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Abstract:

Introduction/purpose: Anomaly detection-based Network Intrusion De-
tection Systems (NIDSs) have emerged as a valuable tool, particularly in
military fields, for protecting networks against cyberattacks, specifically
focusing on Netflow data, to identify normal and abnormal patterns. This
study investigates the effectiveness of anomaly-based machine learning
(ML) and deep learning (DL) models in NIDSs using the publicly avail-
able NF-UQ-NIDS dataset, which utilizes Netflow data, with the aim of
enhancing network protection.

Methods: The authors Sarhan, M., Layeghy, S., Moustafa, N. and Port-
mann, M. in the conference paper Big Data Technologies and Applica-
tions, in 2021, involve a preprocessing step where 8 features are se-
lected for the training phase out of the 12 available features. Notably,
the IP source and destination addresses, as well as their associated
ports, are specifically excluded. The novelty of this paper lies in the
preprocessing of the excluded features and their inclusion in the train-
ing phase, employing various classification ML and DL algorithms such
as ExtraTrees, ANN, simple CNN, and VGG16 for binary classification.
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Results: The performance of the classification models is evaluated using
metrics such as accuracy, recall, etc., which provide a comprehensive
analysis of the obtained results. The results show that the ExtraTrees
ML model outperforms all other models when using our preprocessing
features, achieving a classification accuracy of 99.09%, compared to
97.25% in the reference dataset.

Conclusion: The study demonstrates the effectiveness of anomaly-
based ML and DL models in NIDSs using Netflow data.

Key words: Network intrusion detection system (NIDS), Netflow features,
Machine/Deep learning, anomaly-based NIDS.

Introduction

As technology progresses, internet networks offer new communication
opportunities but also increase vulnerability to intrusions and attacks. This
is a significant concern in the military, where technology reliance is growing,
and cyber-attacks are becoming more frequent and advanced. To com-
bat these threats, a flexible defense system capable of analyzing large
amounts of network traffic is required. Anomaly-based Intrusion Detec-
tion System (IDS) offers a valuable methodology for detecting both known
and unknown attacks in intrusion detection systems (Van et al., 2017). In
the military context, traditional cybersecurity measures such as antivirus
software and firewalls are no longer sufficient to protect against advanced
threats. To adequately secure military networks against cyber-attacks, an
IDS can provide continuous monitoring of the network for potential threats
and offer an additional layer of protection (Labonne, 2020).

Network-based Intrusion Detection Systems (NIDSs) are a specific type
of IDS that operate at the network layer, analyzing network traffic in real-
time for signs of intrusion or malicious activity. In addition to anomaly-
based NIDSs, NetFlow is another valuable tool that can be used in the field
of NIDSs and attack detection. NetFlow provides network traffic informa-
tion that can be analyzed to identify patterns and potential threats, allowing
for early detection and response to cyber-attacks. By combining the power
of anomaly-based NIDSs and NetFlow analysis, military networks can be
more effectively protected against a wide range of cyber threats. With the
use of advanced technologies such as Deep learning and Machine learn-
ing, military networks can become even more resilient against sophisticated
attacks.
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The paper is structured as follows. Firstly, a comprehensive definition
of IDSs, specifically focusing on NIDSs and Anomaly-based NIDSs, is pro-
vided. Next, NetFlow is defined, and an overview of the datasets used in
the study is presented. The specific ML and DL techniques utilized in the
study are presented, along with the results of reproducing the study con-
ducted by (Sarhan et al., 2021) for binary classification. The authors of the
original study excluded the IP and port features from the dataset in the train-
ing phase, resulting in an 8-features model. The paper introduces a new
contribution that involves a preprocessing step applied to the excluded IP
and port features, resulting in a 13-features model. This contribution allows
us to explore the potential of using these features for improving the perfor-
mance of the classification in the context of anomaly-based NIDSs with
NetFlow data. Then, the NetFlow features for both models were adapted
to the input of deep learning techniques by converting the features vector
to images.

Finally, the paper presents the results of machine and deep learning for
both 8 and 13 feature models and provides recommendations for future
research in the field of anomaly-based NIDSs using machine and deep
learning techniques with NetFlow data.

Intrusion Detection System (IDS)

Confidentiality, Integrity, and Availability (also known as the CIA triad)
are three fundamental concepts of information security. An intrusion or a
cyber-attack is defined as all unauthorized activities that compromise one,
two, or all of these three components of an information system (Labonne,
2020).

Intrusion detection is the process of monitoring network traffic and com-
puter events to detect unauthorized or malicious activities. An Intrusion
Detection System (IDS) is any device or software application that performs
this function. An IDS uses its knowledge, including databases, statistics,
and artificial intelligence, to transform monitored activities into alerts.

IDSs are sometimes confused with two other security tools: firewalls
and Intrusion Prevention Systems (IPSs). Firewalls, IDSs, and IPSs are
security tools used to protect network systems but have different methods.
Firewalls detect intrusions at the network perimeter and analyze packet
headers to filter traffic based on predetermined rules. IDSs monitor net-
work activities and generate alerts, but cannot block suspicious activity on
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their own. IPSs function like IDSs but can take proactive action to block
threats. IPSs automate the process, while firewalls and IDSs require hu-
man intervention to process alerts (Labonne, 2020).

Types of IDSs

IDSs can be classified into three categories according to the type of
activities that are analyzed: host-based IDSs (HIDS) network-based IDSs
(NIDSs), and application-based IDSs (Labonne, 2020; Tufan et al., 2021).

An HIDS is installed on individual computer systems to analyze files,
processes, and system logs for suspicious activity. It can detect attacks
through indicators like failed logins or high CPU usage. An NIDS analyzes
network traffic using sensors placed at various points. It is more scalable
and cross-platform than HIDSs, commonly used to protect IT infrastructure.
However, a combination of both NIDSs and HIDSs can be used to achieve
a higher level of security. For the purpose of this work, the term "IDS”
specifically refers to NIDSs. Application-based IDS is a type of HIDS that
focuses on monitoring a specific application.

IDSs can be categorized based on the type of detection method
they use. There are three main categories: signature-based detection,
anomaly-based detection, and hybrid detection. Signature-based detec-
tion compares monitored data with a database of attack signatures, de-
tecting known attacks. This method can only detect known attacks, even
with the latest updates. Anomaly detection identifies unknown attacks by
flagging deviations from normal behavior. This approach does not require
a pre-existing database and can identify unknown attacks. However, it can
generate a significant number of false positives. Hybrid detection com-
bines both methods to detect known and unknown attacks, reducing false
positives and improving accuracy.

Anomaly-based NIDSs

Anomaly detection plays a critical role in network security, as anomalies
can indicate rare but serious events. The network-based NIDS analyzes
network-related events, such as traffic volume, IP addresses, service ports,
protocol usage, etc. It must detect all types of anomalies in the network.
In network-based NIDSs, intrusions typically are referred to as anomalous
through continuous observation and modeling of normal behavior in the
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networks. However, some anomalous behavior may be normal, highlight-
ing the need for anomaly-based NIDSs to adapt to dynamic network envi-
ronments with new protocols and updated behaviors. Various techniques,
such as statistical-based, knowledge-based, and machine learning-based,
have been used in anomaly-based NIDSs, but there are still research chal-
lenges to improve their performance and suitability with current network
data characteristics (Van et al., 2017). Anomaly detection techniques are
the most commonly used IDS detection type and are the most investigated
topic in the literature among researchers (Bahlali, 2019).

Our work primarily focuses on researching and implementing anomaly
detection in network-based NIDSs, commonly referred to as anomaly
detection-based NIDSs. Various ML and DL techniques will be explored
to enhance the performance of Anomaly detection-based NIDSs in detect-
ing network traffic anomalies using NetFlow features.

NIDS dataset and NetFlow
NIDS Dataset

Acquiring real-world network data flows is difficult due to security and
privacy concerns, which make it challenging to access such data (Sarhan
et al., 2022). Due to the challenges of obtaining real-world network data
flows, many researchers have developed network testbeds as a means to
generate synthetic datasets. These NIDS datasets contain labeled network
flows that are made up of certain features extracted from network traffic.
The features in a dataset are pre-determined by the authors based on their
expertise in the relevant domain and the tools used during the extraction
process (Sarhan et al., 2022). In recent years, the most widely used NIDS
datasets (Sarhan et al., 2021) that have been released within the past five
years are shown in Table 1.

These datasets are highly relevant as they capture modern behavioral
network attacks. It is important to note that these datasets differ signif-
icantly in terms of their feature sets, and therefore, the information they
contain varies considerably (Sarhan et al., 2021). This difference in these
datasets makes the evaluation of proposed ML-based NIDSs often unre-
liable when tested on multiple datasets using their original feature sets
(Sarhan et al., 2022).
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Table 1 — The most relevant NIDS datasets (Sarhan et al., 2021)
Tabnuua 1 — Haubonee pernegaHmHbie Habops! daHHbIx NIDS (Sarhan et al.,
2021)

Tabena 1 — HajpenesaHmHuju NIDS ckyrniosu nodamaka (Sarhan et al., 2021)

Dataset Release year Number of features
UNSW-NB15 2015 49
BoT-loT 2018 42
CSE-CIC-IDS2018 2018 75
ToN-loT 2020 44

NetFlow

NetFlow is a network protocol used for network traffic monitoring and
analysis. Compared to pcap format, NetFlow data contains less data, mak-
ing it easier to collect and process. Additionally, NetFlow is less intrusive
to privacy, further enhancing its appeal as a preferred network log format
(Cao et al., 2022). Rather than focusing on individual packets, flow mon-
itoring analyzes the flow of traffic, making it a more scalable approach to
traffic analysis. This process involves observing packets, exporting flows
using protocols like NetFlow and IPFIX, collecting data, and analyzing that
data in its entirety (Hofstede et al., 2014). Every flow in NetFlow contains
network statistics representing a connection between two hosts. These
statistics can be utilized to compute performance metrics and to identify
any unusual or abnormal network behavior (Cao et al., 2022).

NetFlow version 9 (NetFlow v9) is the most used version of NetFlow. It
is a protocol that enables the collection and export of flow records, provid-
ing detailed information about network traffic patterns such as source and
destination IP address, source and destination port, protocol, etc. (Cisco.
2011).

NetFlow v9 fields play a crucial role in IDSs by providing valuable infor-
mation for monitoring, analyzing, and tracking network traffic in real-time,
enabling the identification of potential security threats.
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Anomaly Detection using Machine learning and Deep
learning

Machine learning

Machine learning (ML) has proven to be a highly effective approach to
solving diverse problems. One area where machine learning models can
be applied is NIDSs, which involves categorizing input data into specific
classes, such as "benign” or "attack”, as well as identifying various types
of attacks (Fosic et al., 2023).

Various machine learning algorithms such as decision trees, Extra-
Trees, SVM, etc., are employed for classification. For this study, a super-
vised machine learning approach was adopted using a NetFlow dataset
with uniquely labeled records. Benign traffic was labeled as 0 (class 0),
while anomalies or network attacks were labeled as 1 (class 1).

An ExtraTrees ensemble classifier was utilized as it belongs to
the "trees” family and has demonstrated reliable performance in NIDS
datasets, allowing for a valid comparison with (Sarhan et al., 2021).

Artificial Neural Network (ANN)

The ANN is a type of machine learning algorithm consisting of intercon-
nected neurons organized as an input layer, a number of hidden layers,
and an output layer. Each layer has a specific number of neurons. The
information enters the neural network via the input layer, it is processed in
the hidden layers and the result can be retrieved in the output layer (Anitha
& Arockiam, 2019; Cahyo et al., 2016).

This study implements an ANN to assess its effectiveness in training
NetFlow features, aiming to extract meaningful information and improve
the accuracy of NIDSs.

Deep Convolutional Neural Networks (CNNSs)

Deep learning (DL) is a sub-field of ML that models the learning process
using multiple layers of neurons. DL algorithms offer a more automated
solution by allowing models to learn feature representations directly from
data. This approach is highly effective as a tool for NIDSs, due to its ability
to process and learn the data to discover complex features (Rizvi et al.,
2023).
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In the context of DL, the convolutional neural networks (CNNs), have
shown promise in efficiently selecting features and identifying the latent
relationships among them (Liu et al., 2019). Inspired by the success of
CNNs in image classification tasks, this work aims to apply CNNs to NIDSs
leveraging their ability to extract meaningful NetFlow features and classify
data accurately (Liu et al., 2019).

Our work involves transforming NetFlow features into images and uti-
lizing two different architectures for classification. The first architecture uti-
lizes a simple CNN structure, while the second is based on the VGG16
model. The comparative analysis of these two architectures will provide
insight into the optimal approach for utilizing neural networks in NIDSs.

Evaluation Metrics

In this study, the selection of appropriate performance metrics was
given careful consideration to assess the effectiveness of the NIDS model:

1. Accurac - e
: y TP+ FP+TN+FN
TP
2. Recall (D ion R TPR = rh LN
ecall (Detection Rate or ) TP+ FN
o TP
3. Precision “ TP+ FP

Recall * Precision

4. F1-Score =2

*
Recall + Precision
1

5. AUC (Area Under the Curve) = /TPR(FPR) drppRr
0
where TPR(FPR) is the function that maps each FPR = 77
value to the corresponding T PR.

6. Score time (ps) : refers to the duration required for predicting a sin-
gle test sample.
where prediction TP = true positive, TN = true negative, FP = false positive
and FN = false negative.
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Experiments & results

Hardware and library used

The experimentation phase involved a hardware setup consisting of an
11th Gen Intel(R) Core(TM) i7-11800H processor with 16 virtual CPUs run-
ning at a frequency of 2.30GHz. The system was also equipped with 16GB
of RAM and an NVIDIA RTX 3060 GPU.

The Python programming language (3.9.16) and the Scikit-learn plat-
form (1.2.1) were utilized for machine/deep learning classification tasks.
Additionally, TensorFlow (2.10.1) and Keras (2.10.0) were also used in this
study.

NF-UQ-NIDS dataset

The first step of the proposed classification model and methodology is to
collect data on traffic flow. The dataset selected for this study is the NF-UQ-
NIDS, which is a pre-labeled NetFlow packet containing benign and attack
data. This dataset, as published by (Sarhan et al., 2021), was created by
merging and converting the four datasets, into NetFlow version 9 format.
A total of 12 relevant features were chosen to construct this dataset. The
Table 2 shows the descriptions of these features.

The advantage of this dataset is that it offers the advantages of shared
datasets and it is more recent than other publicly available datasets which
will facilitate a reliable evaluation of proposed learning models across var-
ious network settings and attack scenarios.

The NF-UQ-NIDS dataset comprises 11994893 flow records labeled, as
either benign or attack. The dataset includes twenty (20) types of attacks,
out of which 9208048 (76.77%) are benign flows and 2786845 (23.23%) are
attacks. Various types of features, including categorical, numeric (integer,
decimal, and binary), and temporal features, are used in the dataset.

Data pre-processing

Data pre-processing involves transforming the raw data into a format
that can be used for machine/deep learning tasks. Furthermore, the pres-
ence of nominal features or categorical features, and Non-similar scale fea-
tures can pose a challenge during data pre-processing. To address the first
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Table 2 — NetFlow features of NF-UQ-NIDS with brief descriptions
Tabnuua 2 — Xapakmupucmuku NetFlow NF-UQ-NIDS ¢ kpamkum onucaHuem
Tabena 2 — NetFlow obenexja NF-UQ-NIDS-a ca kpamkum onucuma

Feature Description
IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address

L4 SRC_PORT IPv4 source port number

L4 DST_PORT IPv4 destination port number
PROTOCOL IP protocol identifier byte
TCP_FLAGS Cumulative of all TCP flags
L7_PROTO Layer 7 protocol (numeric)
IN_BYTES Incoming number of bytes
OUT_BYTES Outgoing number of bytes
IN_PKTS Incoming number of packets
OUT_PKTS Outgoing number of packets
FLOW_DURATION_MILLISECONDS | Flow duration in milliseconds

challenge, encoding techniques might be required to transform these fea-
tures into a suitable format. As for the second issue, normalization may be
necessary to ensure that all features take the same range of values.
In the case of the NF-UQ-NIDS dataset, the main issues were identified
as nominal features and differences in feature value ranges. To address
these issues, One-Hot Encoding and Feature Normalization were used.
The authors of (Sarhan et al., 2021) utilized only eight (8) NetFlow
features out of the total twelve (12) features present in the NF-UQ-NIDS
dataset. In particular, they excluded the source and destination IP ad-
dresses as well as their associated ports during the model training.
However, taking inspiration from (Figueiredo et al., 2023), our main con-
tribution involves the incorporation of the dropped features (IP source/des-
tination and ports) in our study. This inclusion aims to improve the detection
of malicious IP addresses and assess the impact compared to the approach
adopted by (Sarhan et al., 2021).

Source and destination ports pre-processing

In order to make the dataset suitable for ML and DL, the source and
destination ports were merged into a unified feature, preserving the net-
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work application’s corresponding port for each flow. However, having both
ports in the dataset would not be useful for an ML model, since one of the
ports is typically a dynamic port that is assigned during the network rout-
ing process. These dynamic ports are usually found in the higher range of
ports (49152 to 65535), whereas the lower port numbers are reserved for
specific network applications. A single feature called "port” was created for
each flow, consolidating port numbers between 0 and 4096. The process
for converting port numbers is outlined in Algorithm 1. Flows with port num-
bers above 4096 were mapped to the category 4096, which might limit the
NIDS’s ability to distinguish between different ports beyond this threshold.
Nevertheless, this approach still covers the most frequently used ports in
both benign and malicious network traffic (Figueiredo et al., 2023).

Algorithm 1 Port number conversion

1: for Row in Dataset do
sp < SourcePort
dp < DestinationPort
if sp < dp then
Port < sp
else
Port < dp
end if
if Port > 4096 then
Port + 4096
end if
12: Row < Row + Port
13: end for

- =
- O

Source and destination IP pre-processing

The inclusion of source and destination IP addresses and ports in the
training phase is a key aspect of this study. An IP address served as an
identifier for each system in the network; it is hard to translate into a fea-
ture for ML. Two of the most common approaches to solve this problem
are (Figueiredo et al., 2023): (a) removing these features altogether as in
(Sarhan et al., 2021) which results in the loss of valuable contexts, such
as the general network location, or (b) using a dictionary to translate the
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IP addresses to a number, which can be reversed in the end to identify a
malicious IP address. Although a dictionary can effectively map individual
systems and detect patterns such as traffic originating from the same IP
address, this method may not work well in a different network context due
to high misclassification rates and the increasing dataset size.

To strike a balance between the two prevalent options, a particular ap-
proach was applied, involving the conversion of each IP address to a binary
feature denoting either Internal or External. (Figueiredo et al., 2023). The
assignment of the "Internal” label was based on IP addresses belonging
to a private address space (starting with ”192.168.”, "172.16.”, or ”10.”),
while IP addresses outside this range were labeled as "External” (Algo-
rithm 2). Since Internal and External are fundamental characteristics of
every network flow, this method yields more contextual information about
the network compared to simply removing the source and destination IPs.
Moreover, this feature is context-independent, making it easy to apply the
model to different networks.

Algorithm 2 IP address conversion

1. for Row in Dataset do
2: if 1P starts with "192.168.” or ”172.16.” or ”10.” then
3 IP < Internal

4: else
5

6

7:

IP + FExternal
end if
end for

After mapping the IP source and destination addresses into the cate-
gories "Internal” and "External,” it is necessary to employ data encoding
techniques to convert these categorical features into numerical represen-
tations.

Encoding data is the process of transforming some input to numbers,
usually in a way that is reversible and allows the translation between the
resulting output and the original input (Figueiredo et al., 2023).

Assigning a unique number to each category when encoding categorical
features can result in an ordinal encoding which may mislead ML models.
As such, a binarization technique called One-Hot Encoding was used. This
technique converts each category of a specific feature into a new binary
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feature with the value one (1) meaning that it belongs to this category and
zero (0) otherwise.

After applying this technique to the mapped IP addresses, two new fea-
tures are obtained for each IP address, as illustrated in Figure 1.

IP Address External IP Address Internal IP Address
One-Hot
External Encoding 1 0
Internal — 0 1
Internal 0 1
External 1 0

Figure 1 — One-Hot Encoding of an IP address
Puc. 1 - lopsivee koduposaHue IP-adpeca
Cnuka 1 — One-Hot kodupar-e U adpece

Data normalisation

The normalization step is important for the training process since the
difference in the feature scales can cause problems during the training.
With the normalization, each feature would have an equal impact on the
model prediction results.

The Min-Max normalization technique was utilized to scale all values
in the dataset between 0 and 1. This technique performs a linear trans-
formation on the original data. The advantage of Min-Max normalization is
that it preserves the relationships among the original data values (Labonne,
2020; Bahlali, 2019). The normalized feature is given by:

x; — min(x;)

= . 1

max(z;) — min(z;) M
where x; and £; denote the original and the normalized feature value, re-
spectively.

1D NetFlow data to 2D NetFlow images

In this work, two different approaches were explored. The first approach
involved constructing an image directly from the features. The second ap-
proach involved constructing the image by building a square surrounding
correlation matrix (SC matrix), as utilized in (Liu et al., 2019)
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First approach: reshaping features image

For the 8 features, constructing an image with a size of 3x3 was insuf-
ficient. To address this issue, zeros were added to the missing pixels, as
shown in Figure 2.

e 8 Features R
fi f, 5 £ f5 f £ f5 ¥ n matrix of size 3x3
flow 1
flow 2 ||
A i Transformation

into Matrix

€-=-=-=--

NF-UQ-NIDS in CSV format

Figure 2 — NetFlow to matrix transformation by reshaping
Puc. 2 - lNpeobpasosaHue NetFlow e mampuuy nymem usmeHeHUs GhopMbi
Cnuka 2 — lNpeobrnukosane NetFlow y mampu4yHy mpaHcghopmayujy

For the 13-feature scenario, the Recursive Feature Elimination (RFE)
technique was employed to select the nine most significant features for
the analysis. Following this, a simple reshaping technique was applied to
transform the data into images of size 3x3.

Second approach: using SC matrix

Based on the approach in (Liu et al., 2019) which proposes a localization
technique that utilizes the correlation matrix to process NetFlow data, the
correlation matrix is used to evaluate the correlations among the features
in NetFlow data. In this study, the top-k (k=8) highly correlated features
Xio, Xi1,, X7, were selected from the Netflow features X, X1, ..., X,,, for
each numeric feature X; to construct a square SC matrix. For each row of
NetFlow data, an image is generated by concatenating the SC matrices of
all features. An example of NetFlow images generated using this approach
is shown in Figure 3.

This technique provides a powerful approach for extracting meaningful
information from NetFlow data and improving the accuracy of NIDSs. In
the case of 8 features, the issue of a missing value for the ninth pixel was
resolved by substituting it with zero, maintaining the size of the image at
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Xo X1 X2 X3 X4 Xs X6 X7 .. Xn

[Xn][Xlz] [XnO][an][XnZ]
[Xw][ Xo ][Xm] [Xn][ X1 ][Xls] [ ] [Xn7][ Xan ][an]
[Xoe][Xos][Xm] [Xm][Xls][XM] [Xnﬁ][XnS][XM]
(b)
Figure 3 — Transformation of 1D NetFlow features to 2D NetFlow
(a) NetFlow features (b) 2D image
Puc. 3 - lNpeobpasosaHue 1D NetFlow e 2D NetFlow
(a) Ampubym NetFlow (b) 2D-u3zobpaxeHue

Cnuka 3 — TpaHcgpopmayuja 1D NetFlow obenexje y 2D NetFlow
(a) NetFlow obenexje (b) cnuka 2D

3x27 pixels. Similarly, for 13 features, images with dimensions of 3x39
pixels were generated.

Evaluation

The attack detection performance of the NetFlow datasets NF-UQ-NIDS
was evaluated, reproducing the results of the authors (Sarhan et al., 2021)
for binary classification. The evaluation was conducted using 8 features,
and the obtained results were compared with our results using 13 features.
The additional features were obtained through data pre-processing, includ-
ing the IP source and destination and their corresponding ports.

To evaluate the performance of the proposed ML and DL models on
the NF-UQ-NIDS dataset, an ExtraTrees ensemble classifier was selected
based on its demonstrated success in achieving reliable performance on
NIDS datasets (Sarhan et al., 2021). Additionally, a simple ANN model
was implemented as an ML classifier. The DL model utilized in this study
employed a simple CNN architecture and incorporated transfer learning
from the VGG16 model.

ExtraTrees classifier

An ExtraTrees ensemble classifier consisting of 50 randomized deci-
sion tree estimators was applied using the sklearn library in Python Extra-
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TreesClassifier(n_estimators=50, class_weight="balanced”). The option
“balanced” is set due to the imbalanced dataset. To ensure the datasets
are reliably evaluated, five-fold cross-validation is conducted, and average
metrics such as accuracy, Area Under the Curve (AUC), precision, recall,
F1-score, and the time required to predict a single test sample in microsec-
onds (us) are calculted using the sklearn library. The results are shown in
the Table 3.

Table 3 — Binary classification results using ExtraTrees ML
Tabnuua 3 - Pe3ynbmambl 6uHapHoU Kiaccugukayuu ¢ Ucrosib308aHUem
ExtraTrees ML
Tabena 3 - Pesynmamu buHapHe Knacugukayuje kopuwhermem ExtraTrees ML

Metrics 8 features 13 features
Accuracy 0.9744 0.9909
AUC 0.9917 0.9940
Recall 0.9672 0.9861
Precision 0.9632 0.9884
F1-score 0.9459 0.9804
Score time (us) 5.87 5.03

The results show that the 13-feature model performs better than the
8-feature model across all evaluated metrics.

The 13-feature model has an accuracy of 0.9909, which is higher than
the 8-feature model’s accuracy of 0.9744. Additionally, the 13-feature
model has a higher AUC (0.9940) than the 8-feature model (0.9917),
indicating better overall performance in distinguishing between the two
classes. The 13-feature model also shows better recall (0.9861) and pre-
cision (0.9884) than the 8-feature model (0.9672, 0.9632, respectively),
which means it is able to correctly identify more positive samples (higher
recall) and make fewer false positive predictions (higher precision) than the
8-feature model. The F1-score is higher for the 13-feature model (0.9804)
than for the 8-feature model (0.9459), indicating that it has a more optimal
trade-off between precision and recall.

The 13-feature model has a slightly lower time to predict a single test
sample than the 8-feature model, with 5.03 ps for the 13-feature model and
5.87 us for the 8-feature model.
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Our results indicate that the additional features provide valuable infor-
mation that improves the model’s ability to distinguish between benign and
attack traffic, and ultimately improve the model’s attack detection perfor-
mance.

ANN model

The summary in Figure 4 provides a detailed description of the proposed
ANN model architecture. The ANN is based on an input layer with 8 or 13
inputs for both 8 and 13 feature models.

Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 8) 0
dense (Dense) (None, 256) 2304
dense 1 (Dense) (None, 256) 65792
dense 2 (Dense) (None, 256) 65792
dense 3 (Dense) (None, 256) 65792
dense 4 (Dense) (None, 256) 65792
dense 5 (Dense) (None, 20) 514
softmax (Softmax) (None, 20) 0

Total params: 265,986
Trainable params: 265,986
Non-trainable params: 0

Figure 4 — ANN model summary for the 8 features input
Puc. 4 - Kpamkoe onucaHue modenu ANN 051 esoda 8 chyHkyuli
Cnuka 4 — Peaume moderna ANN 3a yHoc 00 8 obenexja

The evaluation of the ANN model was conducted using a specific con-
figuration, which included the following parameters: Adamax optimizer,
the learning rate of 0.001, categorical cross-entropy loss function, and 30
epochs of training.

The results shown in Table 4 indicate that the addition of four fea-
tures has significantly enhanced the model's performance. Both models
show promising results, with the 8-feature model achieving an accuracy of
0.9285, and the 13-feature model achieving an accuracy of 0.9673. Fur-
thermore, the AUC increased from 0.9806 to 0.9939, indicating the model’s
improved ability to distinguish between attack and benign samples. The
recall increased from 0.8103 to 0.8810, and the precision improved from
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Table 4 — Binary classification results using ANN machine learning
Tabnuuya 4 — Pe3ynbmamabi buHapHoU Knaccugukayuu ¢ ucronbzogaHuem ANN
ML
Tabena 4 — Pe3synmamu buHapHe knacugukayuje kopuwhersem ANN ML

Metrics 8 features 13 features
Accuracy 0.9285 0.9673
AUC 0.9806 0.9939
Recall 0.8103 0.8810
Precision 0.8729 0.9757
F1-score 0.8404 0.9259
Score time (us) 115.32 100.38

0.8729t0 0.9757. The F1-score also increased from 0.8404 to 0.9259, indi-
cating an overall improvement in performance. Additionally, the prediction
time slightly decreased, which is a positive outcome.

Discussion: ExtraTrees Vs ANN

The ExtraTrees with 13 features outperformed the 8-feature model from
(Sarhan et al., 2021) with an accuracy of 0.9909 compared to 0.9744.

The ExtraTrees for 8 and 13 features, outperformed the ANN in all the
evaluation metrics. However, it is noteworthy that the ANN still achieved a
high level of accuracy and showed significantimprovement after incorporat-
ing the four additional features. The ExtraTrees show better accuracy than
the ANN for both the 8 and 13 features. Moreover, both models performed
well in terms of the AUC, indicating their ability to distinguish between at-
tack and benign flow. In terms of recall, the ExtraTrees outperformed the
ANN for both the 8 and 13-feature models, with consistently better perfor-
mance observed for the 13-feature model. When it comes to precision, the
ExtraTrees using 13 features exhibited better precision metrics. The Ex-
traTrees using 13 features achieved the highest F1-score, surpassing all
other models in performance.

The ExtraTrees model demonstrated a slightly faster score time com-
pared to the ANN model for both the 8 and 13 features.
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The results obtained from both the ExtraTrees and ANN models indicate
that incorporating the excluded features was more effective in detecting
attacks compared to utilizing only 8 features.

CNN model based-NIDS

The process for training a CNN model on NetFlow data involves two
key steps: 1) converting 1D NetFlow features into 2D NetFlow images,
and 2) inputting the NetFlow image data into the CNN model using both
direct training and transfer learning techniques. Transforming 1D NetFlow
features into 2D images enables the utilization of the powerful image clas-
sification capabilities of CNNs, leading to improved accuracy in NIDSs (Liu
et al., 2019).

In this study, two different CNN models were employed. The first model
is a simple CNN composed of three convolutional layers. The second
model utilized is the widely recognized VGG16, known for its significant
contributions to CNN models.

Simple CNN

The summary in Figure 5 provides a detailed description of our simple
CNN model architecture, including the arrangement and specifications of
each layer. The proposed CNN model is based on an input layer with an
input size of (32,32,1).

For the evaluation of the simple CNN model, a specific configuration was
employed, incorporating the following parameters: the Adamax optimizer,
a learning rate of 0.001, the use of categorical cross-entropy as the loss
function, and training for a total of 30 epochs. The performance results of
the proposed simple CNN model for both cases with 8 and 13 features are
presented in Table 5.

Based on the obtained results, for the Simple CNN model, using the 13
features with an image size of 3x3 provides the best overall performance,
as itachieved the highest accuracy (0.9884), AUC (0.9970), recall (0.9648),
Precision (0.9850) and F1-score (0.9747) compared to the other models,
suggesting that the additional features contribute valuable information for
the classification of the attacks. Accuracy increased from 0.9508 to 0.9884
going from 8 to 13 features with a 3x3 image. It increased further to 0.9686
with a 3x39 image compared to 0.9657 for 3x27 image.
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Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 32, 32, 16) 160
max_pooling2d (MaxPooling2D) (None, 16, 16, 16) 0
conv2d_1 (Conv2D) (None, 16, 16, 32) 4640
max_pooling2d_1 (MaxPooling 2D) (None, 8, 8, 32) 0
conv2d 2 (Conv2D) (None, 8, 8, 64) 18496
max_pooling2d 2 (MaxPooling 2D) (None, 4, 4, 64) 0
flatten (Flatten) (None, 1024) 0
dense (Dense) (None, 128) 131200
dense 1 (Dense) (None, 2) 258

Total params: 154,754
Trainable params: 154,754
Non-trainable params: 0

Figure 5 — A Simple CNN model summary
Puc. 5 — Kpamkoe onucaHue modernu Simple CNN
Cnuka 5 — JeOHocmasaH pesume CNN modena

The score time tends to increase as the image size grows larger. Among
the different image sizes evaluated, the 3x39 image size exhibited the high-
est score time (178.34us). On the other hand, using 8 features with 3x3
images demonstrated the fastest score time, with a minimal difference com-
pared to the 13 features using the same 3x3 image size.

Among the tested configurations, it seems that utilizing 13 features with
a 3x3 image size offers the optimal balance of accuracy, AUC, recall, pre-
cision, and F1-score. The inclusion of the four features, combined with the
reshaping approach, leads to enhanced performance for NIDSs.

VGG16 model

VGG16 has a relatively straightforward architecture compared to other
deep learning models. VGG16 has a hierarchical structure that gradually
increases the complexity of feature extraction, allowing it to capture both
low-level and high-level features in images. (Van et al., 2017).

In the study, a 32x32x3 input layer is utilized. Two strategies are em-
ployed: transfer learning with a pre-trained model on the ImageNet dataset
and training the VGG16 model from-scratch. The structure of the adapted
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Table 5 — Binary classification results using a simple CNN model

Tabnuua 5 — Pe3ynbmambi bBUHapHOU Kraccughukayuu ¢ Ucrosib308aHUeM

npocmot modesniu CNN

Tabena 5 — Pe3synmamu buHapHe Knacughukayuje kopuwherem jedHocmagHoe

CNN modena
8 features 13 features

Metrics Image 3x3 | Image 3x27 | Image 3x3 | Image 3x39
Accuracy 0.9508 0.9657 0.9884 0.9686
AUC 0.9889 0.9889 0.9970 0.9932
Recall 0.8933 0.8989 0.9648 0.8882
Precision 0.8947 0.9508 0.9850 0.9743
F1-score 0.8940 0.9241 0.9747 0.9293
Score time (us) 80.89 108.6 3 81.13 178.34

VGG16 model, specifically designed for the binary classification between

benign and attack instances, is shown in Figure 6.

Model: "Adapted VGG16"

Layer (type) Output Shape Param #
vggl6 (Functional ) (None, 1, 1, 512) 14714688
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 256) 131328
dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 2) 514

Total params: 14,846,530
Trainable params: 131,842

Non-trainable params: 14,714,866

Figure 6 — Adapted VGG 16 model summary

Puc. 6 — Kpamkoe onucaHue aBanmuposaHHol modenu VGG16
Cnuka 6 — lNpunaesoheHu pesume VGG16 modena

The evaluation of the adapted VGG16 model involved a specific config-
uration with the following parameters: Adamax optimizer, a learning rate
of 0.001, categorical cross-entropy as the loss function, and training for 30
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epochs. The performances of the VGG16 model trained on both 8 and 13
features are presented in Table 6.

Table 6 — Binary classification results using the VGG16 model
Tabnuua 6 — Pe3ynbmambl buHapHoU Kriaccughukauuu ¢ UCrosib308aHUEM
modenu VGG16
Tabena 6 — Pesynmamu buHapHe knacugukayuje kopuwhermem VGG16 modena

8 features 13 features
Metrics Image 3x27 Image 3x3 Image 3x39 Image 3x3
Pre From Pre From Pre From Pre From

Trained | scratch | Trained | scratch | Trained | scratch | Trained | scratch
Accuracy 0.9026 | 0.9505 | 0.9012 | 0.9750 | 0.9536 | 0.9670 | 0.9532 | 0.9665
AUC 0.9609 | 0.9875 | 0.9577 | 0.9924 | 0.9885 | 0.9925 | 0.9896 | 0.9930
Recall 0.7739 | 0.8911 0.7729 | 0.9162 | 0.8668 | 0.9199 | 0.8693 | 0.8855
Precision 0.8002 | 0.8953 | 0.7958 | 0.9749 | 0.9285 | 0.9369 | 0.9248 | 0.9674
F1-score 0.7868 | 0.8932 | 0.7842 | 0.9446 | 0.8966 | 0.9283 | 0.8962 | 0.9246
Score time (us) | 346.32 | 1062.95 | 363.30 | 568.34 | 431.23 | 876.50 | 342.89 | 888.771

Comparing pre-trained and from-scratch models, the results suggest
that the from-scratch models tend to achieve superior performance in terms
of accuracy, AUC, recall, and F1-score. However, the pre-trained models
have lower score time compared to the from-scratch models.

For the 8 feature, the VGG16 model trained from-scratch with a 3x3
image size achieves the highest accuracy (0.9750), AUC (0.9924), Recall
(0.9162), Precision (0.9749) and F1-score (0.9446). In the case of the
13 features trained from-scratch, the results show that both image sizes
produce comparable outcomes, particularly in terms of accuracy and AUC.

In conclusion, the from-scratch VGG16 models display superior perfor-
mance in terms of evaluation metrics, while the pre-trained models excel in
computational efficiency. This can be attributed to the fact that pre-trained
models are not optimized for the specific task of network intrusion detection,
as the VGG16 model was originally pre-trained on the ImageNet dataset,
which has a different set of features.
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Overall, the VGG16 model gives very good results for this network intru-
sion detection task, with accuracy and AUC over 0.95. This shows that the
model has learned the patterns in the NetFlow data very well for detecting
network intrusions.

Result summary and discussion

This part presents an overview of the results obtained from various tests
of anomaly-based NIDSs. The results show that the ExtraTrees model out-
performed all other models for 13 feature inputs. It also showed relatively
high recall and precision, which indicates a good balance between identify-
ing true positives and avoiding false positives. Moreover, it had the lowest
prediction time (5.03 ps) among all models, which makes it a good choice
for real-time applications. Additionally, using ExtraTrees with 13 features
has shown better results than the one of (Sarhan et al., 2021) with the
highest accuracy of 0.9909.

The ANN model also demonstrates a good performance with 13 fea-
tures, but its score time is significantly higher than the ExtraTrees model,
at 100.38 ps.

As for the deep learning models, the VGG16 from-scratch outperformed
the pre-trained model in most cases, especially in terms of precision and
recall. However, it had a significantly higher prediction time, which could
be a disadvantage in some real-time applications. Regarding the proposed
simple CNN model, it showed relatively good performance, especially for
image 3x3 in both 8 and 13 features input. However, its performance was
not as good as the ExtraTrees but is better than VGG16 models, and its
prediction time was higher than ExtraTrees but lower than VGG16.

In conclusion, among the tested models, the ExtraTrees model utilizing
13 features demonstrates superior performance in terms of accuracy, AUC,
F1-score, and score time. However, for the DL models, the simple CNN
model provides better performance compared to the VGG16 models.

Conclusion

This study presents ML and DL models based-NIDSs using Netflow fea-
tures. The ML models utilized are ExtraTrees and ANN, while the DL mod-
els employed include VGG16 and a simple CNN model proposed in this
study. The models were trained on the NF-UQ-NIDS dataset.
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Our main contribution is the inclusion of the excluded features in the
binary classification process, based on the work by (Sarhan et al., 2021).
This enhancement aims to improve the performance of the binary classi-
fication model in NIDSs to classify the flow data as either "attack” or "be-
nign”, resulting in two training datasets: one with the original 8 features and
another with the enriched 13 features by using the technique proposed in
(Figueiredo et al., 2023). Additionally, both the proposed ML and DL mod-
els were evaluated using appropriate performance metrics such as accu-
racy, recall, precision, and F1-score.

The results demonstrate that the ExtraTrees model outperformed other
methods in binary classification using the 13 features and shows better
results compared to the one presented in (Sarhan et al., 2021).

These findings suggest that the inclusion of the four excluded features
in (Sarhan et al., 2021) contributed to the improved performance of the
classifier. The results of this study have practical implications for the devel-
opment of more efficient and accurate NIDS systems for detecting network
attacks.

In future work, the second version of the NF-UQ-NIDS dataset, known
as NF-UQ-NIDS-v2, proposed in (Sarhan et al., 2022), will be considered
for further investigation. This dataset is advantageous as it contains a
larger number of records, totaling 75987976, and includes 43 features.
Training machine learning and deep learning models on this dataset can
improve their accuracy and robustness due to a larger number of features.
This dataset has the potential to enhance the performance of NIDS sys-
tems in detecting network attacks.
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AHOManbHas cuctema obHapyKeHUs1 BTOPXKEHWUI B CETb Ha
ocHoBe NetFlow ¢ ncnons3oBaHuem malumHHOro/rnybokoro
0o6y4eHuns

Tyamu B. Aann, koppecnoHpeHT, Canem-bunan b. AMokpaHe,
boban 3. MNaenoeny, Moxamed 3yayu M. NangyHu,
Taku-a0duHe Axmed A. BeHsaxus

YHusepcuteT 060poHsbl B I. benrpaa, BoeHHas akagemus,
[enapTaMeHT TenekoMMyHVKaumn 1 MHHPOPMaTMKK,
r. benrpag, Pecnybnuka Cepbus

PYBPUKA TPHTWU: 20.23.25 UHdopmMaLMOHHbIE CUCTEMBI C
6a3amu 3HaHun,

49.33.29 Cetu cBs3n
B[O CTATbW: opurnHanbHas Hay4Hasi cTaTbs

Pesrome:

BsedeHue/uenb: Cucmembl 0bHapyxeHUs1 aHoMasiull Ha OCHO-
8e cemeeoz2o ObHapyxeHusi emopxeruli (NIDS) cmanu ueH-
HbIM UHCMPYMeHMOM, 0COB6eHHO 8 obriacmu 80eHHO20 npume-
HeHus1, 015 3auumsi cemeti om kubepamak, ¢ poKycom Ha daH-
Hbix Netflow dns udeHmudgbukauuu HopMmarbHbIX U aHOMaslbHbIX
nammepHos. B OaHHoU cmambe uccnedyemcs aghghekmus-
Hocmb Moderniell MaWUuHHO20 0byyeHusi (ML) u ary6okoeo oby-
yeHusi (DL) Ha ocHoge aHomanut 8 NIDS ¢ ucrionb3oeaHuem 06-
wedocmynHozo Habopa OaHHbIx NF-UQ-NIDS, ucrnionbs3ytou,ezo
OarHble Netflow, ¢ yenbio nosbileHUs 3awumsi cemu.
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Memodsi: Aemopsi Sarhan, M., Layeghy, S., Moustafa, N. u
Portmann, M. e ceoem Ooknade Ha KoHghepeHuuu «Big Data
Technologies and Applications», npogedeHHoli 8 2021 200y uc-
ronb3o08asnu amarn rnpedobpabomku, Ha KOMopom 8blbuparomcsi
8 npusHakos 0ns hasbl 0byyeHuUss u3 docmyrHbix 12 npusHa-
Kos. Bbinu uckmodeHbl IP-adpeca UCXOOHbIX U UenesbiX y3ros,
a makxe cesi3aHHble C HUMU riopmbl. Hoeu3Ha daHHOU cma-
mbU 3aKrYaemcs 80 BKITIHYeHUU 8cex 0oCmyrHbIX hyHKUUU
Ha amarne oby4eHusi C UCMOo/b308aHUEM pPasfiuYHbIX aneopum-
mos knaccucpukayuu ML u DL, makux kak ExtraTrees, ANN, npo-
cmas modenib CNN u VGG 16 npu buHapHoU Knaccugukayuu.

Pesynbmamei: [NpouseodumenbHocmb mModernell Knaccuguka-
Uuu oyeHuU8aemcs ¢ Ucroib308aHueM MempukK, Makux Kak mou-
Hocmb, rnoslHoma u m. 0., 4Ymo obecriedusaem KOMI/1E€KCHbIU
aHarsnu3 rory4YeHHbIX pe3ynsmamos. Pe3ynbmamsi nokasbiea-
tom, ymo modernb ML ExtraTrees npesocxodum ece ocmarsibHble
modernu npu ucronb308aHuUU MpU3HaKoe Ha amarie rnpedobpa-
6omku u docmuzaem 99,09% moyHocmu Krnaccugukayuu, no
cpasHeHuro ¢ 97,25% 6 amanoHHoM Habope OaHHbIX.

Bbigo0bI: MiccriedosaHue nokasaso 8bICOKYH 3QhheKmueHOCMb
pPasnuYHbIX an2opummos Knaccugukayuu modenet ML u DL e
NIDS c ucnonb3oeaHuem 6a3sbi daHHbIx Netflow.

Kniouesbie crnosa: cemesable cucmembl OBHapyXeHUsT 8mop-
xeHul (NIDS), xapakmepucmuku Netflow, mawuHHoe/2rybokoe
oby4eHue, aHomarsbHbIU NIDS.

Cuctem oTkpuBaha aHoManmja y Mpexu Ha 6asm NetFLow
MpPOTOKOMNa NPMMEHOM MaLUUHCKOr/QyboKor yyena

Tyamu B. Aanwn, aytop 3a npenucky, Canem-bunan 6. AMokpaHe,
BbobaH 3. MNMaenosuh, Moxamed 3yayu M. JlangyHu,
Taku-ed0uHe Axmed A. Berjaxuja

YHuBep3autet ogbpaHe y beorpany, BojHa akagemuja, Kategpa
TenekoMyHukaumja n uigopmatuke, beorpag, Penybnvka Cpbuja

OBJIACT: padyHapcke Hayke, TenekoMyHukauuje, cajoep
6e3benHocCT

KATEFOPWJA (TUM) YNAHKA: opyrmHanHiu Hay4Hu pag
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Caxxemak:

Yeod/yusb: lNpoHanaxemwe MpexHuUx aHomanuja, 6asupaHo Ha
npumeHu cucmema 3a 0emekyujy 3rloHaMmepHux yrnada y Mpexy
(NIDS), npedcmasrba usyzemHo epedaH anam, nocebHo y 8oj-
HUM fipuMeHama, 3a 3awmumy mMpexa o0 cajbep Harada, ca ro-
cebHum ¢hokycom Ha Netflow nodamke padu udeHmudbukauuje
HOpMarHuUX u UHyuGeHmHux cumyauuja. ¥ ogom pady je cripo-
8e0eHO ucmpaxueare Koje aHanusupa egukacHocm y bopbu
rnpomue aHomariuja npumeHom modena MawuHckoe yderba (ML)
u dybokoe ydema (DL) y NIDS-y kopuwhermem jagHo docmyri-
He ba3se nodamaka NF-UQ-NIDS koja cadpxu Netflow nodamke,
padu nobosbwara 3awmume MpPEXe.

Memode: Aymopu Sarhan, M., Layeghy, S., Moustafa, N. u Port-
mann, M. y pady ca koHgepeHyuje Big Data Technologies and
Applications, uz 2021. 2o0duHe, kopucmusnu cy rpedobpady y
Kojoj ce 8 obenexja usdeaja 3a ¢hasy mpeHuUHaa 00 yKyrnHo 12
docmynHux obenexja. NocebHo cy usyzeme usgopHe u odpedu-
wHe IP adpece, kao u wuxosu npunadajyhu nopmosu. nasHuU
dorpuHoc 08oe pada 00HOCU Ce Ha yKiby4ugare ceux 0ocmyri-
Hux obernexja y paly mpeHuHzaa, Kopuwherem pa3nuqumux asn-
2opumama Knacugpukayuje ML u DL, kao wmo cy ExtraTrees,
ANN, jedHocmasHu CNN u VGG 16 3a 6uHapHy knacugbukayujy.

Pesynmamu: lNepgopmaHce aHanusupaHux KrnacugpukayuoHux
modena esasnyupaHe cy noMohy HEKOTUKO Mempuka (maJyHocm,
od3us, npeyusHocm u dpyeo), Yume je omozyheHa ceeobyxeam-
Ha KoMmnapayuja 0obujeHux pedynmama. Y 3asplwHoj aHanusu
pesynmamu rokasyjy 0a ML moden ExtraTrees HaOmaluyje cee
ocmarie modesie kopucmehu rpednoxeHy npedobpady ceux 0o-
cmyrnHux obenexja, nocmuzaswu maJyHocm Krnacugukayuje od
99,09%, y nopehery ca 97,25% y pechepeHmHOM cKyry rnoda-
maka.

Bakrpyyak: CnpoeedeHo ucmpaxuearse aHanusupa eguka-
CHOCM pa3snuyumux anzopumama Knacugpukauuje ML u DL mo-
Oena y NIDS-y kopuwherem 6ase Netflow.

KmbyyHe peuu: cucmem omkpusarsa ynada y mpexy (NIDS),
Netflow obenexja, mawuHcko yuyewe (ML), dyboko y4vere
(DL).
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