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Abstract:

Introduction/purpose: In recent years, deep learning techniques, par-
ticularly Convolutional Neural Networks (CNNs), have demonstrated re-
markable performance in 5G communication systems by significantly im-
proving the accuracy of channel estimation compared to conventional
methods. This article aims to provide a comprehensive review of the ex-
isting literature on CNN-based channel estimation techniques, as well as
to enhance the state-of-the-art CNN-based channel estimation methods
by proposing a novel method called VDSR (Very Deep Super Resolu-
tion), inspired by Image Super-Resolution techniques.

Methods: To evaluate the effectiveness of various approaches, we con-
duct a comprehensive comparison considering different scenarios, in-
cluding low Signal-to-Noise Ratio (SNR) and high SNR, as well as Line-
of-Sight (LOS) and Non-Line-of-Sight (NLOS) scenarios. Through this
comparative analysis, we assess the performance of the existing meth-
ods and highlight the advantages offered by the proposed VDSR-based
technique.

Results: Our findings reveal a significant potential of CNN-based chan-
nel estimation in 5G communication systems, with the VDSR method
demonstrating a consistent performance across all scenarios. This re-
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search contributes to the advancement of channel estimation techniques
in 56G networks, paving the way for enhanced wireless communication
systems with improved reliability.

Conclusion: The VDSR architecture demonstrates remarkable adapt-
ability to different types of channels, which results in achieving requested
performances for all analyzed SNR values.

Key words: deep learning, CNN, 5G communication systems, very deep
super resolution.

Introduction

With the advent of 5G communication technology, the demand for high-
speed, low-latency, and reliable wireless communication is increasing ex-
ponentially (Albreem, 2015). The key enabler for 5G communication is
accurate channel estimation, which refers to the process of estimating
the wireless channel parameters between the transmitter and the receiver
(Morocho-Cayamcela et al., 2019). Accurate channel estimation is critical
for improving the performance of 5G communication systems, including
data rates, spectral efficiency, and reliability (Ma et al., 2015). In recent
years, convolutional neural networks (CNNs) have emerged as a promis-
ing technique for channel estimation in 5G communication systems (James
et al., 2011). CNNs are powerful deep learning algorithms that can learn
and extract complex features from large amounts of data. By leveraging
the power of CNNs, channel estimation in 5G communication systems can
achieve high accuracy, robustness, and efficiency (Ye et al., 2017; Kaur
et al., 2021).

This work aims to investigate the effectiveness of CNN-aided channel
estimation in 5G communication systems. Specifically, through exploring
the existing literature on CNN-aided channel estimation, a novel architec-
ture for CNN-based channel estimation is being proposed, and the perfor-
mance of the suggested approach will be assessed through simulations.

The rest of this paper is structured as follows. Section 2 describes the
5G new radio SISO-OFDM system. Section 3 provides a literature review
on CNN-aided channel estimation and describes the architecture used for
our method. Section 4 presents the results and analysis of the simulation.
Section 5 discusses the implications of our findings and provides recom-
mendations for future research. Finally, Section 6 presents the conclusions
of this work.
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5G new radio SISO-OFDM system

The focus of this paper is on analyzing a SISO-OFDM system that em-
ploys a single antenna at both the transmitter and receiver. This system is
depicted in the diagrams shown in Figure 1 and Figure 2 , and the channel
model is constructed accordingly.

Transmitter

Figure 1 shows the architecture of the transmitter, which involves con-
verting serial binary input bits (a sequences of zeros and ones) into a paral-
lel form. Based on the chosen modulation scheme, the binary bits are then
mapped onto symbols, with each symbol being K — dimensional and the
binary bits selecting one of M constellation points. Typically, K is 2, and
M is determined by the modulation scheme chosen at the higher layer.
Additionally, intermittent pilot symbols are inserted among the modulated
symbols, which serve as a reference for channel estimation and are also
recognizable to the receiver.

_— s —

Serial —| Syl — Add —— — Parallel Adq
DATA ——> to — myam i‘:f—» pilot — |FFT — to —— cyclic
Parallel ——| ppRing symbole____, . Serial preﬁx

—_—

Figure 1 — Block diagram for the OFDM transmitter model
Puc. 1 - bnok-cxema modenu nepedamyuka OFDM
Cnuka 1 — briok-Oujagpam 3a moder1 OFDM rnipedajHuka

Let Xs € {X,,, X,} where X,,, € {s0,s1,52,,sm—1} is the modulated
symbol selected by log, M binary input bits and X, € {po,p1,p2,...,Px—1}
are pilot symbols respectively. Equation 1 in the digital domain is Inverse
Discrete Fourier Transform operation which can be efficiently realized by
the Inverse Fast Fourier transform (IFFT) before adding the cyclic prefix
(Banerjee et al., 2022).

1 & ok
zs(n) = N Z Xs(k) exp (JQWFTL)- (1)
s 1.1 s

where Ny is the IFFT length. A parallel to serial converter is present after
the IFFT operation to serialize the output.
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Receiver

Figure 2 shows the architecture of the receiver, which includes a process
for estimating the timing of the received signal.

Cyclic Serial — —
Channel

preﬁx to F FT estimation
removal Parallel __, [

—
Equalise
and — " Parallel
symbol —— to —— DATA
De- . Serial
mapping

—

Interpolation

oo — Deeplearning

Figure 2 — Block diagram for the OFDM receiver model
Puc. 2 - bnok-cxema modenu ripuemHuka OFDM
Cnuka 2 — bnok-Oujaegpam 3a modenn OFDM npujemHuka

This process involves cross-correlating the input waveform with a refer-
ence waveform and compensating for any timing offset. Once the timing
offset has been accounted for, the cyclic prefix is removed from the re-
ceived waveform. If Y is the received OFDM symbol and yg is the output
of the FFT operation, then yg can be expressed in the following manner
(Banerjee et al., 2022):

Ng—1 I

- Vil (—j2ryn) @
=1 s

ys(n) = Fs

The pilot samples, which are located at predetermined positions, are
extracted from the signal and utilized to estimate the channel character-
istics. This channel estimation information is then used to equalize the
output ys(n). After equalization, the signal is demodulated based on the
modulation scheme that was employed at the transmitter.

Signal model

In an OFDM system (Soltani et al., 2019), for the ky, time slot and the
ith subcarrier, the input-output relationship is represented as:

Yir =Hi 1 Xik+ Zig (3)
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Considering an OFDM subframe of size NgNp, the time slot index & is
between [0, Np — 1], and the range of the subcarrier index i is [0, Ng — 1].
Y »: The received signal
X, i;: Transmitted OFDM symbol
Zi x,: White Gaussian noise
H;: the (i,k) element of H € CNsNr. [ represents time-frequency re-
sponse of the channel for all subcarriers and time slots.

5G data architecture

The physical layer of the 5G NR is based on resource blocks allowing
the NR physical layer to adapt to various spectrum allocations. A resource
block spans 12 subcarriers with a given sub-carrier spacing. A radio frame
has a duration of 10 ms and consists of 10 sub-frames with a sub-frame
duration of 1ms as shown in figure 3 . A sub-frame is formed by 1 or mul-
tiple slots each having 14 adjacent symbols (a variable number of OFDM
symbols per subframes, different from LTE) (3GPP. 2018).

Subframe

Subcarrier spacing slot:1ms

se: [ [T T T T T T [T T T

slot:0,5ms

sz, [T LD T]

slot: 0,25 ms

eoktiz) [P LA A T T A T T T

Figure 3 — Sub-frame architecture in 5G
Puc. 3 — lNodkadposasi apxumexkmypa 8 5G
Cnuka 3 — Apxumekmypa nodoksupa y 5G

In 5G NR, the pilot symbols are referred to as demodulation reference
symbols (DMRS) and this is used by the receiver for radio channel estima-
tion. The DMRS symbols are uniformly placed within sub-carriers as shown
in figure 4. We assume the DMRS symbols used in the 3GPP specification
(3GPP. 2020a).

Figure 4 shows the DM-RS pattern and frequency for type 1 and type
2. Type 1 on the left corresponds to every other resource element in the
frequency being occupied by a DM-RS symbol. Type 2 on the right shows
two consecutive resource elements occupied by the DM-RS symbols out of
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Figure 4 — Representational figure of the distribution of DM-RS
Puc. 4 - PenpeseHmamusHoe u3obpaxeHue pacnpedeneHuss DM-RS
Cnuka 4 — PenpeseHmamusgHu ripukas oucmpubyuyuje DM-RS

each group of six resource elements. Therefore, type 1 has a denser occu-
pancy at 50% of the resource estimates, versus one-third of the resource el-
ements for type 2. On the other hand, you can only have two such columns
of type 1 DM-RS, whereas there can be three different sets of type 2 DM-
RS as there are two more possible positions for a set of two DM-RS in each
group of six resource elements. This means that type 2 supports a larger
number of orthogonal signals, which is more suitable for multi-user MIMO.
These two types correspond to a trade-off between density and frequency
and the number of orthogonal DM-RS sequences supported.

Channel model

In wireless communication channels, the signal transmitted from a base
station to user equipment not only includes a direct line-of-sight (LOS) com-
ponent, but also other components that are reflected off scatterers, leading
to a multipath propagation environment. Each path of the signal experi-
ences different amounts of attenuation and delay (Wang et al., 2018). The
channel’s impulse response can be expressed as:

916



L-1
h(t) = Z a;0(T — 1), (4)
i=0
where q; is the attenuation and ¢; is the delay in the i, path.

Tap Delay Line models

In TDL models, the channel impulse response (CIR) is represented by
a linear finite impulse response (FIR) filter. Each tap of the TDL model
is composed of several multipath component (MPCs) with non-resolvable
delays. Tap weights are modeled by a random process with amplitudes
following Rayleigh, Rician, or Weibull distributions (Wang et al., 2018).

A TDL (Tap Delay Line) profile in 5G communication represents a spe-
cific channel model that simulates the characteristics of radio wave propa-
gation in a wireless communication system. Three TDL models, nhamely
TDL-A, TDL-B and TDL-C, are constructed to represent three different
channel profiles for NLOS while TDL-D and TDL-E are constructed for LOS
(3GPP. 2020Db).

CNN-aided channel estimation

In recent times, there has been a significant surge in interest in channel
estimation techniques based on deep learning. This is due to their abil-
ity to adapt and learn from data, as opposed to conventional estimation
techniques that rely on a model-based approach.

A convolutional neural network (CNN) approach is chosen because the
channel estimation problem can be modelled as an image-processing prob-
lem (Banerjee et al., 2022; Soltani et al., 2019; Gizzini et al., 2021). The
CNN-based deep learning approach has proven to be efficient for handling
image processing problems as it keeps the number of parameters in weight
matrix less in comparison to a fully connected neural network model by
making use of parameter sharing and sparsity of connections.

Recently, the channel estimation in OFDM systems has been ap-
proached using a deep learning-based framework, where the time-
frequency grid of the channel response is represented as a 2D-image that
is only available at the pilot positions. (Soltani et al., 2019) presented a
deep learning-based framework for channel estimation in OFDM systems,
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which proposed an image super-resolution (SRCNN) and image denoising
(DnCNN) algorithms to estimate the channel. In (Banerjee et al., 2022) a
CNN model for Over-the-Air channel estimation has been applied, and the
model is proposed by Matlab.

In this paper, we present a novel method for channel estimation that
utilizes a very deep convolutional network inspired by VGG-net used for
ImageNet classification; the method was proposed by (Kim et al., 2016) and
presents a highly accurate single-image super-resolution (SR) technique.
The next sections will provide detailed explanations of the three methods.

Method 1: channel estimation using super-resolution (SR-
CNN) and denoising techniques

The method treats the channel grid with several pilots as a low-
resolution (LR) image and aims to estimate the high-resolution (HR) chan-
nel. To achieve this, the framework models the channel response as a
super-resolution image problem (Soltani et al., 2019).

The channel grid estimation is performed using two phases. In the first
phase, the image super-resolution (SR) CNN-based (Convolutional Neural
Network) algorithms (Dong et al., 2015), SRCNN, are implemented to in-
crease the resolution of the low-resolution (LR) input. The schema for the
CNN-based (Convolutional Neural Network) algorithms is shown in Figure
5.

In the second phase, an image restoration (IR) method based on CNN
(Figure 6 ) is utilized to eliminate the noise effects and improve the quality
of the estimated channel grid (Zhang et al., 2017).

Network architecture for SRCNN and DnCNN

The SRCNN technique involves utilizing an interpolation technique to
estimate the high-resolution image (channel) values initially, and then re-
fining the resolution by employing a three-layer convolutional network as
shown in Figure 7:

* The first convolutional layer uses 64 filters of size 9 x 9 followed by

RelLu activation,

» The second layer uses 32 filters of size 1 x 1 followed by ReLu acti-
vation.
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Figure 5 — Super-resolution based CNN, (a) 2D-image which is known only at the
pilot positions, (b) estimated channel as a high-resolution
Puc. 5 — CNN Ha ocHosge ceepxpa3peweHusi, (a) 2D-u3obpaxeHue, uzgecmHoe
MOoJIbKO Ha rno3uyusx nuioma, (b) oueHueaembIl KaHas 8bICOKO20 pa3pelieHusi
Cnuka 5 — CNN 3acHoeaH Ha cynep pe3onyyuju, (a) 2D-criuka Koja je no3Hama
camo Ha nusiom nosuyujama, (b) npouereHu KaHan sucoke pesornyuyuje

* The final layer uses only one filter of size 5 x 5 to reconstruct the grid
channel.
The DnCNN technique in Figure 8 is a residual-learning based network
composed of 20 convolutional layers:
* The first layer uses 64 filters of size 3 x 3 x 1 followed by a RelLU,

» Each of the succeeding 18 convolutional layers uses 64 filters of size
3 x 3 x 64 followed by batch-normalization and ReLU, and

* The last layer uses one 3 x 3 x 64 filter to reconstruct the output.

Method 2: channel estimation using a regression method

The approach used for channel estimation is the same as the first
method; the channel estimation problem was considered as an image pro-
cessing problem by viewing the resource grid as a 2D image. A regression
method based on deep learning is used in (Banerjee et al., 2022) to es-
timate a perfect channel. The input to the deep learning model is the LS
channel estimated data and the CNN model can be trained against a perfect
channel estimate as a reference, based on the statistical information avail-
able. CNN operates by applying convolution operations between images
and kernels of different sizes to extract feature information. This process
occurs in a multilayered system where the output of the convolution opera-
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=

Super
Restoration
Network

(a) (b)

Figure 6 — Denoising based CNN, (a) estimated channel which is considered as a
noised image, (b) estimated channel
Puc. 6 — CNN Ha ocHoge wymornodaesneHus, (a) OUeHOYHbIU KaHasl, Komophbil
paccmampugaemcs Kak 3awymrieHHoe u3obpaxkeHue, (b) oueHOYHbIU KaHar
Cnuka 6 — CNN 3acHosaH Ha cMar-erby WyMa, (a) MpouereHU KaHas Koju ce
cMampa C/uKoMm ca wymom, (b) npouereHu KaHar

)
)

Regression

Conv + Relu
Conv + Relu
Conv

{
[
|

2D-image which
is considered as
low-resolution

Estimated channel
as a high-resolution

Figure 7 — SRCNN architecture
Puc. 7 — Apxumekmypa SRCNN
Cnuka 7 — Apxumekmypa SRCNN

tion is passed through an activation function, which is a non-linear function
that transforms data. In regression problems, the final output layer is a re-
gression layer that calculates the half-mean-squared-error loss. Finally, an
optimization function is used to optimize the multilayered system, and the
choice of optimization function is determined by the user.

Network architecture for the regression technique

The CNN model consists of 5 hidden layers as shown in Figure 9, where
the first four hidden layers are associated with a ReLU activation function.

The fifth layer is associated only with the regression layer, as in regres-
sion problems the CNN output does not require an activation function.
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Puc. 8 — Apxumekmypa DnCNN
Cnuka 8 — Apxumekmypa DnCNN
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Figure 9 — Regression technique architecture
Puc. 9 — Apxumekmypa memoda pezapeccuu
Cnuka 9 — Apxumekmypa mexHuke peapecuje

The layers are ordered as follows:
» The first convolutional layer uses 64 filters of size 9 x 9 followed by
Relu activation,

» Each of the succeeding 2 convolutional layers uses 64 filters of size
5 x 5 followed by RelLu activation,

» The fourth layer uses 32 filters of size 5 x5 followed by ReLu activation,
and

» The final layer uses only one filter of size 5 x 5 followed by the regres-
sion layer to reconstruct the grid channel.

Method 3: channel estimation using Very Deep Convolu-
tional Networks

The channel estimation problem in this method was also modelled as an
image-processing problem, the main difference being that this technique
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is using a very deep convolutional network to improve the performance.
The SRCNN technique failed to create deeper models for super resolu-
tion with superior performance. However, (Kim et al., 2016) presented a
method (VDSR: Very Deep Super-Resolution) that utilizes a very deep con-
volutional network inspired by VGG-net used for ImageNet classification,
and it is found that increasing the depth significantly boosts the estimation
performances. Given that VDSR shows a highly accurate single-image
super-resolution, we want to apply this technique in the channel estimation
problem.

Network architecture for VDSR

The VDSR (Kim et al., 2016) technique uses a very deep convolutional
network inspired by Simonyan and Zisserman (Simonyan & Zisserman,
2014). The network structure cascades a pair of layers (convolutional and
nonlinear) repeatedly. An interpolated low-resolution (CLR) channel goes
through the layers and transforms into a high-resolution (HR) channel. The
network predicts a residual image and the addition of CLR and the residual
gives the desired output.

Network Depth

Conv + Relu

(=]
=
12}
172}
o
B
an
Q
~
+
>
(=
(o}
O

Conv+BN + Relu
Conv+BN + Relu

Estimated channel
which is considered Estimated channel
as a noised image

Figure 10 — VDSR architecture
Puc. 10 — Apxumekmypa VDSR
Cnuka 10 — Apxumekmypa VDSR

The VDSR architecture, depicted in Figure 10, consist of 20 layers
where layers except the first and the last, are of the same type:
» The first layer operates on the input grid channel,

» Each of the 18 convolutional layers uses 64 filters of size 3 x 3 x 64
followed by RelLU, and
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» The last layer, used for grid channel reconstruction, consists of a sin-
gle filter of size 3 x 3 x 64 followed by the regression layer.

Results and discussion

In this section, all the networks introduced in Section 3 were trained. Fol-
lowing that, the Mean Squared Error (MSE) was evaluated across a range
of Signal-to-Noise Ratios (SNRs). The setup involves a single antenna as
both the transmitter and the receiver. The 5G Toolbox in Matlab was used
for the channel modeling and pilot transmission. The training, testing, and
validation sets comprised 40000, 5000, and 5000 channels respectively.

For the purpose of creating test scenarios, a slot period of resource grid
consisting of 51 resource blocks was selected to form PDSCH data, form-
ing a matrix of resource elements with dimensions 612 by 14. In order
to map the pilots, a slot-wise type A mapping solution was adopted with
the DM-RS symbol position set to 2. Furthermore, a single DR-MS sym-
bol was introduced, featuring an additional position of 1.1t is worth noting
that these parameters and decisions were made in accordance with the
rigorous guidelines set forth by the 3GPP standard (3GPP. 2020b).

The parameters used for data generation are presented in Table 1. Dur-
ing this process, a sub-carrier spacing of 30 kHz was maintained, and the
actual data symbols were set to zero. Instead, only the DM-RS symbols
were embedded in the data as displayed in Figure 11. For the data trans-
mission, a repeated transmission approach was employed. This involved
looping through the data of a single slot period, which lasts 0.5 ms. By re-
peating the transmission within this time frame, the integrity and continuity
of the data were effectively maintained. Finally, the collected data was par-
titioned into the training, validation, and test sets in order to train the CNN
models.

Training CNN based channel models

The performance of the neural network-based channel estimation meth-
ods relies on the SNR value. ldeally, the weights of the neural network
should be optimized for each SNR value to achieve the best performance.
However, in practice, this approach is not feasible since the SNR value
is continuous, and retraining the network for every possible SNR value is
computationally intensive.
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Figure 11 — Resource grid images
Puc. 11 — NsobpaxeHusi cemu pecypcos
Cnuka 11 — Cniuke mpexe pecypca

Fortunately, training the neural network for a few representative SNR
values can still yield satisfactory performance. In such cases, the neural
network can estimate the channel for SNR values that are close to the ones
it was trained on, and can interpolate to SNR values that are not covered
in the training. Therefore, in our work, we have selected two ranges of rep-
resentative SNR values for training the neural network, a range of discrete
values [0, 5] for low SNR and [20, 25] for high SNR.

It is worth noting that for each of three methods, two models have been
trained, one for low SNR and the other for high SNR values Also, the mod-
els were trained using the parameters specified in Tables 2,3,4,5, for each
range of the Signal-to-Noise Ratio (SNR)
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Table 1 — Parameters for PDSCH DM-RS data generation
Tabnuua 1 — MNapamempsbl 2eHepayuu daHHbIx PDSCH DM-RS
Tabena 1 — Napamempu 3a eeHepucarbe PDSCH DMRS nodamaka

Parameters value
PDSCH Mapping Type Type A
DR-MS TypeA Position 2
DM-RS Additional Position 1
DM-RS Configuration Type 1
Subcarrier Spacing 30 kHz
Cyclic Prefix Normal
Bandwidth in number of resource blocks 51
Model Channel TDL
Power Delay Profile All profiles

Table 2 — Training parameters for the SRCNN method
Tabnuuya 2 — Napamempsi o6yyeHusi no memody SRCNN
Tabena 2 — Napamempu obyke 3a SRCNN memod

Training Parameters Value
Solver for training network | Adam (Adaptive Moment Estimation)
Batch Size 128
Initial Learn Rate 0.001
Max Epochs 5

Training progress for low SNR values

From the Loss graph in figures below (12,13 and 14 ), we can see that
both the training and validation losses decrease steadily over iterations,
indicating that the model is learning effectively without over-fitting. The
validation loss is consistently similar to the training loss, which suggests
that the model is generalizing well to new data.
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Table 3 — Training parameters for the DnCNN method
Tabnuuya 3 — Napamempbi 06yyeHusi no memody DnCNN
Tabena 3 — lNapamempu obyke 3a DnCNN memod

Parameters Value
Solver for training network | Sgdm (Stochastic Gradient Descent with Momentum)
Momentum 0.9
Initial Learn Rate 0.001
Learn Rate Schedule piecewise
Gradient Threshold Method absolute-value
Gradient Threshold 0.005
L2Regularization 0.0001
Batch Size 128
Max Epochs 30

Table 4 — Training parameters for the regression CNN method
Tabnuua 4 — Napamempbl 06yyeHusi o peapeccuoHHoMy memody CNN
Tabena 4 — lNapamempu obyke 3a peegpecuoHy CNN memody

Training Parameters Value
Solver for training network | Adam (Adaptive Moment Estimation)
Batch Size 32
Initial Learn Rate 0.0003
Max Epochs 5
—Loss Training —
.- I 60/ RMSE Training
g 2000 Loss Validation 2 1 ---RMSE Validation
g S40;
1000 |, B
\ E L
- \ % 20 stimammasrasismomponn
0 ‘ ‘ 0 | ‘
0 5000 10000 0 5000 10000 15000
iteration iteration
(a) Loss (b) RMSE

Figure 12 — Training progress for regression model
Puc. 12 - [Ipozpecc o0by4eHusi no pespeccuoHHolU modenu
Cnuka 12 — Hanpedak y ¢hasu obyyasarba 3a pe2pecuoHu mMooersn

Similarly, from the RMSE graph, we can see that both the training and
validation RMSEs displayed a consistent downward trend, indicating good
learning and that the models were gradually fitting the training data.
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Table 5 — Training parameters for the VDSR method
Tabnuua 5 — Napamempsi 06yyeHusi no memody VDSR
Tabena 5 — Napamempu obyke 3a VDSR memod

Parameters value
Solver for training network | Sgdm (Stochastic Gradient Descent with Momentum)
Momentum 0.9
Initial Learn Rate 0.1
Learn Rate Schedule piecewise
Learn Rate Drop Period 10
Learn Rate Drop Factor 0.1
L2Regularization 0.0001
Batch Size 32
Max Epochs 100
Gradient Threshold Method I2norm
Gradient Threshold 0.01
| ~Loss Training 60 RMSE Training
© 1000 -°-Loss Validation g ---RMSE Validation
= ! 250}
g = S |
; 407,
% 500]: é :\
A i 30}
\io e
0 20 Mo e
0 1000 2000 3000 0 1000 2000 3000
iteration iteration
(a) Loss for SR (b) RMSE for SR
— 7 —
6000 iLoss Tra.mm.g . 100 l RMSE Tra'mln_g
o >-Loss Validation g ‘. ---RMSE Validation
S 4000 S
1 LLJ 1
3 | @ 50
52000 z |
o 0
0 5000 10000 15000 0 0.5 1 15 2

iteration
(c) Loss for Dn

iteration «10%4

(d) RMSE for Dn

Figure 13 — Training progress for the SRDn model
Puc. 13 - lpoepecc 8 obyyeHuu o modenu SRDn
Cnuka 13 — Hanipedak y ¢hasu obyyaear-a 3a SRDn moden

In the initial epochs, the loss and RMSE for Regression, SRDn and
VDSR show a rapid drop, suggesting that the models quickly learned from
the training samples. However, after that, the rate of improvement slowed
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down, and the training was stopped after the loss and RMSE curve flat-
tened, indicating that the model had reached the limit of learning from data.

3000 80 ‘ ‘ ‘
—Loss Training RMSE Training
o) ---Loss Validation 2605+ ---RMSE Validation
= 2000 ] = |
> ]
7 4 40|
& 1000} S
- ; 20 iy
0 o‘
0 5 10 15 0 5 10 15
iteration %104 iteration %104
(a) Loss (b) RMSE

Figure 14 — Training progress for the VDSR model
Puc. 14 - lNpoepecc 8 obyyeHuu no VDSR
Cnuka 14 — Hanpedak y ¢hasu obyyasara 3a VDSR moden

It is worth noting that for VDSR, the RMSE curve experienced some fluc-
tuations, which could be attributed to the complexity of the dataset. How-
ever, the Regression and SRDn models could not capture this complexity.

Training progress for high SNR values
The figures below (15,16 and 17 ) present the Loss and RMSE progress

(]
o

RMSE Training
---RMSE Validation||

—Loss Training
---Loss Validation

o 2000 860,
S =
3 T
o >

» % 40
2 1000 2

- o 20

o
o

0 5000 10000 0 5000 10000

iteration iteration
(a) Loss (b) RMSE

Figure 15 — Training progress for the regression model
Puc. 15 - lpozpecc 6 obyueHuUU 1o peepeccuoHHoU Modenu
Cnuka 15 — Hanpedak y ¢hasu obyyaearba 3a pespecuoHu mooersn
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Comparing the Loss and RMSE graphs in the preceding figures (15,16
and 17 ), it is clear that the trends follow a similar pattern. The models
show promising results, with no evidence of over-fitting or under-fitting.

As in the case of the low SNR, the training process presents a down-
ward trend of the loss and RMSE functions, showing that the models were
gradually fitting the training data in the same way as in the low SNR.

*Loés Training
o 1000} ---Loss Validation
©
>
@ 500}
— \\
0 &L ‘ ‘ ‘
0 1000 2000 3000
iteration
(a) Loss for SR
—Loss Training
o 6000 | --—Loss Validation
g \
T 4000
g, |
52000 i
ok
0 5000 10000 15000
iteration

(c) Loss for Dn

60‘

RMSE value

RMSE Training |
---RMSE Validation

- .

2000 3000
iteration

(b) RMSE for SR

1000

RMSE value

RMSE Training
---RMSE Validation

0.5 1 1.5 2
iteration «10%
(d) RMSE for Dn

Figure 16 — Training progress for the SRDn model
Puc. 16 - poepecc 8 obyyeHuu o modenu SRDn
Cnuka 16 — Hanpedak y ¢hasu obyyasar-a 3a SRDn moden

The RMSE curve presents some fluctuations in the cases of Regression,
SRDn and VDSR model training, which indicates the ability of models to
capture the complexity of the channel in the high SNR.
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Figure 17 — Training progress for the VDSR model
Puc. 17 - lpoepecc 8 obyyeHuu rno modenu VDSR
Cnuka 17 — Hanpedak y ¢hasu obyyasarka 3a VDSR moden

In summary, it could be seen in both low and high SNR values that the
VDSR presented fluctuation in RMSE during the training, which indicates
a high adaptability to the complexity of the channel.

Performance evaluation of CNN models using test data

The three methods (SRCNN + DnCNN, Regression CNN and VDSR)
are evaluated on 5000 random channels in both low and high SNR condi-
tions. Based on the provided RMSE (Root Mean Squared Error) values,
their performance can be compared with the traditional method of LS (Least
Squares). The results are presented in Table 6.

Table 6 — Performance evaluation of the CNN models
Tabnuuya 6 — OueHka npouseodumernbHocmu modernelti CNN
Tabena 6 — lNpoueHa nepgpopmaHcu CNN modena

Model RMSE (Low SNR) | RMSE (Hight SNR)
Least Square 2.0850 0.2425
Method1: SRCNN + DnCNN 0.4776 0.1299
Method2: Regression CNN 0.4942 0.1006
Method3: VDSR 0.4797 0.0968

For the low SNR, the SRCNN + DnCNN method and the VDSR method
have similar performances, with the RMSE values of 0.4776 and 0.4797, re-

930



spectively. The Regression CNN method has a slightly higher RMSE. How-
ever, all three methods significantly outperform the Least Square method.

For the high SNR, the VDSR method has the best performance followed
by the Regression CNN method and the SRCNN + DnCNN method. Again,
all three methods significantly outperform the Least Square method.

In summary, the deep learning-based methods (SRCNN + DnCNN, Re-
gression CNN, and VDSR) are more effective than the traditional Least
Square method for channel estimation in both low and high SNR conditions.
Among the deep learning-based methods, VDSR appears to be the most
effective for high SNR conditions, while SRCNN + DnCNN and VDSR have
similar performance for low SNR conditions. The Regression CNN method
has slightly lower performance than the other two deep learning-based
methods, but is still significantly better than the Least Square method.
These results demonstrate the effectiveness of deep learning-based meth-
ods for channel estimation in wireless communication systems.

Channel Estimation MSE in terms of SNR for different chan-
nel profiles

The accuracy of channel estimation can be evaluated using the mean
square error (MSE) metric. The MSE is a measure of the average differ-
ence between the estimated channel and the actual channel, and it is com-
monly used to compare different channel estimation methods. The MSE
of channel estimation is affected by several factors, including the channel
profile and the signal-to-noise ratio (SNR)

To illustrate the impact of channel profile and SNR on channel estimation
for each of the three methods mentioned before, we have calculated the
MSE for each of the scenarios, Non-Line-of-Sight NLOS (TDL-A, TDL-B
and TDL-C) and Line-of-Sight LOS (TDL-D and TDL-E), in both low and
high SNR conditions.

Channel Estimation MSE for NLOS communication

In the context of NLOS communication, where there is no direct line-of-
sight between transmitting and receiving antennas, the signal travels along
multiple paths to reach the receiver, causing severe signal attenuation, de-
lay spread, and inter-symbol interference. The performance of the three
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aforementioned channel estimation methods is impacted by the SNR val-
ues.
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Figure 18 — Channel Estimation MSE in terms of a low SNR for NLOS
Puc. 18 — OueHka kaHana MSE ¢ mouku 3peHusi Husko2o SNR dniss NLOS
Cnuka 18 — lNpoueHa kaHana MSE y ko0 Huckoe SNR 3a NLOS

In very low SNR conditions (Figure 18), with a high number of multi-
paths, the SRCNN + DnCNN and VDSR methods outperform the CNN re-
gression method, with VDSR exhibiting slightly better performance. The
superior performance of these deep architectures can be attributed to their
ability to better capture the complexity of the channel model.
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Figure 19 — Channel Estimation MSE in terms of a high SNR for NLOS
Puc. 19 - OyeHka kaHana MSE ¢ mouku 3peHusi ebicoko2o SNR dnss NLOS
Cnuka 19 — lNpoueHa kaHana MSE y ko0 eucokoz odHoca SNR 3a NLOS
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However, as SNR values increase (Figure 19), the performance of the
SRCNN + DnCNN method decreases drastically in comparison to the re-
maining methods. In contrast, the VDSR method continues to outperform
all other methods.

Channel Estimation MSE for LOS communication

Line-of-Sight (LOS) scenarios are often preferred due to a clear, unob-
structed path between transmitting and receiving antennas. In such sce-
narios, the signal travels directly between the antennas without being scat-
tered or reflected by obstacles, resulting in minimal attenuation and distor-
tion. As a result, channel estimation in the LOS scenarios is less challeng-
ing than in the NLOS scenarios.

0.060 ‘ 0.060 : —
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Figure 20 — Channel Estimation MSE in terms of a low SNR for LOS
Puc. 20 - OueHka kaHana MSE ¢ mouku 3peHusi Hu3ko2o SNR dns1 LOS
Cnuka 20 — lNpoueHa kaHana MSE y cmucny Huckoe SNR 3a LOS

However, even in the LOS scenarios (Figure 20), the accuracy of chan-
nel estimation is still impacted by SNR values. In a very low SNR values
(SNR < 2), the deep CNN architectures (SRCNN + DnCNN and VDSR) out-
perform the simplistic architecture of CNN regression, due to their ability to
capture the complexity of the channel model. The SRCNN + DnCNN and
VDSR methods are better suited for achieving accurate channel estimation
in such scenarios.
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Figure 21 — Channel Estimation MSE in terms of a high SNR for LOS
Puc. 21 — OueHka kaHana MSE ¢ mouku 3peHusi ebicoko2o SNR dnsi LOS
Cnuka 21 — lNpoueHa kaHana MSE kod sucokoe oOHoca SNR 3a NLOS

As SNR values increase (Figure 21), the performance of the CNN re-
gression method becomes more favorable, due to its simplistic architec-
ture being well adapted to the low complexity of the channel. On the other
hand, the performance of SRCNN + DnCNN decreases significantly due
to the negative impact of its deep denoising architecture (DnCNN). The
VDSR architecture, however, demonstrates remarkable adaptability to the
channel complexity, resulting in stable performance across a range of SNR
values.

Conclusion

By leveraging the power of deep learning algorithms such as CNNs,
channel estimation in 5G communication systems can be improved signif-
icantly. This work has showcased the potential that CNN offers compared
to the traditional method of the Least square for an accurate channel esti-
mation.

First, by conducting a comprehensive review of the existing literature on
CNN-based channel estimation, two of widely used methods were chosen,
namely the super-resolution and denoising method (SRCNN+DnCNN) and
the CNN regression method. Besides that, a novel method (VDSR, Very
Deep Super Resolution) was proposed in order to improve the accuracy
of the state-of-the-art CNN based channel estimation methods. The three
CNN models were trained on a large dataset in both low and high SNR
conditions.
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The trained models were evaluated and the results were compared to
the traditional method of Least Square. The compared results have demon-
strated the superiority of deep learning-based methods under varying SNR
conditions. Moreover, the novel method exhibits the best overall perfor-
mance in comparison to the two other deep learning-based methods.

Further, the impact of channel complexity on estimation accuracy was
investigated in the case of the CNN based methods. The results highlighted
the importance of selecting an appropriate channel estimation model based
on the specific communication scenario’s complexity and SNR values.

In NLOS scenarios with very low SNR values and a high number of multi-
paths, deep architectures such as SRCNN + DnCNN and VDSR outperform
the CNN regression method due to their ability to capture the complexity of
the channel model.

In contrast, in LOS scenarios, signal attenuation and distortion are min-
imal, making channel estimation less challenging. Nonetheless, the accu-
racy of channel estimation is still heavily impacted by SNR values, and
deep CNN architectures such as SRCNN + DnCNN and VDSR remain
better suited for achieving accurate channel estimation in very low SNR
values.

As the SNR values increase, the CNN regression method exhibits im-
proved performance due to its simplistic architecture that is well-suited to
the low complexity of the channel. Conversely, the performance of SRCNN
+ DnCNN deteriorates significantly due to the adverse impact of its deep
denoising architecture (DnCNN).

Notably, the VDSR architecture demonstrates remarkable adaptability
to the channel complexity, resulting in consistent performance across all
range of SNR values. This makes it a promising method for channel esti-
mation in diverse 5G communication scenarios (NLOS and LOS).

In future work, we propose to extend the evaluation of the proposed
method, VDSR (Very Deep Super Resolution), to Single-Input Multiple-
Output (SIMO) and Multiple-Input Multiple-Output (MIMO) channel mod-
els for 5G wireless communication. The performance of VDSR has shown
promising results in our current research, particularly in terms of its adapt-
ability to varying channel complexities and SNR values. The extended eval-
uation will provide valuable insights into the performance and robustness of
VDSR across different wireless communication setups, further enhancing
its applicability and potential for real-world 5G deployments. Additionally,
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investigating the impact of various system parameters, such as the number
of Additional DM-RS and DM-RS configuration types, on the performance
of VDSR in SIMO and MIMO models will enable to optimize and tailor the
method for specific wireless communication scenarios, paving the way for
improved channel estimation techniques in future 5G networks.
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PYBPUKA TPHTWU: 49.33.29 CeTu cBA3MN,
20.23.25 NHdopMaLMOHHbIE CUCTEMBI C
6a3amu 3HaHW

BWA CTATbW: opurnHanbHas Hay4Has cTaTtbs

Pesrome:

BeedeHue/uenb: 3a nocnedHue 200bi MemoOdbl 251yb60K020
oby4e- Husl, 8 4YacmHOCMU CBEPMOYHbIE HEUPOHHbIE cemu
(CNN), noka3sarnu ebICOKYt0 rpousgodumesibHocms 8 cucmemax
ces3u 5G, 3Ha4yumesibHO 108bICU8 MOYHOCMb OUEHKU KaHasa o
CpasHeHUIo ¢ 06bI4HbIMU Memodamu. Llenbto 0aHHOU cmambu
ser155emcs ececmopoHHUU 0630p cyuecmeyrowed aumepamy-
pbI o MmemodaMm OUueHKU KaHarna Ha ocHoge CNN. Nomumuo mo-
20, Cmambs HauesieHa Ha yCo8epUIEHCIMB08aHUE COBPEMEHHbIX
mMemoQdo8 oueHKU KaHana Ha ocHogee CNN nymem ripedrnoxe-
Huss Hogo2o mMemoda nod HassaHuem VDSR (Very Deep Super
Resolution), edoxHo8rneHHo20 Mmemodamu uzobpaxeHusi Super-
Resolution.

MemoOsi: [ns moao 4mobbi oyeHUmb aghghekmusHoCmMb pas-
JIUYHbIX 100x0008 bb110 MPO8EeOEHO 8CECMOPOHHEE CpagHeHUe
C y4emom pasfiuyHbIX CUeHapues, 8 MOM YUC/e C HU3KUM CO-
omHoweHuem cueHan-wym (SNR) u ebicokum SNR, a makxe
8 ycnosusix npsimol sudumocmu (LOS) u eHe npsimol sudumo-
cmu. Y4umblganucb makxe cueHapuu eHe rpedesnos 8UuOUMO-
cmu (NLOS). C nomowibro cpagHUMernbHo20 aHanu3sa bblina rpo-
u3sedeHa oyeHKa 3ghgheKmusHOCMU Cyuecmsyouux Mmemodos
U 8blisierieHbl npeumyujecmsa rpednazaemMoeo memoda, OCHO-
8aHHo20 Ha VDSR.

Pesynbmamei: Pe3ynbmambsl 0aHHO20 uccredoeaHusi oKasbi-
8arom 3Ha4umeribHbIl nomeHuuasn oUueHKU KaHasna, OCHO8aHHO-
20 Ha CNN e cucmemax cesisu 5G, npu amom memod VDSR
demoHcmpupyem cmabusbHy0 npou3eo0umMeribHOCMb 80 8CEX
cueHapusix. [JaHHoe uccredosaHue criocobecmayem coseplieH-
cmeosaHulo Memodoe OUeHKU KaHaroe 8 cemsix 5G, npoknaodbi-
gasi Mymb ycoB8epleHCmeo8aHHbIM cucmemam 6ecripogoOHOU
C8513U C 108bIWEHHOU HalexXHOCMbIO.

Bbigodbi: AApxumekmypa VDSR nipekpacHo npucrocobrieHa K
C/IOXKHOCMU KaHarsa, 4mo obecriequgaem cmaburbHyr rnpous-
godumernbHOCMb 80 8cem OuarasoHe 3HadyeHul SNR.

Knrouessie crosa: anybokoe obydeHue, CNN, cucmemsi cesasu
5G, ceepxenybokoe ceepxs8biCOKOe paspelieHue.
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MpoueHa kaHana aybokor yvewa 3a 5G bexunyHe
KOMYHUKaLmje

Moxamed 3yayu M. NangyHn, ayTop 3a Nnpenucky,
Taku-eddurHe Axmed A. beHjaxuja, bobaH 3. MNasnosuh,
Canem-bunan b. AmMokpaHe, Tyamu B. Aanu

YHuBep3uTeT oabpaHe y beorpaay, BojHa akagemuja, Kategpa
TenekoMyHukaumja n nHgopmatuke, beorpag, Penybnvka Cpbuja

OBJIACT: TenekoMyHuKaLuje, padyHapcke Hayke
KATEFOPWJA (TWM) YNAHKA: opurMHanHu Hay4Hu pag

Caxemak:

Yeod/uurb: TexHuke Qybokoe y4yersa, nocebHO KOHBOIyUUOHEe
HeypoHcke mpexe (CNN), nocrnedmwux 200uHa rnokasarne cy us-
y3emHe nepgopmaHce y 5G KoMyHUKayUOHUM cucmemuma ma-
KO Wwmo cy 3Ha4ajHo robosbwarne ma4yHocm MpoueHe KaHarna
y ropefiemy ca KOHeeHUUoHarnHUM mMemodama. Y osom pady
npedcmassbeH je ceeobyxeamaH rnpeeaned nocmojehe numepa-
mype 0 mex- HUKama rpoueHe KaHarna 3acHoeaHux Ha CNN-y.
lNoped moea, ocHosHU Yyusb pada jecme yHanpehueare Hajca-
spemeHujux memoda 3a rpoueHy kaHasna 3acHogaHux Ha CNN-y,
wmo je pesynmuparno npednazarem Hoge memode rnod Hasu-
eom VDSR (Very Deep Super Resolution), uHcnupucaHe mex-
Hukama Super Resolution cruke.

Memode: [a bu ce usspwuna npoueHa echukacHocmu pasnuyu-
mux npucmyna, crnpoeedeHo je ceeobyxeamHo riopeheme pa-
31u4dumuUx cueHapuja, yKrbydyjyhu Hu3zak OOHOC cueHar-wym
(SNR) u sucok SNR, kao u nuHujy onmuyke sudrbusocmu (LOS)
u cyeHapuo 6e3 sudrbusocmu (NLOS). Kpos ogy komnapamue-
Hy aHanusy rpouyereHe cy nepgopmaHce rnocmojehux memo-
0a u ucmakHyme npedHocmu Koje Hydu npedrioxeHa MexHUKa
3acHosaHa Ha VDSR.

Pesynmamu: Ha ocHogy OobujeHux pesysimama OMKPUBEH je
3Ha4ajaH rnomeHuyujasn npoueHe kaHasna sacHogaHoa Ha CNN-y y
5G komyHuKkayuoHuM cucmemuma, rpu 4yemy VDSR memod ro-
Kasyje KoHcmaHmHy rpedHocm y ceum cueHapujuma. OcCHos-
HU yurb ucmpaxueara jecme yHarnpelhierwe mexHuKa npoueHe
kaHana y 5G mpexama, yume ce dajy ocHoge nobosbwaHum be-
JKUYHUM KOMYHUKauuoHUmM cucmemuma ca eehiom rnoysdaHowhy.
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Bakmpyyak: VDSR apxumekmypa roka3syje usy3emHy rnpuna-
200spUB0CM pasIUYUMUM 8pcmama KaHana, wmo pesynmupa
obesbeher-em 3axmesgaHuUXx nepghopmaHcu 3a cee aHanu3upa-
He gpedHocmu SNR.

KrbyyHe peyu: dyboko yyerse, CNN, 5G komyHuKkayuoHu cucme-
mu, eeoma dyboka cyrnep pesonyuuja.
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