
S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

363

The utilization of Solidity programming
language in blockchain

Sava S. Stanišića, Hristina N. Stojanovićb, Igor Lj. Đorđevićc
a Serbian Armed Forces, Air Force and Air Defence,
 98th Air Force Brigade, Lađevci, Republic of Serbia,
 e-mail: sava.stanisic@vs.rs,
 ORCID iD: https://orcid.org/0009-0002-3118-0537
b Serbian Armed Forces, Air Force and Air Defence,
 126th ASEWG Brigade, Belgrade, Republic of Serbia,
 e-mail: hristina.stojanovic@vs.rs,
 ORCID iD: https://orcid.org/0009-0006-5495-3343
c Serbian Armed Forces, Joint Staff, Department of
 Telecommunications and Informatics, Belgrade, Republic of Serbia;
 Megatrend University, Faculty of Computer Science,
 Belgrade, Republic of Serbia,
 e-mail: igor.lj.djordjevic@vs.rs,
 ORCID iD: https://orcid.org/0009-0003-3245-9035

 DOI: https://doi.org/10.5937/vojtehg72-47942

FIELD: computer sciences, IT
ARTICLE TYPE: review paper

Abstract:

Introduction/purpose: This work provides a comprehensive overview of
blockchain technology, elucidating its foundational principles and how it
ensures transparency, immutability, and decentralization. The integration of
Solidity with blockchain is explored through theoretical approach.

Methods: This work meticulously dissects blockchain principles, elucidating
transparency, immutability, and decentralization, while exploring Solidity
integration in a theoretical framework, ensuring a comprehensive
understanding of their intricate relationship and contributing to a broader
comprehension of modern distributed ledger technology.

Results: The resulting product of this paper will be getting useful knowledge
about the technology that practically shapes the world.

Conclusion: In conclusion, the adoption of Solidity as a programming
language in blockchain technology has proven to be pivotal, enhancing
smart contract functionality and overall system security. Its specialized
features make it an indispensable tool for developers navigating the
complexities of decentralized applications.

Key words: blockchain, Bitcoin, Ethereum, Solidity, decentralization.

http://orcid.org/
http://orcid.org/
http://orcid.org/

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

364

Introduction

In the continuously evolving landscape of blockchain technology, the
emergence of decentralized applications (DApps) and smart contracts has
become a focal point of innovation. At the epicenter of this transformative
shift lies Solidity, a purpose-specific programming language meticulously
engineered for the development of secure and autonomous smart contracts
on blockchain networks, prominently exemplified by Ethereum. This
scholarly inquiry seeks to systematically investigate the profound
implications and nuanced intricacies surrounding the "Utilization of Solidity
programming language in blockchain." Throughout this paper, the objective
is to delineate the fundamental role Solidity assumes in concretizing the
theoretical constructs of decentralized systems into practical,
implementable solutions. Through the scrutiny of the syntax, structure, and
unique attributes of Solidity, the aim is to provide a scholarly discourse that
advances the understanding of the intricate interplay between this
programming language and the broader landscape of blockchain
technology.

Moreover, this scholarly effort endeavors to dissect the practical
implications of Solidity-driven smart contracts, considering their impact
across various sectors such as finance, supply chain, and governance. By
elucidating the distinct features of Solidity that contribute to the resilience
and immutability of smart contracts, the authors aim to provide an
explanation of a framework for researchers, developers, and industry
practitioners navigating the burgeoning field of decentralized applications.
The exploration extends beyond the syntax and semantics of Solidity,
encompassing considerations of security measures, standardization, and
potential avenues for future enhancements. As the discourse unfolds, the
anticipation is to shed light on the challenges inherent in the application of
Solidity in real-world scenarios, thereby contributing valuable insights to the
ongoing dialogue surrounding the convergence of Solidity and blockchain
technology.

Blockchain basics

Understanding the principles on which blockchain resides is not
possible without understanding the answers to the following questions:

 What is the purpose of blockchain? and

 Why is blockchain needed for cryptocurrency?

In simple terms, the purpose of blockchain is to have a network of

computers agree upon a common state of data (Abou Jaoude & Saade,

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

365

2019). Any person or organisation should be able to participate in this
process and no person or ogranisation should be able to control this
process. This will be explained in the following chapters.

Also, blockchain solves the problem of trust. This system is
completely neutral and resistant to any censorship or bribe. In 2008, an
individual, or a group of people, under the pseudonym of Satoshi
Nakamoto released a whitepaper for Bitcoin: "We have proposed a system
for electronic transactions without relying on trust." (Nakamoto, 2008)

The system proposed was peer-to-peer network, allowing online
payments to be directly sent from one party to another, without going
through a financial institution, therefore eliminating the need for trusting
someone to make sure your payment goes the way it is meant to.

The Genesis of blockchain

 It is impossible to look back at the history of blockchain without
looking back at the history of cryptography and its development over the
years.

Until the 1970s, cryptography was the study of encrypting messages
to the full decryption-proof stadium. It was used for passing confidential
information, especially within the military (Ahmad et al, 2021). Substitution
ciphers were primarily used – the cryptographical method of encrypting in
which units of plaintext are replaced with ciphertext in a defined manner.

As cryptography advanced over the years, more and more complex
functions were introduced. The most important leap for blockchain
technology, certainly, was the idea of a secret key.

Namely, if two parties can meet prior to their exchange of messages
and agree upon a common key for both sides, the message would be
encrypted with a mathematical function and that key, creating even more
secure encryption. This thus marked the beginning of symmetric-key
cryptography.

With the advent of personal computing, cryptographers started to
think even further. The idea of secure communication without prior key
exchange emerged. In 1976, Whitfield Diffie proposed a concept of PKC
(Public Key Cryptography). With PKC, each individual has their own
unique key pair, consisting of a public key and a private key. Only the
public key needs to be exchanged, eliminating the need for exchanging
keys beforehand. If a person's public key is used to encrypt a message,
then only their corresponding private key can decrypt it, providing privacy.
Likewise, if their private key is used to sign (encrypt) a message, the
corresponding public key can authenticate (decrypt) the message. This
was the start of assymetric encryption.

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

366

Diffie did not have any practical way to make this happen. He had a
concept, but the mathematical function with all these properties did not
exist back then. Diffie would work with Martin Hellman and Ralph Merkle
in search of such a system.

Today, both the RSA (Rivest-Shamir-Adleman) and the ECDSA
(Elliptic Curve Digital Signature Algorithm) are two popularly used
algorithms for public key cryptography.

The security of the RSA algorithm relies on the practical difficulty of
factoring the product of two large prime numbers - "the factoring problem".
An RSA user creates and publishes a public key based on two large prime
numbers, along with an auxiliary value. The prime numbers are kept
secret, messages can be encrypted by anyone, via the public key, but can
only be decoded by someone who knows the prime numbers. This
algorithm is relatively slow, but there are no published methods to
decypher this system if a large enough key is used.

The ECDSA uses elliptic curves. It can provide the same level of
security as other public key algorithms with smaller key sizes, which is the
reason of its popularity. This is the Digital Signing Algorithm used by
Bitcoin, specifically the secp256k1 curve.

Consensus mechanisms

Blockchain networks are essentially distributed and decentralized
databases consisting of many nodes (computers). In a decentralized
environment, common issues are:

 How do all nodes agree on what the current and future state of
user account balances and contract interactions is?

 Who gets to add new blocks/transactions to a chain? How do we
know any blocks added are "valid"?

 How is this system coordinated without any official coordinator?

All of this is done thanks to consensus mechanisms.

The blockchain consensus mechanism typically means that at least

51% of nodes are in agreement over the current global state of network
(Ahmad et al, 2021). Essentially, these are rules that distributed,
decentralized blockchain follows in order to stay in agreement over what
is considered valid. There are many consensus mechanisms, but the two
most famous ones are: proof-of-work (PoW) and proof-of-stake (PoS).

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

367

Figure 1 – Abstract scheme of the blockchain network

Proof of work & mining

Proof-of-work is the consensus mechanism that allows decentralized
networks like Bitcoin and (previously) Ethereum to come to consensus, or
agree on things like account balances and the order of transactions (Ali et
al, 2023). This prevens "double spending" and ensures the followin of the
blockchain rules, making the PoW network resilient to malicious attacks.

The main consensus rules for the PoW are the following:

 There must not be double spending, and

 The "longest" chain will be the one the rest of the nodes will
accept as the one "true" chain - Nakamoto Consensus.

The consensus mechanism ends up being the security mechanism

the network needs, because it ensures that every node on it is following
the consensus rules. In PoW, mining represents the work.

Mining is the process of creating a block of transactions to be added

to blockchain.
In proof-of-work consensus, nodes in the network continuously

attempt to extend the chain with new blocks - these are the miners, nodes
that contain mining software (Antonopoulos & Wood, 2018). Miners are in
charge of extending a blockchain by adding blocks that contain "valid"
transactions. In order to add a block, the network will ask miners for their
"proof-of-work".

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

368

A proof-of-work-based system will typically require miners produce an
output in a very difficult-to-get target range. Valid proof-of-work once
looked like this in the Bitcoin network:

Figure 2 – The look of once valid proof-of-work in the Bitcoin network

To get an output like this, automated mining software does the

following: takes a piece of data (i.e. the previous block header + new
transactions to add to a chain) and hashes it. If the hash output is bellow
a target difficulty, then the miner has found the answer to the puzzle: a
valid proof of work.

The proof-of-work shown above has 19 leading zeroes, and since the
range of each possible character per space is in hexadecimal, this means
that there are 1/16 character possibilities per space.

The hash outputs for SHA-256 are in hexadecimal, which means
there are 1/16 possible characters per space - a-f in letters and 0-9 in
decimals = 16 total possibilities. This means that finding one 32-byte SHA-
256 output that has just one leading zero will take on average 16 tries
(Banerjee et al, 2018).

Finding an output with 2 leading zeros increases the average number
of attempts to 256 - 16 possible characters in the first spot * 16 possible
characters in the second spot. Finding 19 leading zeros will take, on
average, 1619 attempts, which equals to
75557863725914323419136000000000000000000000 attempts.

Proof-of-work networks will typically have some sort of
target_difficulty. In order for a miner to add a new block, they must find a
proof-of-work lower than the network target difficulty. Finding such a
difficult-to-find output is proof enough that a miner expended considerable
resources to secure the network.

The proof-of-work mining algorithm looks like this:

 Take current block’s block header, add mempool transactions

 Append a nonce, starting at nonce = 0

 Hash data from #1 and #2

 Check hash versus target difficulty (provided by protocol)

 If hash < target, puzzle is solved! Get rewarded.

 Else, restart process from step #2, but increment nonce

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

369

The miner nodes in a proof-of-work network will perform this algorithm
regularly. This gives the network a way to recognize the true state and the
validity of the proposed transactions following the consensus rules. As
long as the majority of nodes on the network follow the consensus rules,
the blockchain remains secure and resistant to attacks, ensuring that only
valid and verified transactions are added to the distributed ledger, thus
maintaining its integrity and trustworthiness. In exchange for large
amounts of energy and hardware upkeep required to run mining software,
miners receive currency as a reward.

Blockchain structure

A blockchain is a distributed database of a list of validated blocks
(Bashir, 2018). Each block contains data in the form of transactions and
each block is cryptographically tied to its predecessor, producing a "chain".
Each blockchain consists of nodes.

A blockchain has nodes scattered all over the world all acting together
in real-time. There is no central administrator, say a "supernode",
responsible for verifying any changes to the state of data, all nodes are
equal members of the network. This means that the network will perform
the same, no matter what node is interacted with to update data. In other
words, blockchains are peer-to-peer networks.

A valid hash for a blockchain is a hash that meets certain
requirements. The number of leading zeros required is the difficulty. The
process of finding valid hash outputs, via changing the nonce value, is
called mining. A miner starts a "candidate block" with a nonce of 0 and
keeps incrementing it by 1 until it finds a valid hash.

Since data is an input variable for the hash of each block, changing
the data will change that block's hash. Blockchains like Bitcoin and
Ethereum, protect the integrity of any data held inside blocks in their
chains: manipulating data in a block that has been nested deeply in the
chain is almost impossible.

In Bitcoin, Merkle trees are used to store every transaction mined on
the Bitcoin network. Merkle tree is a data structure that represents a
collection of hash values reduced to a single hash.

Each letter represents a hash. The combined letters represent
concatenated hashes that have been combined and hashed to form a new
hash.

Over a series of steps, the eight leaf hashes A, B, C, D, E, F, G, and
H are combined to create a single, unique hash that allows efficient
checking for inconsistencies without having to look at each individual data
point.

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

370

Figure 3 – Visual representation of Merkle tree

Figure 4 – The architecture of a Bitcoin block

The figure above shows the architecture of the Bitcoin block. All of the

transactions per block are arranged into a big Merkle tree. Merkle tree's
root hash actually gets commited into the block.

By committing the root hash of the tree, the transaction data can be
stored off-chain (full nodes, for example, store these transaction records
on a LevelDB integrated into all full nodes).

A main design purpose behind using Merkle trees to commit a lot of
data elements (typically transactions) per block is to keep the size of the

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

371

blockchain as small as possible. Given the nature of their usage,
blockchains grow perpetually. Keeping the blockchain size from becoming
bloated means more people can support running full nodes which helps
network decentralization (Dabbagh et al, 2019).

UTXO & account models

With traditional web2 server based platforms, keeping track of user
data and information is actually a lot easier than it is on the blockchain.
This is because there is a single centralized server that stores the state of
user accounts. There is no need for consensus or resolving discrepancies
since there is only one central place that stores information.

However, when moving to a decentralized system, the problem of
storing user balances becomes complicated. Decentralized networks like
Bitcoin and Ethereum need specific models for keeping track of the state
of users. Bitcoin uses the UTXO (Unspent Transaction Output) model to
keep track of user balances. Ethereum and other EVM chains use the
account model to keep track of user balances.

The account model tracks the balances of users based on their overall
account state, without knowing what constitutes the actual balance itself.
This model is a lot like a classical bank account model.

In the account model, the ownership of cryptocurrency is determined
by the account's private key, which corresponds to a unique public key or
address. When a user initiates a transaction, they sign it with their private
key to prove ownership and authorize the movement of funds from their
account. This model simplifies the transaction process and is more intuitive
for developers building decentralized applications, as it resembles the
familiar ledger system used in traditional banking. However, it also comes
with challenges, such as the need for more complex protocols to prevent
issues like double-spending. The choice between the UTXO and account
models reflects different design philosophies and trade-offs in the realm of
blockchain architecture (Buterin, 2013).

The Unspent Transaction Output (UTXO) model is a fundamental
concept underpinning the functioning of the Bitcoin blockchain. In the
Bitcoin network, transactions are represented as a chain of inputs and
outputs. Each output of a transaction is a certain amount of bitcoin, and
these outputs serve as the inputs for future transactions. The UTXO model
is designed to keep track of the ownership of Bitcoin and prevent double-
spending. In simple terms, a UTXO is essentially an unspent output of a
transaction that can be used as an input for a new transaction. This model
contrasts with the account-based model used by traditional banking

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

372

systems, where an account balance is maintained, and transactions
involve debiting and crediting these balances.

In the UTXO model, the ownership of Bitcoin is determined by the
ability to provide a valid digital signature corresponding to the public key
associated with a UTXO. When a user initiates a transaction, they must
reference one or more UTXOs as inputs, providing the required digital
signatures to prove ownership. The outputs of this transaction become
new UTXOs, which can be spent in future transactions. This model adds
a layer of security to the Bitcoin protocol by ensuring that every transaction
input is indeed an unspent and valid output from a previous transaction. It
also contributes to the decentralized and trustless nature of the Bitcoin
network, as the entire transaction history is publicly accessible and
verifiable by anyone on the blockchain (Buterin, 2013).

Ethereum

Bitcoin was the first blockchain-based decentralized network ever. It
popularized the use of Merkle trees for scalable transaction inclusion.
Ethereum also uses Merkle trees but since Ethereum is a completely
different design, it also uses one other important tree data structure for
some of its data storage needs: Patricia Merkle Tries. Unlike Bitcoin,
Ethereum uses the Keccak256 hash function.

Ethereum is a deterministic but practically unbounded state machine,
consisting of a globally accessible singleton state and a virtual machine
that applies changes to that state (Dange & Nitnaware, 2023).

Essentially, Ethereum can be seen just like any other computer in the
world. This computer has some major features that make it unique:

 It is the first global singleton machine ever, that fundamentally is
not localized (not located on any physical machine in the world).
Ethereum does not reside in any single machine, with no physical
presence anywhere.

 Ethereum is totally censorship resistant. No authority,
government, corporation or a group of individuals is behind the
Ethereum computer. No one owns it, can shut it off or can us it
as a privileged user.

 Ethereum is ubiquitous and accessible anywhere there is
Internet connection.

 Natively multi-user, with a practically infinite range possible for
account creation - 2160 accounts.

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

373

Since Ethereum keeps track of a larger amount of state data than
Bitcoin, its block architecture is completely different.

Figure 5 – The architecture of the Ethereum block

Ethereum makes use of a data structure called radix trie (Patricia trie,

radix tree) and combines it with the Merkle tree structure to create a
Patricia Merkle Trie.

Trie comes from the word "retrieval", meaning that radix trie is a tree-
like data structure that is used to retrieve a string value by traversing down
a branch of nodes that store associated references (keys) that together
lead to the end value that can be returned.

A Patricia Merkle trie (PMT) is a data structure that stores key-value

pairs, just like a hash table. In addition to that, it is also used verify data
integrity and the inclusion of a key-value pair. PMTs groups similar-value
nodes together in the tree. That way, searching for "HELP" leads you along
the same path as searching for "HELLO" - the first three letters are shared
entries of different words. It is very good for space efficiency and read/write
efficiency. Patricia is an acronym: P - Practical; A - Algorithm; T - To; R -
Retrieve; I - Information; C - Coded; I - In; and A - Alphanumeric.

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

374

Figure 6 – An example of the radix trie data structure

Figure 7 – An example of the Patricia Merkle trie data structure

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

375

Ethereum stores two types of data: permanent and ephemeral. It
makes sense that permanent data, like mined transactions, and ephemeral
data, like Ethereum accounts (balance, nonce, etc), should be stored
separately. Merkle trees are perfect for permanent data. PMTs are perfect
for ephemeral data, which Ethereum is in plenty supply of.

Unlike transaction history, the Ethereum account state needs to be
frequently updated. The balance and nonce of accounts is often changed,
and what is more, new accounts are frequently inserted, and keys in
storage are frequently inserted and deleted.

The Ethereum block header contains many pieces of data.The block
header is the hash result of all of the data elements contained in a block.
It is like a gift-wrap of all the block data.

Looking at the Ethereum architecture diagram at the beginning of this
chapter, the block header ends up hashing all of the data properties of the
block. It also includes:

 State Root: the root hash of the state trie,

 Transactions Root: the root hash of the block's transactions, and

 Receipts Root: the root hash of the receipts trie.

The state trie acts as a mapping between addresses and accounts

states. It can be seen as a global state that is constantly updated by
transaction executions. All the information about accounts is stored in the
world state trie and information can be retrieved by querying it.

Figure 8 – An example of the state trie and its integration with the Ethereum block

The transaction trie records transactions in Ethereum. Once the block
is mined, the transaction trie is never updated. Each transaction in

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

376

Ethereum records multiple pieces specific to each transaction such as
gasPrice and value.

Figure 9 – An example of the transaction trie and its integration with the Ethereum block

The transaction receipt trie records receipts (outcomes) of
transactions. It contains data including gasUsed, logs and events emitted.
Once the block is mined, the transaction receipt trie is never updated.

Figure 10 – Visualizaton of how the tries end up being commited in every block

via their root hash

Proof of stake

Ethereum transitioned to PoS on September 15th, 2022. This
transition is known as "The Merge". This was a massive migration that was
always in the roadmap and original planning for Ethereum, but required
coordination from the entire network to execute.

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

377

Proof-of-stake is a totally different mechanism than proof-of-work that
enables Ethereum to be more secure, less energy intensive and more
scalable.

In order to become a miner in PoW, there are large energy
requirements, which makes it difficult for any individual to compete with
the existing mining warehouses that are dedicating millions of dollars of
resources to mining. However, in proof-of-stake, the energy requirement
to become a validator is much lower and can be done by individuals
without a high overhead energy cost. This encourages more users to
become validators, decreasing the centralization risk, and thereby
increasing the security of the network.

Instead of using mass amounts of electricity, validators are required
to stake 32ETH by depositing it into a contract to have the ability to validate
blocks. This staked ETH is used as collateral against bad actors in the
network. If any given validator acts dishonestly or maliciously, they put
themselves at risk of losing their staked ETH.

Rather than all validators competing at the same time for the next
block, the network randomly selects a validator to propose a block every
12 seconds, all the other validators verify that the proposed block is
correct, and the cycle repeats (Stanišić, 2023).

One of the largest ways that PoS affects Ethereum developers is with
a new framework for block finality. Finality in blocks refers to how confident
you are that the given block will not change or get forked away. For blocks
that have been on the network for a very long time (older blocks), it is
extremely unlikely that it will be removed from the canonical chain and
therefor has high finality.

Proof of stake introduced 2 new levels of finality that developers
should consider when requesting data from the network: safe and
finalized. Here is an overview of all “block tags”:

 earliest: The lowest numbered block the client has available.
Intuitively, you can think of this as the first block created.

 finalized: The most recent crypto-economically secure block, that
has been accepted by >2/3 of validators. Typically finalized in
two epochs (64 blocks). Cannot be reorganized outside manual
intervention driven by community coordination. Intuitively, this
block is very unlikely to be reorganized.

 safe: The most recent crypto-economically secure block,
typically safe in one epoch (32 blocks). Cannot be re-orged
outside manual intervention driven by community coordination.
Intuitively, this block is unlikely to be re-orged.

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

378

 latest: The most recent block in the canonical chain observed by
the client, this block may be re-orged out of the canonical chain
even under healthy/normal conditions. Intuitively, this block is the
most recent block observed by the client.

 pending: A sample next block built by the client on top of latest
and containing the set of transactions usually taken from local
mempool. Intuitively, you can think of these as blocks that have
not been mined yet.

Gas on Ethereum

The cost of operations on Ethereum are fixed and measured in a unit
called "gas". The price of gas is what constantly changes. This means that
the energy requirements to mine any given block are significantly lower
than that of PoW.

In August 2021, there was an Ethereum Improvement Proposal (EIP)
to improve the calculation of gas prices on Ethereum, known as EIP-1559.
Historically, gas prices on Ethereum have been unpredictable and at times
astronomically high, making transactions inaccessible to most people.
EIP-1559 changed the mechanism for setting the gas price, making
participating in Ethereum blockchain accessible to pretty much everyone.

Just like every currency in the world, Ethereum also has different
denominations thar are used to express smaller values. 1 ether is equal to
1018 wei (the smallest denomination of ether) or 109 gwei.

Figure 11 – Table with relevant denominations for ether

Every block has a maximum amount of gas that can be used within it.

This is how a number of transactions included within a block are
determined. Every block has the capacity to use 30 million gas but has a

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

379

target of 15 million gas total. The price of gas is determined by the amount
of demand for transactions (or block space), where demand is measured
by how filled the previous block was relative to the target gas.

Figure 11 – Example of two different blocks with different demand quantity

The network first sets a base fee; in an ideal world, this base fee would

result in 15 million gas getting used in a block, no more, no less. However,
what happens in practice is the actual gas can be above or below the target
gas.

When blocks are above the target, the gas price (or base fee) is
automatically increased, increasing the cost and barrier to entry for
sending transactions and thereby reducing the number of people who are
competing to fill the block. When the block is below the target, the base
fee is lowered to incentivize people to transact by lowering the barrier to
entry for paying for a transaction.

This base fee helps users select an efficient gas amount that is likely
to get their transaction mined rather than wasting tons of money on
unnecessarily high gas prices like in the past. These mechanisms also
make it easy to predict future gas prices by looking at how “full” the
previous blocks were.

Instead of going straight into the miners pocket, the base fee actually
gets burned. There are several reasons why the base fee is burned instead
of being given to the miner:

 This prevents the miner from circumventing the payment of the
base fee since they have to pay at least base fee times the
number of transactions for the block that the mine, and

 Burning ether also creates a deflationary pressure on ether as
an asset since supply is taken out of the market.

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

380

Since the base fee is entirely burned, the new incentive for miners is
now known as the miner tip. In a perfect world, the miner tip is the minimum
amount that the miner is willing to accept in order to execute the
transaction. This tip was originally set as 1gwei but can fluctuate
depending on how full blocks are. Since the target gas value in blocks is
15M, in general, so long as blocks are hitting or near the target amount,
there will always be room to add more transactions within a block. This is
why the miner tip does not need to be insanely high to get some
transaction included.

Solidity

Solidity is an object-oriented, high-level language for implementing
smart contracts. It is a language that closely resembles other popular
programming languages like C++, Python and JavaScript. Solidity is
statically-typed (variables must be defined at compile time) and supports
inheritance, libraries and complex user-defined types. It is a programming
language used to write smart contracts.

A smart contract is a set of promises, specified in a digital form,
including protocols within which the parties perform on these promises
(Szabo, 1996). Basically, smart contracts are typical contracts, but in a
digital form, and they have stronger enforcement parameters (Szabo,
1997).

A smart contract is simply a program that runs on the Ethereum
computer. More specifically, a smart contract is a collection of code
(functions) and data (state) that resides on a specific address on the
Ethereum blockchain. These are written in Solidity which means they must
be compiled into bytecode first in order to be Ethereum compatible.

Smart contracts are permisionless (anyone can deploy them to
Ethereum) and composable (they are gloably available via Ethereum).

Figure 12 – A sample of a Solidity smart contract

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

381

The features of Solidity will be explained on the example listed as
Figure 12.

Line 1: Specifies what type of license will be used and determines
what license rules fall on that specific smart contract.

Line 2: The word pragma defines the version of Solidity that will be
used for writing the smart contract. Solidity uses semantic versioning.

Lines 4-7: Define state variables that will be used throughout the
writing of the smart contract. Variables in Solidity can have private, public
and internal visibility. Numbers in Solidity can be int (interger) and uint
(unsigned integer).

Lines 9-14: The scope of the contract. The contract keyword behaves
very simliar to the class keyword of JavaScript.

Lines 10-13: The constructor() function is called only once during
deployment and completely discarded thereafter. It is used to specify the
state when deploying a contract.

There are many data types in Solidity: boolean (bool), string,

integers (uint and int), bytes, enums, arrays, mappings, and structs.
A solidity-specific type of variable is called address. There are two

types of this variable: address and address payable. These two types
are more than just some string holding Ethereum address value, they are
first-class types, meaning that they have a number of methods and
function that can be called upon them.

Integration with Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a runtime environment that
executes smart contracts on the Ethereum blockchain. The Ethereum
Virtual Machine is a crucial component of the Ethereum network, enabling
the execution of decentralized applications (DApps) by processing and
validating smart contracts code. It plays a central role in ensuring the
decentralized and trustless nature of the Ethereum platform by allowing
participants to execute code without the need for a central authority. Smart
contracts written in languages like Solidity are compiled into bytecode that
can be executed by the Ethereum Virtual Machine.

After a contract has been compiled, the bytecode of that contract is

sent to the EVM. For a contract containing a simple while loop that
increments a variable of type integer five times, the bytecode looks like
this:

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

382

Figure 13 – The bytecode of the while loop

The bytecode contains opcodes and operands. This bytecode looks
like this after looking up the EVM operation codes:

Figure 14 – The look of the bytecode after transposing the values of opcodes and

operands

Conclusion

In the ever-evolving landscape of blockchain technology, the
significance of the Solidity programming language is underscored by its
integral role in platforms like Bitcoin and Ethereum. Bitcoin, the pioneering
cryptocurrency, employs a blockchain data structure to create a secure,
decentralized ledger of transactions. Solidity, however, takes the concept
of blockchain a step further within the Ethereum ecosystem, enabling the
development of smart contracts. These self-executing contracts, written in
Solidity, automate and enforce predefined rules, facilitating a wide array of
decentralized applications. Ethereum's versatility, driven by Solidity,
extends the capabilities of blockchain beyond a mere medium of
exchange, transforming it into a decentralized computing platform with
applications spanning finance, gaming, and decentralized finance (DeFi).

As industries recognize the potential benefits of blockchain, its
integration is becoming increasingly prevalent across sectors. From
enhancing the traceability of goods in supply chain management to
revolutionizing traditional financial systems through decentralized finance
applications, the transformative impact of blockchain is gaining

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

383

momentum. Solidity's role in facilitating the creation and execution of smart
contracts plays a crucial part in this evolution, offering developers a
powerful tool to build decentralized applications that foster trust,
transparency, and efficiency. The ongoing convergence of Solidity,
blockchain data structures, and real-world applications suggests a
promising future where decentralized technologies redefine how industries
operate and interact.

References

Abou Jaoude, J. & Saade, R.G. 2019. Blockchain Applications – Usage in
Different Domains. IEEE Access, 7, pp.45360-45381. Available at:
https://doi.org/10.1109/ACCESS.2019.2902501.

Ahmad, D., Lutfiani, N., Rizki Ahmad, A.D.A., Rahardja, U. & Aini, Q. 2021.
Blockchain Technology Immutability Framework Design in E-Government. Jurnal
Administrasi Publik (Public Administration Journal), 11(1), pp.32-41. Available at:
https://doi.org/10.31289/jap.v11i1.4310.

Ali, I.M., Lasla, N., Abdallah, M.M., Erbad, A. 2023. SRP: An Efficient
Runtime Protection Framework for Blockchain-based Smart Contracts. Journal of
Network and Computer Applications, 216, art.number:103658. Available at:
https://doi.org/10.2139/ssrn.4050282.

Antonopoulos, A. & Wood, G. 2018. Mastering Ethereum: Building Smart
Contracts and DApps, 1st Edition. Newton, MA, USA: O'Reilly Media. ISBN: 978-
1491971949.

Banerjee, M., Lee, J. & Raymond Choo, K.-K. 2018. A blockchain future for
internet of things security: a position paper. Digital Communications and
Networks, 4(3), pp.149-160. Available at:
https://doi.org/10.1016/j.dcan.2017.10.006.

Bashir, I. 2018. Mastering Blockchain: Distributed ledger technology,
decentralization, and smart contracts explained, 2nd Edition. Birmingham-
Mumbai: Packt Publishing; 2nd Revised edition. ISBN: 978-1788839044.

Buterin, V. 2013. A next generation smart contract & decentralized
application platform. Whitepaper.io [online]. Available at:
https://whitepaper.io/document/5/ethereum-whitepaper [Accessed: 27 September
2023].

Dabbagh, M., Sookhak, M. & Safa, N.S. 2019. The Evolution of Blockchain:
A Bibliometric Study. IEEE Access, 7, pp.19212-19221. Available at:
https://doi.org/10.1109/ACCESS.2019.2895646.

Dange, S. & Nitnaware, P. 2023. Secure Share: Optimal Blokchain
Integration in IoT Systems. Journal of Computer Information Systems, April 12.
Available at: https://doi.org/10.1080/08874417.2023.2193943.

Nakamoto, S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
ResearchGate [online]. Available at:
https://www.researchgate.net/publication/228640975_Bitcoin_A_Peer-to-
Peer_Electronic_Cash_System [Accessed: 27 September 2023].

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

384

Stanišić, S. 2023. Primena Solidity programskog jezika u Blockchain
tehnologiji. BS thesis. Belgrade, Serbia: University of Defence (in Serbian).

Szabo, N. 1996. Smart Contracts: Building Blocks for Digital Markets.
Phonetic Sciences, Amsterdam [online]. Available at:
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literatur
e/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html [Accessed:
27 September 2023].

Szabo, N. 1997. The Idea of Smart Contracts. Phonetic Sciences,
Amsterdam [online]. Available at:
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literatur
e/LOTwinterschool2006/szabo.best.vwh.net/idea.html [Accessed: 27 September
2023].

La utilización del lenguaje de programación Solidity en cadena de
bloques (blockchain)

Sava S. Stanišića, Hristina N. Stojanovićb, Igor Lj. Đorđevićc
a Fuerzas Armadas de Serbia, Fuerza Aérea y Defensa Antiaérea,
 98.a Brigada de las Fuerzas Aéreas, Lađevci, República de Serbia,
 autor de correspondencia
b Fuerzas Armadas de Serbia, Fuerza Aérea y Defensa Aérea,
 126.a Brigada ASEWG, Belgrado, República de Serbia
c Fuerzas Armadas de Serbia, Estado Mayor Conjunto, Departamento de
 Telecomunicaciones e Informática, Belgrado, República de Serbia;
 Universidad Megatrend, Facultad de Informática,
 Belgrado, República de Serbia

CAMPO: ciencias de computación, IT
TIPO DE ARTÍCULO: artículo de revisión

Resumen:

Introducción/objetivo: Este trabajo proporciona una descripción general
completa de la tecnología blockchain, aclarando sus principios
fundamentales y cómo garantiza la transparencia, la inmutabilidad y la
descentralización. La integración de Solidity con blockchain se explora a
través de un enfoque teórico.

Métodos: Este trabajo analiza meticulosamente los principios de
blockchain, aclarando la transparencia, la inmutabilidad y la
descentralización, mientras explora la integración de Solidity en un marco
teórico, asegurando una comprensión integral de su intrincada relación y
contribuyendo a una comprensión más amplia de la tecnología moderna
de distribuición de registros.

Resultados: El producto resultante de este artículo será la obtención de
conocimientos útiles sobre la tecnología que prácticamente da forma al
mundo.

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

385

Conclusión: En conclusión, la adopción de Solidity como lenguaje de
programación en la tecnología blockchain ha demostrado ser fundamental,
ya que mejora la funcionalidad de los contratos inteligentes y la seguridad
general del sistema. Sus características especializadas la convierten en
una herramienta indispensable para los desarrolladores que navegan por
las complejidades de las aplicaciones descentralizadas.

Palabras claves: blockchain, Bitcoin, Ethereum, Solidez,
descentralización.

Применение языка программирования Solidity в технологии
blockchain

Сава С. Станишича, Христина Н. Стояновичб, Игорь Л. Джорджевичв
а Вооруженные силы Республики Сербия, Военная авиация и
 противовоздушная оборона, 98-ая авиационная бригада,
 Ладжевци, Республика Сербия, корреспондент
б Вооруженные силы Республики Сербия, Военная авиация и
 противовоздушная оборона, 126-ая авиационная бригада ВНОС,
 г. Белград, Республика Сербия
в Вооруженные силы Республики Сербия, Генштаб, Управление
 информатики и телекоммуникаций (Ј-6), г. Белград, Республика Сербия;
 Университете „Мегатренд“, факультет вычеслитетельных наук,
 г. Белград, Республика Сербия

РУБРИКА ГРНТИ: 20.15.05 Информационные службы, сети, системы в
 целом,
 81.93.29 Информационная безопасность. Защита
 информации
ВИД СТАТЬИ: обзорная статья

Резюме:

Введение/цель: В данной статье представлен всесторонний
обзор блокчейн технологии, разъясняются ее основополагающие
принципы и то, как она обеспечивает прозрачность,
неизменность и децентрализацию. Интеграция Solidity с
блокчейном исследуется с помощью теоретического подхода.

Методы: В данной статье представлены принципы blockchain
технологии. Теоретический подход и фрагменты кода на
практике показывают, как Solidity сочетается с этой
технологией и почему она является фундаментом развития
современных технологий и многих отраслей промышленности.

Результаты: В результате исследования получены полезные
сведения о технологии, которая встречается практически во
всех сферах современного мира.

 V
O

J
N

O
T

E
H

N
IČ

K
I

G
L
A

S
N

IK
 /

 M
IL

IT
A

R
Y

 T
E

C
H

N
IC

A
L
 C

O
U

R
IE

R
,

2
0
2

4
,

V
o
l.
 7

2
,

Is
s
u

e
 1

386

Выводы: Внедрение Solidity в качестве языка программирования в
блокчейн технологию оказалось ключевым фактором в повышении
функциональности смарт-контрактов и общей безопасности
системы. Его специальные характеристики делают его
незаменимым инструментом для разработчиков, занимающихся
сложностями децентрализованных приложений.

Ключевые слова: блокчейн, биткоин, Ethereum, Solidity,
децентрализация.

Примена програмског језика Solidity у blockchain технологији

Сава С. Станишића, Христина Н. Стојановићб, Игор Љ. Ђорђевићв
а Војска Србије, Ратно ваздухопловство и противваздухопловна одбрана,
 98. ваздухопловна бригада, Лађевци, Република Србија,
 аутор за преписку
б Војска Србије, Ратно ваздухопловство и противваздухопловна одбрана,
 126. бригада ВОЈИН, Београд, Република Србија
в Војска Србије, Генералштаб, Управа за телекомуникације и
 информатику (Ј-6), Београд, Република Србија;
 Мегатренд Универзитет, Факултет за компјутерске науке,
 Београд, Република Србија

ОБЛАСТ: рачунарске науке, ИТ
КАТЕГОРИЈА (ТИП) ЧЛАНКА: прегледни рад

Сажетак:

Увод: У раду је представљена blockchain технологија, њени основни
принципи и начин на који се осигурава транспарентност,
непроменљивост и децентрализација. Интеграција програмског
језика Solidity са blockchain технологијом објашњена је теоријским
приступом.

Методе: Расветљени су принципи blockchain технологије.
Теоријским приступом и исечцима кода показано је како се Solidity
интегрише са овом технологијом и зашто представља стуб
развоја савремених технологија и многобројних индустријских
грана.

Резултати: Добијене су корисне информације о технологији која је
примењена у свим областима данашњег света.

Закључак: Усвајање програмског језика Solidity у blockchain
технологији показало се кључним, јер побољшава функционалност
паметних уговора и укупну сигурност система. Његове
специјализоване карактеристике чине га неопходним алатом за
програмере који се крећу кроз комплексност децентрализованих
апликација.

S
ta

n
iš

ić
,

S
.

e
t

a
l,
 T

h
e
 u

ti
liz

a
ti
o
n
 o

f
S

o
lid

it
y
 p

ro
g
ra

m
m

in
g

 l
a
n

g
u

a
g

e
 i
n
 b

lo
c
k
c
h
a

in
,

p
p
.3

6
3
-3

8
7

387

Кључне речи: blockchain, Bitcoin, Ethereum, Solidity,
децентрализација.

Paper received on: 27.09.2023.
Manuscript corrections submitted on: 03.03.2024.
Paper accepted for publishing on: 04.03.2024.

© 2024 The Authors. Published by Vojnotehnički glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/).

http://www.vtg.mod.gov.rs/
http://втг.мо.упр.срб/
http://creativecommons.org/licenses/by/3.0/rs/

