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Abstract: 

Introduction/purpose: This work provides a comprehensive overview of 
blockchain technology, elucidating its foundational principles and how it 
ensures transparency, immutability, and decentralization. The integration of 
Solidity with blockchain is explored through theoretical approach. 

Methods: This work meticulously dissects blockchain principles, elucidating 
transparency, immutability, and decentralization, while exploring Solidity 
integration in a theoretical framework, ensuring a comprehensive 
understanding of their intricate relationship and contributing to a broader 
comprehension of modern distributed ledger technology. 

Results: The resulting product of this paper will be getting useful knowledge 
about the technology that practically shapes the world. 

Conclusion: In conclusion, the adoption of Solidity as a programming 
language in blockchain technology has proven to be pivotal, enhancing 
smart contract functionality and overall system security. Its specialized 
features make it an indispensable tool for developers navigating the 
complexities of decentralized applications. 

Key words: blockchain, Bitcoin, Ethereum, Solidity, decentralization. 
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Introduction 

In the continuously evolving landscape of blockchain technology, the 
emergence of decentralized applications (DApps) and smart contracts has 
become a focal point of innovation. At the epicenter of this transformative 
shift lies Solidity, a purpose-specific programming language meticulously 
engineered for the development of secure and autonomous smart contracts 
on blockchain networks, prominently exemplified by Ethereum. This 
scholarly inquiry seeks to systematically investigate the profound 
implications and nuanced intricacies surrounding the "Utilization of Solidity 
programming language in blockchain." Throughout this paper, the objective 
is to delineate the fundamental role Solidity assumes in concretizing the 
theoretical constructs of decentralized systems into practical, 
implementable solutions. Through the scrutiny of the syntax, structure, and 
unique attributes of Solidity, the aim is to provide a scholarly discourse that 
advances the understanding of the intricate interplay between this 
programming language and the broader landscape of blockchain 
technology. 

Moreover, this scholarly effort endeavors to dissect the practical 
implications of Solidity-driven smart contracts, considering their impact 
across various sectors such as finance, supply chain, and governance. By 
elucidating the distinct features of Solidity that contribute to the resilience 
and immutability of smart contracts, the authors aim to provide an 
explanation of a framework for researchers, developers, and industry 
practitioners navigating the burgeoning field of decentralized applications. 
The exploration extends beyond the syntax and semantics of Solidity, 
encompassing considerations of security measures, standardization, and 
potential avenues for future enhancements. As the discourse unfolds, the 
anticipation is to shed light on the challenges inherent in the application of 
Solidity in real-world scenarios, thereby contributing valuable insights to the 
ongoing dialogue surrounding the convergence of Solidity and blockchain 
technology. 

Blockchain basics 

Understanding the principles on which blockchain resides is not 
possible without understanding the answers to the following questions: 

 What is the purpose of blockchain? and 

 Why is blockchain needed for cryptocurrency? 
 
In simple terms, the purpose of blockchain is to have a network of 

computers agree upon a common state of data (Abou Jaoude & Saade, 
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2019). Any person or organisation should be able to participate in this 
process and no person or ogranisation should be able to control this 
process. This will be explained in the following chapters. 

Also, blockchain solves the problem of trust. This system is 
completely neutral and resistant to any censorship or bribe. In 2008, an 
individual, or a group of people, under the pseudonym of Satoshi 
Nakamoto released a whitepaper for Bitcoin: "We have proposed a system 
for electronic transactions without relying on trust." (Nakamoto, 2008) 

The system proposed was peer-to-peer network, allowing online 
payments to be directly sent from one party to another, without going 
through a financial institution, therefore eliminating the need for trusting 
someone to make sure your payment goes the way it is meant to.  

The Genesis of blockchain 

 It is impossible to look back at the history of blockchain without 
looking back at the history of cryptography and its development over the 
years. 

Until the 1970s, cryptography was the study of encrypting messages 
to the full decryption-proof stadium. It was used for passing confidential 
information, especially within the military (Ahmad et al, 2021). Substitution 
ciphers were primarily used – the cryptographical method of encrypting in 
which units of plaintext are replaced with ciphertext in a defined manner. 

As cryptography advanced over the years, more and more complex 
functions were introduced. The most important leap for blockchain 
technology, certainly, was the idea of a secret key. 

Namely, if two parties can meet prior to their exchange of messages 
and agree upon a common key for both sides, the message would be 
encrypted with a mathematical function and that key, creating even more 
secure encryption. This thus marked the beginning of symmetric-key 
cryptography. 

With the advent of personal computing, cryptographers started to 
think even further. The idea of secure communication without prior key 
exchange emerged. In 1976, Whitfield Diffie proposed a concept of PKC 
(Public Key Cryptography). With PKC, each individual has their own 
unique key pair, consisting of a public key and a private key. Only the 
public key needs to be exchanged, eliminating the need for exchanging 
keys beforehand. If a person's public key is used to encrypt a message, 
then only their corresponding private key can decrypt it, providing privacy. 
Likewise, if their private key is used to sign (encrypt) a message, the 
corresponding public key can authenticate (decrypt) the message. This 
was the start of assymetric encryption.  
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Diffie did not have any practical way to make this happen. He had a 
concept, but the mathematical function with all these properties did not 
exist back then. Diffie would work with Martin Hellman and Ralph Merkle 
in search of such a system. 

Today, both the RSA (Rivest-Shamir-Adleman) and the ECDSA 
(Elliptic Curve Digital Signature Algorithm) are two popularly used 
algorithms for public key cryptography. 

The security of the RSA algorithm relies on the practical difficulty of 
factoring the product of two large prime numbers - "the factoring problem". 
An RSA user creates and publishes a public key based on two large prime 
numbers, along with an auxiliary value. The prime numbers are kept 
secret, messages can be encrypted by anyone, via the public key, but can 
only be decoded by someone who knows the prime numbers. This 
algorithm is relatively slow, but there are no published methods to 
decypher this system if a large enough key is used. 

The ECDSA uses elliptic curves. It can provide the same level of 
security as other public key algorithms with smaller key sizes, which is the 
reason of its popularity. This is the Digital Signing Algorithm used by 
Bitcoin, specifically the secp256k1 curve. 

Consensus mechanisms 

Blockchain networks are essentially distributed and decentralized 
databases consisting of many nodes (computers). In a decentralized 
environment, common issues are:  

 How do all nodes agree on what the current and future state of 
user account balances and contract interactions is? 

 Who gets to add new blocks/transactions to a chain? How do we 
know any blocks added are "valid"? 

 How is this system coordinated without any official coordinator? 
 
All of this is done thanks to consensus mechanisms. 
 
The blockchain consensus mechanism typically means that at least 

51% of nodes are in agreement over the current global state of network 
(Ahmad et al, 2021). Essentially, these are rules that distributed, 
decentralized blockchain follows in order to stay in agreement over what 
is considered valid. There are many consensus mechanisms, but the two 
most famous ones are: proof-of-work (PoW) and proof-of-stake (PoS). 
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Figure 1 – Abstract scheme of the blockchain network 

Proof of work & mining 

Proof-of-work is the consensus mechanism that allows decentralized 
networks like Bitcoin and (previously) Ethereum to come to consensus, or 
agree on things like account balances and the order of transactions (Ali et 
al, 2023). This prevens "double spending" and ensures the followin of the 
blockchain rules, making the PoW network resilient to malicious attacks. 

The main consensus rules for the PoW are the following: 

 There must not be double spending, and 

 The "longest" chain will be the one the rest of the nodes will 
accept as the one "true" chain - Nakamoto Consensus. 

 
The consensus mechanism ends up being the security mechanism 

the network needs, because it ensures that every node on it is following 
the consensus rules. In PoW, mining represents the work. 

 
Mining is the process of creating a block of transactions to be added 

to blockchain. 
In proof-of-work consensus, nodes in the network continuously 

attempt to extend the chain with new blocks - these are the miners, nodes 
that contain mining software (Antonopoulos & Wood, 2018). Miners are in 
charge of extending a blockchain by adding blocks that contain "valid" 
transactions. In order to add a block, the network will ask miners for their 
"proof-of-work". 
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A proof-of-work-based system will typically require miners produce an 
output in a very difficult-to-get target range. Valid proof-of-work once 
looked like this in the Bitcoin network: 

 

 
Figure 2 – The look of once valid proof-of-work in the Bitcoin network 

 
To get an output like this, automated mining software does the 

following: takes a piece of data (i.e. the previous block header + new 
transactions to add to a chain) and hashes it. If the hash output is bellow 
a target difficulty, then the miner has found the answer to the puzzle: a 
valid proof of work. 

The proof-of-work shown above has 19 leading zeroes, and since the 
range of each possible character per space is in hexadecimal, this means 
that there are 1/16 character possibilities per space. 

The hash outputs for SHA-256 are in hexadecimal, which means 
there are 1/16 possible characters per space - a-f in letters and 0-9 in 
decimals = 16 total possibilities. This means that finding one 32-byte SHA-
256 output that has just one leading zero will take on average 16 tries 
(Banerjee et al, 2018).  

Finding an output with 2 leading zeros increases the average number 
of attempts to 256 - 16 possible characters in the first spot * 16 possible 
characters in the second spot. Finding 19 leading zeros will take, on 
average, 1619 attempts, which equals to 
75557863725914323419136000000000000000000000 attempts. 

Proof-of-work networks will typically have some sort of 
target_difficulty. In order for a miner to add a new block, they must find a 
proof-of-work lower than the network target difficulty. Finding such a 
difficult-to-find output is proof enough that a miner expended considerable 
resources to secure the network.  

The proof-of-work mining algorithm looks like this: 

 Take current block’s block header, add mempool transactions 

 Append a nonce, starting at nonce = 0 

 Hash data from #1 and #2 

 Check hash versus target difficulty (provided by protocol) 

 If hash < target, puzzle is solved! Get rewarded. 

 Else, restart process from step #2, but increment nonce 
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The miner nodes in a proof-of-work network will perform this algorithm 
regularly. This gives the network a way to recognize the true state and the 
validity of the proposed transactions following the consensus rules. As 
long as the majority of nodes on the network follow the consensus rules, 
the blockchain remains secure and resistant to attacks, ensuring that only 
valid and verified transactions are added to the distributed ledger, thus 
maintaining its integrity and trustworthiness. In exchange for large 
amounts of energy and hardware upkeep required to run mining software, 
miners receive currency as a reward. 

Blockchain structure 

A blockchain is a distributed database of a list of validated blocks 
(Bashir, 2018). Each block contains data in the form of transactions and 
each block is cryptographically tied to its predecessor, producing a "chain". 
Each blockchain consists of nodes. 

A blockchain has nodes scattered all over the world all acting together 
in real-time. There is no central administrator, say a "supernode", 
responsible for verifying any changes to the state of data, all nodes are 
equal members of the network. This means that the network will perform 
the same, no matter what node is interacted with to update data. In other 
words, blockchains are peer-to-peer networks. 

A valid hash for a blockchain is a hash that meets certain 
requirements. The number of leading zeros required is the difficulty. The 
process of finding valid hash outputs, via changing the nonce value, is 
called mining. A miner starts a "candidate block" with a nonce of 0 and 
keeps incrementing it by 1 until it finds a valid hash. 

Since data is an input variable for the hash of each block, changing 
the data will change that block's hash. Blockchains like Bitcoin and 
Ethereum, protect the integrity of any data held inside blocks in their 
chains: manipulating data in a block that has been nested deeply in the 
chain is almost impossible. 

In Bitcoin, Merkle trees are used to store every transaction mined on 
the Bitcoin network. Merkle tree is a data structure that represents a 
collection of hash values reduced to a single hash. 

Each letter represents a hash. The combined letters represent 
concatenated hashes that have been combined and hashed to form a new 
hash. 

Over a series of steps, the eight leaf hashes A, B, C, D, E, F, G, and 
H are combined to create a single, unique hash that allows efficient 
checking for inconsistencies without having to look at each individual data 
point. 
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Figure 3 – Visual representation of Merkle tree 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 4 – The architecture of a Bitcoin block 

 
The figure above shows the architecture of the Bitcoin block. All of the 

transactions per block are arranged into a big Merkle tree. Merkle tree's 
root hash actually gets commited into the block. 

By committing the root hash of the tree, the transaction data can be 
stored off-chain (full nodes, for example, store these transaction records 
on a LevelDB integrated into all full nodes). 

A main design purpose behind using Merkle trees to commit a lot of 
data elements (typically transactions) per block is to keep the size of the 
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blockchain as small as possible. Given the nature of their usage, 
blockchains grow perpetually. Keeping the blockchain size from becoming 
bloated means more people can support running full nodes which helps 
network decentralization (Dabbagh et al, 2019). 

UTXO & account models 

With traditional web2 server based platforms, keeping track of user 
data and information is actually a lot easier than it is on the blockchain. 
This is because there is a single centralized server that stores the state of 
user accounts. There is no need for consensus or resolving discrepancies 
since there is only one central place that stores information. 

However, when moving to a decentralized system, the problem of 
storing user balances becomes complicated. Decentralized networks like 
Bitcoin and Ethereum need specific models for keeping track of the state 
of users. Bitcoin uses the UTXO (Unspent Transaction Output) model to 
keep track of user balances. Ethereum and other EVM chains use the 
account model to keep track of user balances. 

The account model tracks the balances of users based on their overall 
account state, without knowing what constitutes the actual balance itself. 
This model is a lot like a classical bank account model. 

In the account model, the ownership of cryptocurrency is determined 
by the account's private key, which corresponds to a unique public key or 
address. When a user initiates a transaction, they sign it with their private 
key to prove ownership and authorize the movement of funds from their 
account. This model simplifies the transaction process and is more intuitive 
for developers building decentralized applications, as it resembles the 
familiar ledger system used in traditional banking. However, it also comes 
with challenges, such as the need for more complex protocols to prevent 
issues like double-spending. The choice between the UTXO and account 
models reflects different design philosophies and trade-offs in the realm of 
blockchain architecture (Buterin, 2013). 

The Unspent Transaction Output (UTXO) model is a fundamental 
concept underpinning the functioning of the Bitcoin blockchain. In the 
Bitcoin network, transactions are represented as a chain of inputs and 
outputs. Each output of a transaction is a certain amount of bitcoin, and 
these outputs serve as the inputs for future transactions. The UTXO model 
is designed to keep track of the ownership of Bitcoin and prevent double-
spending. In simple terms, a UTXO is essentially an unspent output of a 
transaction that can be used as an input for a new transaction. This model 
contrasts with the account-based model used by traditional banking 
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systems, where an account balance is maintained, and transactions 
involve debiting and crediting these balances. 

In the UTXO model, the ownership of Bitcoin is determined by the 
ability to provide a valid digital signature corresponding to the public key 
associated with a UTXO. When a user initiates a transaction, they must 
reference one or more UTXOs as inputs, providing the required digital 
signatures to prove ownership. The outputs of this transaction become 
new UTXOs, which can be spent in future transactions. This model adds 
a layer of security to the Bitcoin protocol by ensuring that every transaction 
input is indeed an unspent and valid output from a previous transaction. It 
also contributes to the decentralized and trustless nature of the Bitcoin 
network, as the entire transaction history is publicly accessible and 
verifiable by anyone on the blockchain (Buterin, 2013). 

Ethereum 

Bitcoin was the first blockchain-based decentralized network ever. It 
popularized the use of Merkle trees for scalable transaction inclusion. 
Ethereum also uses Merkle trees but since Ethereum is a completely 
different design, it also uses one other important tree data structure for 
some of its data storage needs: Patricia Merkle Tries. Unlike Bitcoin, 
Ethereum uses the Keccak256 hash function.  

Ethereum is a deterministic but practically unbounded state machine, 
consisting of a globally accessible singleton state and a virtual machine 
that applies changes to that state (Dange & Nitnaware, 2023).  

Essentially, Ethereum can be seen just like any other computer in the 
world. This computer has some major features that make it unique: 

 It is the first global singleton machine ever, that fundamentally is 
not localized (not located on any physical machine in the world). 
Ethereum does not reside in any single machine, with no physical 
presence anywhere. 

 Ethereum is totally censorship resistant. No authority, 
government, corporation or a group of individuals is behind the 
Ethereum computer. No one owns it, can shut it off or can us it 
as a privileged user. 

 Ethereum is ubiquitous and accessible anywhere there is 
Internet connection. 

 Natively multi-user, with a practically infinite range possible for 
account creation - 2160 accounts. 

 



S
ta

n
iš

ić
, 

S
. 

e
t 

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f 
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
, 

p
p
.3

6
3
-3

8
7
  

 

373 

Since Ethereum keeps track of a larger amount of state data than 
Bitcoin, its block architecture is completely different. 

 
Figure 5 – The architecture of the Ethereum block 

 
Ethereum makes use of a data structure called radix trie (Patricia trie, 

radix tree) and combines it with the Merkle tree structure to create a 
Patricia Merkle Trie. 

Trie comes from the word "retrieval", meaning that radix trie is a tree-
like data structure that is used to retrieve a string value by traversing down 
a branch of nodes that store associated references (keys) that together 
lead to the end value that can be returned. 

 
A Patricia Merkle trie (PMT) is a data structure that stores key-value 

pairs, just like a hash table. In addition to that, it is also used verify data 
integrity and the inclusion of a key-value pair. PMTs groups similar-value 
nodes together in the tree. That way, searching for "HELP" leads you along 
the same path as searching for "HELLO" - the first three letters are shared 
entries of different words. It is very good for space efficiency and read/write 
efficiency. Patricia is an acronym: P - Practical; A - Algorithm; T - To; R - 
Retrieve; I - Information; C - Coded; I - In; and A - Alphanumeric. 
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Figure 6 – An example of the radix trie data structure 

 
 

 
 

Figure 7 – An example of the Patricia Merkle trie data structure 
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Ethereum stores two types of data: permanent and ephemeral. It 
makes sense that permanent data, like mined transactions, and ephemeral 
data, like Ethereum accounts (balance, nonce, etc), should be stored 
separately. Merkle trees are perfect for permanent data. PMTs are perfect 
for ephemeral data, which Ethereum is in plenty supply of. 

Unlike transaction history, the Ethereum account state needs to be 
frequently updated. The balance and nonce of accounts is often changed, 
and what is more, new accounts are frequently inserted, and keys in 
storage are frequently inserted and deleted. 

The Ethereum block header contains many pieces of data.The block 
header is the hash result of all of the data elements contained in a block. 
It is like a gift-wrap of all the block data. 

Looking at the Ethereum architecture diagram at the beginning of this 
chapter, the block header ends up hashing all of the data properties of the 
block. It also includes: 

 State Root: the root hash of the state trie, 

 Transactions Root: the root hash of the block's transactions, and 

 Receipts Root: the root hash of the receipts trie. 
 
The state trie acts as a mapping between addresses and accounts 

states. It can be seen as a global state that is constantly updated by 
transaction executions. All the information about accounts is stored in the 
world state trie and information can be retrieved by querying it. 

Figure 8 – An example of the state trie and its integration with the Ethereum block 
 

The transaction trie records transactions in Ethereum. Once the block 
is mined, the transaction trie is never updated. Each transaction in 
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Ethereum records multiple pieces specific to each transaction such as 
gasPrice and value. 

Figure 9 – An example of the transaction trie and its integration with the Ethereum block 
 

The transaction receipt trie records receipts (outcomes) of 
transactions. It contains data including gasUsed, logs and events emitted. 
Once the block is mined, the transaction receipt trie is never updated. 

 
Figure 10 – Visualizaton of how the tries end up being commited in every block 

via their root hash 

Proof of stake 

Ethereum transitioned to PoS on September 15th, 2022. This 
transition is known as "The Merge". This was a massive migration that was 
always in the roadmap and original planning for Ethereum, but required 
coordination from the entire network to execute. 
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Proof-of-stake is a totally different mechanism than proof-of-work that 
enables Ethereum to be more secure, less energy intensive and more 
scalable. 

In order to become a miner in PoW, there are large energy 
requirements, which makes it difficult for any individual to compete with 
the existing mining warehouses that are dedicating millions of dollars of 
resources to mining. However, in proof-of-stake, the energy requirement 
to become a validator is much lower and can be done by individuals 
without a high overhead energy cost. This encourages more users to 
become validators, decreasing the centralization risk, and thereby 
increasing the security of the network. 

Instead of using mass amounts of electricity, validators are required 
to stake 32ETH by depositing it into a contract to have the ability to validate 
blocks. This staked ETH is used as collateral against bad actors in the 
network. If any given validator acts dishonestly or maliciously, they put 
themselves at risk of losing their staked ETH. 

Rather than all validators competing at the same time for the next 
block, the network randomly selects a validator to propose a block every 
12 seconds, all the other validators verify that the proposed block is 
correct, and the cycle repeats (Stanišić, 2023). 

One of the largest ways that PoS affects Ethereum developers is with 
a new framework for block finality. Finality in blocks refers to how confident 
you are that the given block will not change or get forked away. For blocks 
that have been on the network for a very long time (older blocks), it is 
extremely unlikely that it will be removed from the canonical chain and 
therefor has high finality. 

Proof of stake introduced 2 new levels of finality that developers 
should consider when requesting data from the network: safe and 
finalized. Here is an overview of all “block tags”: 

 earliest: The lowest numbered block the client has available. 
Intuitively, you can think of this as the first block created. 

 finalized: The most recent crypto-economically secure block, that 
has been accepted by >2/3 of validators. Typically finalized in 
two epochs (64 blocks). Cannot be reorganized outside manual 
intervention driven by community coordination. Intuitively, this 
block is very unlikely to be reorganized. 

 safe: The most recent crypto-economically secure block, 
typically safe in one epoch (32 blocks). Cannot be re-orged 
outside manual intervention driven by community coordination. 
Intuitively, this block is unlikely to be re-orged. 
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 latest: The most recent block in the canonical chain observed by 
the client, this block may be re-orged out of the canonical chain 
even under healthy/normal conditions. Intuitively, this block is the 
most recent block observed by the client. 

 pending: A sample next block built by the client on top of latest 
and containing the set of transactions usually taken from local 
mempool. Intuitively, you can think of these as blocks that have 
not been mined yet. 

Gas on Ethereum 

The cost of operations on Ethereum are fixed and measured in a unit 
called "gas". The price of gas is what constantly changes. This means that 
the energy requirements to mine any given block are significantly lower 
than that of PoW. 

In August 2021, there was an Ethereum Improvement Proposal (EIP) 
to improve the calculation of gas prices on Ethereum, known as EIP-1559. 
Historically, gas prices on Ethereum have been unpredictable and at times 
astronomically high, making transactions inaccessible to most people. 
EIP-1559 changed the mechanism for setting the gas price, making 
participating in Ethereum blockchain accessible to pretty much everyone. 

Just like every currency in the world, Ethereum also has different 
denominations thar are used to express smaller values. 1 ether is equal to 
1018 wei (the smallest denomination of ether) or 109 gwei. 

 

 
Figure 11 – Table with relevant denominations for ether 

 
Every block has a maximum amount of gas that can be used within it. 

This is how a number of transactions included within a block are 
determined. Every block has the capacity to use 30 million gas but has a 
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target of 15 million gas total. The price of gas is determined by the amount 
of demand for transactions (or block space), where demand is measured 
by how filled the previous block was relative to the target gas. 

 

 
Figure 11 – Example of two different blocks with different demand quantity 

 
The network first sets a base fee; in an ideal world, this base fee would 

result in 15 million gas getting used in a block, no more, no less. However, 
what happens in practice is the actual gas can be above or below the target 
gas. 

When blocks are above the target, the gas price (or base fee) is 
automatically increased, increasing the cost and barrier to entry for 
sending transactions and thereby reducing the number of people who are 
competing to fill the block. When the block is below the target, the base 
fee is lowered to incentivize people to transact by lowering the barrier to 
entry for paying for a transaction. 

This base fee helps users select an efficient gas amount that is likely 
to get their transaction mined rather than wasting tons of money on 
unnecessarily high gas prices like in the past. These mechanisms also 
make it easy to predict future gas prices by looking at how “full” the 
previous blocks were. 

Instead of going straight into the miners pocket, the base fee actually 
gets burned. There are several reasons why the base fee is burned instead 
of being given to the miner: 

 This prevents the miner from circumventing the payment of the 
base fee since they have to pay at least base fee times the 
number of transactions for the block that the mine, and 

 Burning ether also creates a deflationary pressure on ether as 
an asset since supply is taken out of the market. 
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Since the base fee is entirely burned, the new incentive for miners is 
now known as the miner tip. In a perfect world, the miner tip is the minimum 
amount that the miner is willing to accept in order to execute the 
transaction. This tip was originally set as 1gwei but can fluctuate 
depending on how full blocks are. Since the target gas value in blocks is 
15M, in general, so long as blocks are hitting or near the target amount, 
there will always be room to add more transactions within a block. This is 
why the miner tip does not need to be insanely high to get some 
transaction included. 

Solidity 

Solidity is an object-oriented, high-level language for implementing 
smart contracts. It is a language that closely resembles other popular 
programming languages like C++, Python and JavaScript. Solidity is 
statically-typed (variables must be defined at compile time) and supports 
inheritance, libraries and complex user-defined types. It is a programming 
language used to write smart contracts. 

A smart contract is a set of promises, specified in a digital form, 
including protocols within which the parties perform on these promises 
(Szabo, 1996). Basically, smart contracts are typical contracts, but in a 
digital form, and they have stronger enforcement parameters (Szabo, 
1997). 

A smart contract is simply a program that runs on the Ethereum 
computer. More specifically, a smart contract is a collection of code 
(functions) and data (state) that resides on a specific address on the 
Ethereum blockchain. These are written in Solidity which means they must 
be compiled into bytecode first in order to be Ethereum compatible. 

Smart contracts are permisionless (anyone can deploy them to 
Ethereum) and composable (they are gloably available via Ethereum). 
 

 

Figure 12 – A sample of a Solidity smart contract 
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The features of Solidity will be explained on the example listed as 
Figure 12.  

Line 1: Specifies what type of license will be used and determines 
what license rules fall on that specific smart contract. 

Line 2: The word pragma defines the version of Solidity that will be 
used for writing the smart contract. Solidity uses semantic versioning. 

Lines 4-7: Define state variables that will be used throughout the 
writing of the smart contract. Variables in Solidity can have private, public 
and internal visibility. Numbers in Solidity can be int (interger) and uint 
(unsigned integer). 

Lines 9-14: The scope of the contract. The contract keyword behaves 
very simliar to the class keyword of JavaScript. 

Lines 10-13: The constructor() function is called only once during 
deployment and completely discarded thereafter. It is used to specify the 
state when deploying a contract.   

 
There are many data types in Solidity: boolean (bool), string, 

integers (uint and int), bytes, enums, arrays, mappings, and structs. 
A solidity-specific type of variable is called address. There are two 

types of this variable: address and address payable. These two types 
are more than just some string holding Ethereum address value, they are 
first-class types, meaning that they have a number of methods and 
function that can be called upon them. 

Integration with Ethereum Virtual Machine 

The Ethereum Virtual Machine (EVM) is a runtime environment that 
executes smart contracts on the Ethereum blockchain. The Ethereum 
Virtual Machine is a crucial component of the Ethereum network, enabling 
the execution of decentralized applications (DApps) by processing and 
validating smart contracts code. It plays a central role in ensuring the 
decentralized and trustless nature of the Ethereum platform by allowing 
participants to execute code without the need for a central authority. Smart 
contracts written in languages like Solidity are compiled into bytecode that 
can be executed by the Ethereum Virtual Machine. 

 
After a contract has been compiled, the bytecode of that contract is 

sent to the EVM. For a contract containing a simple while loop that 
increments a variable of type integer five times, the bytecode looks like 
this: 
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Figure 13 – The bytecode of the while loop 

 

The bytecode contains opcodes and operands. This bytecode looks 
like this after looking up the EVM operation codes: 

 

 
Figure 14 – The look of the bytecode after transposing the values of opcodes and 

operands 

Conclusion 

In the ever-evolving landscape of blockchain technology, the 
significance of the Solidity programming language is underscored by its 
integral role in platforms like Bitcoin and Ethereum. Bitcoin, the pioneering 
cryptocurrency, employs a blockchain data structure to create a secure, 
decentralized ledger of transactions. Solidity, however, takes the concept 
of blockchain a step further within the Ethereum ecosystem, enabling the 
development of smart contracts. These self-executing contracts, written in 
Solidity, automate and enforce predefined rules, facilitating a wide array of 
decentralized applications. Ethereum's versatility, driven by Solidity, 
extends the capabilities of blockchain beyond a mere medium of 
exchange, transforming it into a decentralized computing platform with 
applications spanning finance, gaming, and decentralized finance (DeFi). 

As industries recognize the potential benefits of blockchain, its 
integration is becoming increasingly prevalent across sectors. From 
enhancing the traceability of goods in supply chain management to 
revolutionizing traditional financial systems through decentralized finance 
applications, the transformative impact of blockchain is gaining 
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momentum. Solidity's role in facilitating the creation and execution of smart 
contracts plays a crucial part in this evolution, offering developers a 
powerful tool to build decentralized applications that foster trust, 
transparency, and efficiency. The ongoing convergence of Solidity, 
blockchain data structures, and real-world applications suggests a 
promising future where decentralized technologies redefine how industries 
operate and interact. 
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La utilización del lenguaje de programación Solidity en cadena de 
bloques (blockchain) 
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CAMPO: ciencias de computación, IT  
TIPO DE ARTÍCULO: artículo de revisión 

Resumen:  

Introducción/objetivo: Este trabajo proporciona una descripción general 
completa de la tecnología blockchain, aclarando sus principios 
fundamentales y cómo garantiza la transparencia, la inmutabilidad y la 
descentralización. La integración de Solidity con blockchain se explora a 
través de un enfoque teórico. 

Métodos: Este trabajo analiza meticulosamente los principios de 
blockchain, aclarando la transparencia, la inmutabilidad y la 
descentralización, mientras explora la integración de Solidity en un marco 
teórico, asegurando una comprensión integral de su intrincada relación y 
contribuyendo a una comprensión más amplia de la tecnología moderna 
de distribuición de registros. 

Resultados: El producto resultante de este artículo será la obtención de 
conocimientos útiles sobre la tecnología que prácticamente da forma al 
mundo. 
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Conclusión: En conclusión, la adopción de Solidity como lenguaje de 
programación en la tecnología blockchain ha demostrado ser fundamental, 
ya que mejora la funcionalidad de los contratos inteligentes y la seguridad 
general del sistema. Sus características especializadas la convierten en 
una herramienta indispensable para los desarrolladores que navegan por 
las complejidades de las aplicaciones descentralizadas. 

Palabras claves: blockchain, Bitcoin, Ethereum, Solidez, 
descentralización. 

Применение языка программирования Solidity в технологии 
blockchain  

Сава С. Станишича, Христина Н. Стояновичб, Игорь Л. Джорджевичв 
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  противовоздушная оборона,  98-ая авиационная бригада,  
  Ладжевци, Республика Сербия, корреспондент            
б Вооруженные силы Республики Сербия, Военная авиация и     
  противовоздушная оборона, 126-ая авиационная бригада ВНОС,    
  г. Белград, Республика Сербия 
в Вооруженные силы Республики Сербия, Генштаб, Управление    
  информатики и телекоммуникаций (Ј-6), г. Белград, Республика Сербия; 
  Университете „Мегатренд“, факультет вычеслитетельных наук,  
  г. Белград, Республика Сербия 
 
РУБРИКА ГРНТИ: 20.15.05 Информационные службы, сети, системы в      
                                               целом, 
                                81.93.29 Информационная безопасность. Защита  
                                               информации 
ВИД СТАТЬИ: обзорная статья 

Резюме: 

Введение/цель: В данной статье представлен всесторонний 
обзор блокчейн технологии, разъясняются ее основополагающие 
принципы и то, как она обеспечивает прозрачность, 
неизменность и децентрализацию. Интеграция Solidity с 
блокчейном исследуется с помощью теоретического подхода. 

Методы: В данной статье представлены принципы blockchain 
технологии. Теоретический подход и фрагменты кода на 
практике показывают, как Solidity сочетается с этой 
технологией и почему она является фундаментом развития 
современных технологий и многих отраслей промышленности. 

Результаты: В результате исследования получены полезные 
сведения о технологии, которая встречается практически во 
всех сферах современного мира. 
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Выводы: Внедрение Solidity в качестве языка программирования в 
блокчейн технологию оказалось ключевым фактором в  повышении 
функциональности смарт-контрактов и общей безопасности 
системы. Его специальные характеристики делают его 
незаменимым инструментом для разработчиков, занимающихся 
сложностями децентрализованных приложений. 

Ключевые слова: блокчейн, биткоин, Ethereum, Solidity, 
децентрализация. 

Примена програмског језика Solidity у blockchain технологији 

Сава С. Станишића, Христина Н. Стојановићб, Игор Љ. Ђорђевићв 
а Војска Србије, Ратно ваздухопловство и противваздухопловна одбрана,    
  98. ваздухопловна бригада, Лађевци, Република Србија,  
   аутор за преписку            
б Војска Србије, Ратно ваздухопловство и противваздухопловна одбрана,  
  126. бригада ВОЈИН, Београд, Република Србија  
в Војска Србије, Генералштаб, Управа за телекомуникације и   
  информатику (Ј-6), Београд, Република Србија; 
  Мегатренд Универзитет, Факултет за компјутерске науке,  
  Београд, Република Србија 
 
ОБЛАСТ: рачунарске науке, ИТ 
КАТЕГОРИЈА (ТИП) ЧЛАНКА: прегледни рад 

Сажетак:  

Увод: У раду је представљена blockchain технологија, њени основни 
принципи и начин на који се осигурава транспарентност, 
непроменљивост и децентрализација. Интеграција програмског 
језика Solidity са blockchain технологијом објашњена је теоријским 
приступом. 

Методе: Расветљени су принципи blockchain технологије. 
Теоријским приступом и исечцима кода   показано је како се Solidity 
интегрише са овом технологијом и зашто представља стуб 
развоја савремених технологија и многобројних индустријских 
грана. 

Резултати: Добијене су корисне информације о технологији која је 
примењена у свим областима данашњег света. 

Закључак: Усвајање програмског језика Solidity у blockchain 
технологији показало се кључним, јер побољшава функционалност 
паметних уговора и укупну сигурност система. Његове 
специјализоване карактеристике чине га неопходним алатом за 
програмере који се крећу кроз комплексност децентрализованих 
апликација. 
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