ ] [ 1

Figure 5 — a) Sketch of a steel water tank, b) Discrete model of a steel water tank - SDOF
Puc. 5 — a) 3ckus cmanbHo20 pe3epegyapa 0nsi 800bI, 6) JuckpemHas moderib
cmarnbHo20 pe3epsyapa 051 800bI - SDOF
Criuka 5 — a) Ckuua Yernu4Hoe 800eHoez pe3epsoapa, 6) duckpemHuU MoOesT YeruyHo2 800EH02
pesepsoapa — SDOF

600000

500000 1
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£300000
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Figure 6 — Diagram of the change of the impact load in time
Puc. 6 — pacbuk usmeHeHus1 yOapHOU Hagpy3KU 80 8peMeHU
Cnuka 6 — [ujaepam npomeHe ydapHoe onmepehera y epeMeHy
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Solution:

The code "RV-program_3" for solving the problem of oscillations of
the vertical column of the tank excited by the impact force was written in
the Mathematica programming language based on the Newmark method.

(*Input data*)
P[t_]:=If[t<=0.05,5%10"5t/0.05,f[t<=0.1,0.15%10"5/0.05-5%10"5 t/0.05,0]]
m=15000;c=20000;k=18%10"6;t0=0;9={0};dq={0};T=0.5;

(*Initialisation®*)
ddg=LinearSolve[m,P[t0]-k.q];

Print["t=",t0,",9=",q,",dg=",dq,",ddg=",ddq]
Dt=0.01;
ut={t0};u={q};du={dq};ddu={ddq};
(*Loops*)
Do[DP=P[t+Dt]-P[t];
DPhat=DP+m.(4 dq/Dt+2 ddq);
khat=k+4 m/Dt"2;
Dg=LinearSolve[khat,DPhat];
Ddqg=2 Dq/Dt-2 qd;
Dddqg=4(Dg-Dt dg-Dt"2 ddq/2)/Dt"2;
q=9+Dq;
dg=dg+Ddq;
ddg=ddq+Dddq;
ut=Append[ut,t];u=Append[u,q];du=Append[du,dq];ddu=
Append[ddu,ddq];
(*Print["t=",t,",g=",9,",dg=",dq,",ddg=",ddq]*),{t,t0+Dt,T,Dt}]
Print["Total node:",n=Length[u]]
Print["ut=",ut,",u=",u]

(*Plot*)
ListPlot[{Table[{ut[[i]],u[[i]]},{i,n}]},PlotStyle>{Thickness[0.005],{Blue}}},Fra
me->True,FramelLabel->{"t(s)","gdin(m)"},GridLines->Automatic,Joined->
True]

The results in the form of a displacement diagram at the place of the
concentrated mass are shown in Figure 7.
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Figure 7 — Response - displacement at the tank place

Puc. 7 — Omeem - cMewjeHuUs1 8 Mecme pesepeyapa

Criuka 7 — O0z2080p — rnomepars-e Ha Mecmy pesepeoapa

Example problem 4

0.5

The physical description and the finite element model of the eight
degree of freedom (8-DOF') overhead crane system are shown in Figure

8.

Given: m=8000 kg; L=16 m, 1=2 m, A=0.0174 m?, 1=0.001723 m?,
E=2.1-10' N/m?, p =7850 kg/m?; t,=0 s, and T=10 s.

Find: Determine the response of the main girder of the bridge crane

excited by the moving of the trolley.
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Figure 8 — a) Sketch of a bridge crane, b) Finite element model with the moving load of a
bridge crane
Puc. 8 — a) 3ckuz mocmosoeo KpaHa, 6) KoHeyHo-anemeHmHas MoOesib MOCMOo8020
KpaHa ¢ nepemeujeHuem epy3a
Cniuka 8 — a) Ckuua mMocHe Qu3anuue, 6) 3agpuiHoenemeHmHu Moderi ca MoMUYHUM
onmepehersem MocHe du3anuye

Solution:

The code "RV-program_4" for solving the problem of the moving load
of the bridge crane was programmed in the Mathematica programming
language based on the Newmark method. Due to the scope of the
program, a 6-step procedure is provided:

(i) Calculation of the stiffness [K] and inertia [M] matrices of the finite

element model of the bridge crane;

(i) Calculation of the eigenfrequencies of the FE model of the

considered crane, using the algebraic equation det(K-w?M)=0;

(iii) Calculation of the global position of the moving load xp(t) in relation

to the left end position of the main girder in the time step;
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(iv) Dividing the total time domain T into n steps so that the
corresponding time interval At is obtained;

(v) Calculation of the external force vector {P(t)} as a function of time
t of the finite element model of the bridge crane; and

(vi) Solving equation (1) for the finite element model of the bridge crane
for each time step n (n takes values from 1 to p).

In equation (1), the influence of structural damping is excluded. The
code was programmed in Mathematica software based on the Newmark
numerical method (Bathe, 2014).

The result in the form of a diagram of the displacement of node 5 of
the main girder of the bridge crane during the moving of the trolley from
the end left position to the middle of the bridge is shown in Figure 9.

0.000

~0.005 .
E
S 0.010] ! I Ly
& —VUUT I||' wm

-0.015 .

S N B . max=+0.0179 ~ ,
0 1 2 3 -4 5
t (s)

Figure 9 — Response — displacement, node 5 - gsdyn

Puc. 9 — Omeem - cmeuwjeHue, y3en 5 - Qsoun
Criuka 9 — Od3us — nomepar-e, 48op 5-Qsdin

Examples of problems in references

The dynamics of carrying structures of portal cranes using the
Newmark numerical method was solved in papers (Vasiljevi¢ et al, 2016;
Vasiljevic, 2020).
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Conclusion

In this paper, four numerical methods with their algorithms and
examples of their application in structural dynamics are briefly described.
Critical comments were made on the possibilities of applying numerical
methods in dynamics of structures.

Through some examples of real mechanical constructions, it is shown
how to choose the size of the time step. The emphasis in practical
examples is placed on the Newmark method and the Wilson 6 method.

The importance of the paper is reflected in the importance of making
regular decisions on choosing the most adequate numerical method in a
specific situation. The paper can be useful to engineers-designers and
researchers who deal with the problems of structural dynamics.
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YucneHHble MeToabl Y UX NPUMEHEHUE B AUHAMUKE CTPYKTYP
Pade P. BacunbeBuy

dakynbTeT TEXHUYECKUX akaaeMUYEeCKMX UccrnenoBaHui,
r. benrpag, Pecnybnvka Cepbus

PYBPUKA TPHTW: 27.41.41 AnropuTMmbl pelueHms 3agad
BblYNCNNTENBbHOM U OUCKPETHOW MaTeMaTuKu,
30.15.27 KonebaHns MexaHN4eCKMx CUCTEM,
30.03.19 MaTemaTunyeckme MeTobl MEXaAHUKU,
55.01.77 MeToabl nccnegoBaHus U MOLENUPOBAHWS.
MartemaTtuyeckune n knbepHeTnyeckne MeToapl
BWO CTATbW: o63opHas ctatbs

Pe3swome:

BeedeHue/uenb: Llenbto OaHHOU cmambu As8rgemcs  aHasius
qucrieHHbIX Memodoe peuweHuss OughgepeHyuanbHbIX ypasHeHUl
OUHaMU4YeCK020 pagHOBECUS 8 MEXHUYECKUX 3adayax.

Memodbi: B cmambe npugedeH 0b630p YucieHHbIX Memodos: Memood
UeHmparsbHbIX pasHocmel, Memod JUHEUHO20 YCKOPEHUSs, Memod
Hbromapka u 6 - memod BunbcoHa.

Pesynbmamei: PeweHbl pa3nuyHblie 3adayu npuMeHeHUs1 YUCeHHbIX
Memodos 8 duHaMUKe COOPYXKeHUU.

Bbigo0dbi: Pe3ynbmambl uccriedogaHusi nokasasnu, 4mo npuMeHeHue
YucCreHHbIX Memodos umeem KIroyegoe 3HadeHue 8 OuHaMuke
COOpyXeHUU.

Knrouesbie crnosa: 4ucrieHHble Memolbl, Memod ueHmpasbHbIX
pasHocmel, memod 5uUHeliHO20 yCKopeHusi, memod Hbromapka, 6 -
memod BuribcoHa.

Hymepuyke meToae 1 HuxoBa NPUMeEHa Yy AMHaMULUM KOHCTPYKLUuja

Pade P. Bacurbesuh
Bucoka TexHu4ka Lwkona akagemckux ctyauja, beorpaa, Peny6nuvka Cpbuja

OBJIACT: matematuka, padyHapcke Hayke, MexaHuka, MallMHCTBO
KATETOPWJA (TUIM) YIAHKA: nperneaxu pag

Caxemak:

Yeod/yurb: Y pady cy aHanusupaHe Hymepudke memode pewasar-a
OugbepeHyujanHux jeOHaduHa OUHaMU4YKe PasHOMeEXe Y MEeXHUYKUM
npobnemuma.

Memode: lNpedcmasrbeHe cy Hymepudke memode: memooda UeHmpasiHux
OugbepeHuuja, memoda rnuHeapHoz ybp3ama, Hbymapkoea memoda u
BuncoHosa 6-memoda.
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Pesynmamu: Peweru cy pasnu4dumu rpobsiemu Koju ce jasrbajy npu
MPUMEHU HyMEPUYKUX Memoda y QuHaMuuu KOHCMpyKUuja.

Sakrbyyak: [lokasaHo je Oa npuMeHa HyMepudkux wmemoda uma
¢yHOameHmanaH 3Ha4aj y OuHaMuyu KOHCmpyKuuja.
KmbyyHe peyu:. Hymepudyke Memode, Memoda  UyeHmpasnHux

ougpepeHyuja, memoda nuHeapHoz ybp3ara, Hbymapkosa memooa,
BuncoHosa 6-memoda.
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