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Abstract:

Introduction/purpose: This article analyzes the publicly available literature
on drone classification in the radio frequency domain, focusing on detection
and identification. Drones are increasingly used for illegal purposes, making
classification techniques crucial. This review paper covers passive radio
frequency sensors, classification techniques, and datasets that highlight the
challenges.

Methods: Researchers are developing antidrone solutions because drones
have become valuable tools and targets for illegal activities. Due to the
scope of the subject matter, the review included only the classification of
drones via passive radio frequency sensors with a description of the
classification techniques (set of algorithms, methods, and procedures) and

NOTE: This work, with a similar title (Drone classification based on radio frequency:
techniques, datasets, and challenges), has been presented at the 10th International
Scientific Conference on Defensive Technologies OTEH 2022, Belgrade, Serbia, pp.314-
320, October 13-14.
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the datasets used for performance testing. This study introduces a new
categorization and offers deeper insights into publicly available drone
classification techniques.

Results: Based on the results of this study, it is apparent that deep learning
algorithms are presently the most effective approach to addressing the
challenge of drone classification within the radio frequency domain. One of
the primary obstacles is the absence of a comprehensive standard for
classifying drones in the radio frequency domain, which should be based
on end-user requirements. Additionally, the results of two ablative
experiments highlight the preprocessing of raw 1/Q radio signals as an
essential step in drone classification.

Conclusion: In summary, the proposed categorization provides a valuable
tool for literature review. Deep learning is the most effective technique for
drone classification, but publicly available datasets with drone radio signals
are limited. The key strength of this study is that it represents the first review
of publicly available datasets with drone radio signals.

Keywords: deep learning, drone, detection, classification, identification,
radio frequency.

Introduction

Unmanned aerial systems (UAS), primarily commercial off-the-shelf
(COTS) ones, have become increasingly popular due to their numerous
applications, ranging from commercial to military purposes. However, as
technology continues to improve and UAS become more affordable, they
have also become more susceptible to criminal and terrorist activities. This
has made it vital to have effective antidrone (ADRO) systems in place to
protect sensitive areas and critical infrastructure. ADRO systems use a
combination of sensors, including optoelectronic, acoustic, radar, and
radio frequency devices, to monitor and detect UAS. These systems have
three core subsystems: monitoring, mitigation, and command and control
(C2). To ensure maximum protection against UAS threats, ADRO systems
must incorporate different procedures such as detection, spoofing,
jamming, and mitigation (Hassanalian & Abdelkefi, 2017; Ding et al, 2018).
In summary, ADRO systems are essential for safeguarding against the
potential harm that UAS can cause. By incorporating various sensors and
procedures, these systems can effectively detect and neutralize UAS
threats, making them a critical tool for security forces. The ongoing military
operations in Ukraine and the Gaza Strip serve as evidence that the
engagement of UAS worth less than tens of thousands of dollars can
effectively neutralize crucial weapons and military assets of the enemy.
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The ADRO system relies on various sensors combined with detection
or warning procedures to detect UAS, also known as drones. These
procedures serve two purposes - early warning (detection) and
identification of the detected drones, with optional tracking, which provides
inputs for the next stage of the ADRO system. Spoofing is one of the
approaches used in the next phase but is not compulsory. The ADRO
system can deceive drones by sending false radio signals, typically an
emergency landing signal. If the spoofing fails, the ADRO system can
engage in jamming procedures, where the drone control and navigation
signals are disturbed by posing substantial interference. Finally, the ADRO
system can use the mitigation procedure to destroy or capture malicious
drones.

Although ADRO systems use various strategies and sensors, radar
and radio frequency (RF) sensors are the most practical applications for
primary drone detection. RF sensors have several advantages over radar
technology. One of the most significant benefits is that they do not emit
electromagnetic radiation, making them a safer and covert option.
Additionally, RF sensors have a more extensive detection range and can
be used to counteract UAS that use jamming techniques. RF sensors are
passive devices that only receive RF signals from UAS, which are present
in almost every scenario. In contrast, radar is an active device that emits
electromagnetic energy, making it unsuitable for specific situations. The
detection range of RF sensors depends on the environment and the
transmitter power of the UAS but is usually comparable to radar. Another
advantage of RF sensors is that they can combine with jammers, which
can be used for spoofing and jamming if required. RF sensors are also
more versatile than other sensors, as they can be utilized for various
purposes such as communication protocol detection, drone MAC address
detection, feature extraction, or direct use with multiple classification
algorithms.

The characteristics mentioned above, especially those offered by RF
sensors, have been verified through a quantitative comparative analysis
based on data from (Drone Industry Insights UG, 2023) and (Butterworth-
Hayes, 2023). The results of such analysis are shown in Figure 1 and
include 295 different antidrone (ADRO) systems. Notably, most ADRO
systems engage optoelectronic sensors (35.8%), RF sensors (31.24%),
and radars (28.13%), while acoustic sensors (4.83%) are the least
represented. The availability of cameras and the variety of computer vision
(CV) algorithms are the main reasons that optoelectronic sensors (OES)
take the first place. However, a more comprehensive and quality data
analysis determines that RF sensors and radars are the primary choice for
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modern ADRO systems due to their better characteristics. Indeed, this
means that cutting-edge ADRO systems have an RF sensor and radar to
detect the drone, while the OES is used mainly for closer identification of
the drone type.

4,83%
31,24%
BRF 28,13%
OOES
O Radar
O Acoustic
35,80%

Figure 1 — Quantitative comparison of sensor types in ADRO systems

RF-based ADRO systems can extract valuable information by
intercepting signals between drones and ground controllers. This
information can be used to detect and identify drones based on their
communication protocols and MAC addresses. However, a significant
drawback of such systems is that they require prior knowledge of the
protocols and addresses which may not be available for custom-made
drones. The ADRO system can also extract features from intercepted RF
signals for detection and uses frequency or joint time-frequency signal
representation (TFSR) of I/Q data to prepare inputs for the classification
algorithm.

Unfortunately, ambient RF noise, multipath, and customized drones
that operate autonomously without a communication link between the
drone and the ground controller can make RF-based detection difficult.
Real-time monitoring of RF signals can also be challenging due to the
complexity of the RF domain. Moreover, it is worth pointing out that drone
RF communication can be categorized into three main groups: command
and control (uplink), telemetry and video (downlink), and guidance
communications. The first two groups use various frequencies, while
global navigation signals are used for guidance and navigation. In such a
complex environment, RF sensors must be agile, have high-speed
scanning performance, be susceptible, and have a high dynamic range
within the whole frequency range.

Section 2 of the paper categorizes and describes the literature to
provide a comprehensive overview of relevant studies. Section 3
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compares different classification techniques, and section 4 presents the
results of the comparative analysis of the most relevant papers. Finally,
section 5 provides the conclusion.

Review of literature and RF techniques categorization

Available studies introduced different -classification techniques
(approaches) based on the RF sensors. We created a new categorization
of these RF techniques for classification according to the following:

— The method of input data processing:

— classic engineering techniques require prior feature extraction
in combination with a decision threshold mechanism;

— advanced engineering techniques engage procedures for
classification purposes without prior feature extraction
(feature extraction is implemented in Al-based algorithms
together with the learning process); and

— hybrid engineering techniques present a combination of the
previous ones.

— The type of input data:

— techniques with classification algorithms that use the MAC
address information as input data;

— techniques with classification algorithms that use the protocol
information as input data;

— techniques with classification algorithms that use the features
of RF signals as input data; and

— techniques with classification algorithms that use the entire
received I/Q RF signal as input data.

It is important to note that both rules can categorize one technique,
specifically, a classic engineering approach that uses protocol information
as input. The categorization presented in this research paper is based on
the most significant research papers available in the literature over the past
five years.

A comprehensive literature dataset on counter-unmanned aircraft
systems (C-UAS) is available for review in (Sazdic-Jotic, 2024a). This
dataset offers information and insights into C-UAS technology,
applications, and trends. The framework for this literature review was
adopted from (Alzubaidi et al, 2021), starting from the identification,
screening, and selection stages, which included almost two hundred (199)
research papers in the last five years from publishers such as IEEE,
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Nature, Springer, ACM, Elsevier, and MDPI. All reviewed papers have
tackled the drone classification problem (detection and identification) using
RF sensors. Each paper was categorized as a nhovel approach,
survey/review, dataset description, or regulation/standard, with mandatory
remarks explaining specific ADRO procedures (e.g., jamming, spoofing,
direction finding).

RF techniques according to the method of input data
processing

In classical engineering techniques, extracting features from
intercepted RF signals is mandatory for data preparation and processing.
This step is crucial as only features extracted with a decision threshold
mechanism can be used for classification. However, the feature extraction
process can be complex and time-consuming, requiring profound
engineering skills and adaptation to the nature of the input data. Authors
(Lv & Wang, 2019) used standard deviation analysis, maximum slope
analysis, and accumulation in azimuth direction as statistical features for
drone detection and direction finding. They also employed principal
component analysis (PCA) and empirical mode decomposition (EMD)
based wavelet transform (WT) methods to cope with additive Gaussian
white noise. A similar approach was presented in (Ezuma et al, 2020)
involving fifteen (15) different statistical features of RF signals. On the
other hand, (Fu et al, 2018) presented the cyclostationarity signature of
the drone RF signal and the pseudo-Doppler principle for the classification
issue with a single-channel universal software radio peripheral (USRP)
receiver. Authors (Nguyen et al, 2018) described a passive drone
detection system (Matthan) based on two critical physical signatures of
drones: body shifting and vibration. However, the Matthan approach faces
a range of constraints, making it impractical for implementation. Another
unique way is the received signal strength indicator (RSSI) ratio that
engages various factors, such as propagation channels and fading effects,
and can help accurately determine the location of a drone.

Artificial intelligence (Al) algorithms, particularly deep learning (DL),
provide an alternative approach to the problem of drone classification.
Unlike classical engineering techniques, advanced engineering
techniques such as DL algorithms use the entire received 1/Q RF signal,
perform preprocessing steps, and send all data to the learning process
without prior feature extraction. This approach is more robust and scalable,
but a significant amount of input data is required for the training process,
which can sometimes be a disadvantage. Fully connected deep neural
networks (FC-DNN) and convolutional neural networks (CNN) are two
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prominent DL algorithms for drone classification in the publicly available
literature. In addition, transformer models - a distinctive DL algorithm with
an attention mechanism - are increasingly utilized to attain outstanding
outcomes. Authors (Al-Sa’d et al, 2019; Sazdié¢-Joti¢ et al, 2022) employed
FC-DNN for this purpose, while (Al-Emadi & Al-Senaid, 2020; Allahham et
al, 2020; Ozturk et al, 2020; Basak et al, 2021; Mokhtari et al, 2021, 2022;
Nguyen et al, 2021) used CNN. Authors (Basak et al, 2023) proposed a
unique deep residual network-based autoencoder framework for known
drone signal classification, novelty detection, and clustering (DE-FEND).
The quantitative comparison of the techniques that exploit RF sensors
according to the method of processing input data is presented in Figure 2.

2%

0,
Oclassic techniques 38%

Oadvanced techniques

Ohybrid techniques

60%

Figure 2 — Quantitative comparison of RF techniques according to the method of input
data processing

Notably, more than half (60%) of all research studies rely on
advanced techniques, while 38% use classic engineering techniques. The
reason behind the absence of classical engineering techniques in the
analysis is that only studies from the last five years were considered. This
time frame shows a significant increase in advanced techniques, now
preferred over classical methods. Hence, it is not unsurprising that there
is a lack of classical engineering techniques in the analysis. In the overall
research, advanced engineering techniques such as DL and machine
learning (ML) algorithms account for 47% and 13% of all research.
Compared to the results presented in (Sazdi¢-Joti¢ et al, 2023), this is a
growth of 9.3% for advanced techniques in favor of classic techniques.

Itis also worth mentioning that the authors (Abeywickrama et al, 2018;
Shi et al, 2018; Shorten et al, 2018; Basak & Scheers, 2019; Bisio et al,
2021; Bhattacherjee et al, 2022; Lofu et al, 2023) present classical and
advanced engineering technigques in combination with direction-finding
(DF) methods. The specific hardware and software implementation of the
RF-based DF of UAS is presented in (Abeywickrama et al, 2018) because
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the authors used a single-channel RF sensor and a four-element antenna
array in combination with a sparse denoising autoencoder deep neural
network (SDAE-DNN). However, it is essential to note that some authors
(Zhang et al, 2018; Ezuma et al, 2020; Swinney & Woods, 2021;
Medaiyese et al, 2022) use a hybrid engineering technique or a
combination of classical and advanced techniques. In (Zhang et al, 2018),
the authors used extracted features (the slope, kurtosis, and skewness) of
the drone RF signal as an input for an FC-DNN. Moreover, in (Medaiyese
et al, 2022), the authors performed feature extraction and used ML
algorithms (Logistic Regression). An interesting approach was presented
by (Ezuma et al, 2020), where the authors extracted fifteen statistical
features from the UAS RF signal and engaged them with five different ML
classifiers at various SNR levels.

While advanced techniques may offer a broader range of benefits
than classical techniques, they also have certain drawbacks that must be
considered. It is essential to thoroughly assess the advantages and
disadvantages of each approach before deciding which one to use in a
particular situation. Advanced engineering techniques often need help with
several challenges that can hinder their successful implementation. One
of the most significant obstacles is the requirement for unique training
scenarios, which means that engineers must develop customized training
models for each specific use case. Additionally, the availability of datasets
can be limited, making it challenging to train models effectively. Finally, the
transfer learning process can be complex, especially when applying
previously learned knowledge to new scenarios. These factors can make
it tricky to implement advanced engineering techniques successfully.
Moreover, a fusion of different sensor data is also a particular solution to
the drone classification problem. This approach involves fusing information
from multiple sensors, such as radar, cameras, RF, and acoustic sensors,
to create a more comprehensive view of the drone characteristics. This
method can provide a more reliable drone classification by analyzing the
drone shape, size, movement, and RF signals. It is a promising solution
gaining traction in the drone detection and defense industry.

RF techniques according to the type of input data

RF sensors receive an RF signal from a UAS for various purposes.
Four techniques exist for detecting and identifying drones based on the
input data type. The first technique uses classification algorithms to detect
and identify the MAC address of the transceiver device in a drone. In
contrast, the second technique employs classification algorithms to detect
and identify the communication protocol between drones and ground
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control devices. These techniques are the least represented in the
literature because they have significant limitations and shortcomings. Both
approaches use received and demodulated RF signals to obtain
information about the MAC address of the RF transceiver installed in the
drone and the type of communication protocol unique to certain types of
drones. The information obtained is used for the detection and
identification of drones. (Schiller et al, 2023) analyzed the security and
privacy of the DJI’'s tracking protocol (DronelD), presenting sixteen
vulnerabilities that can be adopted. In addition, there are more hardware
implementations of ADRO systems based on this technique. Authors
(Haluza & Cechak, 2016) performed device and protocol identification
through data format analysis. In (Sciancalepore et al, 2020), features such
as packet inter-arrival time and size were analyzed, while (Stoica et al,
2020) studied eight protocols to classify UAS. The technique with
classification algorithms based on protocol recognition is more efficient
than the previous one, proven by practical implementations of such ADRO
systems. (Oh et al, 2020) also proposed long-range (LoRa) modulation
exploiting wireless communication protocol for drone identification.

Furthermore, techniques with classification algorithms that use
features of RF signals as input data are more present in the literature.
Essential studies that exploited features have been mentioned because
this is a mandatory step for classical engineering technigues.
Nevertheless, an increasing number of research papers in the literature
deal with the entire intercepted I/Q RF signal. Faster hardware and
improved computing power have allowed it to exploit the full power of DL
algorithms created for a considerable amount of data. As a result, the
techniques with algorithms that classify the entire received 1/Q RF signal
as input data are becoming widely present solutions providing excellent
results. RF sensors are used to record the raw I/Q RF signal, and different
preprocessing steps are taken to prepare input data for the classifier.
Some authors (Al-Sa’d et al, 2019; Sazdi¢-Joti¢ et al, 2022) calculated the
magnitude or phase spectrum to obtain 1-D (vector) data with
corresponding labels, while others (Ozturk et al, 2020; Basak et al, 2021;
Nguyen et al, 2021; Mandal & Satija, 2023) used more complex TFSRs,
such as spectrograms or scalograms, to obtain 2-D (image)
representations of intercepted 1/Q RF signals with corresponding labels for
classification purposes. Figure 3 illustrates one 2-D TFSR obtained from
RF activities in the 2.4 GHz range.
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Figure 3 — Spectrogram of two RF drone signals

This TFSR is a spectrogram of the RF signal when two drones operate
simultaneously at 2.4 GHz. Two emissions are visually distinctive in Figure
3: the command and control (fixed frequency, FF) and telemetry and video
(frequency hopping, FH) emissions. Subsequent image processing
techniques based on morphological operations of the obtained
spectrograms can extract all emissions. Moreover, it is possible to
determine the technical parameters of the detected radio signals (the
number of the detected radio signals, the total width of the frequency
range, and the width of the frequency range of one channel). The technical
parameters estimation of the detected radio signals must be divided into
two branches, i.e., analysis of FH or FF emissions. This way, the channel
raster, the FH hop durations, and the time between two successive FH
hops can be estimated. In the case of the DJI Phantom IV Pro drone, one
FF and FH emission was detected with a total band of 75 MHz in the
spectral domain. This drone has the highest hop duration (6 ms) with a
simple FH emission comparable to a sweep frequency signal. In contrast,
the DJI Mavic 2 Zoom and Enterprise drones have three types of FH
emissions, which depend on operation modes (a drone is connecting to
the flight controller, a drone is hovering, a drone is flying, and a drone is
flying with recording) (Sazdic¢-Joti¢, 2024b).

Different DL models are used depending on the preparation method
of input data. In (Mokhtari et al, 2021; Sazdi¢-Joti¢ et al, 2022), the authors
used an FC-DNN and CNN for single drone classification (detection and
type identification) and multiple drone detection. Moreover, (Ozturk et al,
2020) examined CNN accuracy with SNR dependency, showing that
classification is feasible. The quantitative comparison of the techniques
that exploit RF sensors according to the type of input data is presented in
Figure 4.
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Figure 4 — Quantitative comparison of the RF techniques according to the type of input
data

It is important to note that the techniques that use features and raw
I/Q RF signals as input data are the most exploited, with 42.66% and
40.56%, respectively. The technigues that use MAC addresses (PHY) and
communication protocols (COMM) for drone classification are the least
concurrent in the reviewed literature. Compared to the results presented
in (Sazdi¢-Joti¢ et al, 2023), this is an increase of 10.8% for the I/Q RF
signal as input data. This fact is unsurprising due to the expansion of the
DL and ML research papers. More interesting is that more than 95% of all
papers that use the whole received I/Q RF signal as input data use
advanced engineering techniques.

Datasets and comparison of RF techniques

The main goal of this research was to review and categorize all
available RF-based drone classification research papers and datasets.
Extensive research was conducted to support and highlight the best RF-
based drone detection technique by performing a comprehensive
comparative analysis. The most relevant research papers were utilized,
and the comparison was made based on the dataset used and engineering
techniques. The publicly available studies verified on the DroneRF
dataset, and the VTI_DroneSET were presented and classified according
to our categorization and results from three experiments. This method was
intentionally employed to compare different approaches to detecting or
identifying the same number of classes.

It is worth noting that only a few publicly available datasets contain
drone RF signals. Only two datasets have the records of RF signhals from
industrial, scientific, and medical (ISM) radio bands, but only one has
multiple drones that operate simultaneously. Additionally, some authors
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(Ezuma et al, 2021) and (Vuorenmaa et al, 2020) used ground controllers
for classification, which can be valuable in various research. Furthermore,
RF receivers generate vast amounts of data during the recording process,
leading to massive datasets. It is essential to consider that such an amount
of information can be a disadvantage in certain situations due to the
requirement for excellent computers, storage, and GPUs - Table 1 lists
publicly available datasets containing RF signals from UAS.

Table 1 — The RF drone publicly available datasets

Reference No‘f"[}ggr '\é'ruo'tri]'Zf 24 GHz | 5.8 GHz [S(’;Ee]
(Allahham et al, 2019) 3 - + - 3.75
(Soltani et al, 2020) unknown - + - 4.5
(Vuorenmaa et al, 2020) 10 - + + 3,800
(Sazdic-Jotic et al, 2021) 3 + + + 3.35

(Ezuma et al, 2021) 17 - + - 124.13
(Medaiyese et al, 2023) unknown - + - 66.26
(Swinn%%;Noods, 7 ) + ) 65.76

It is worth mentioning that there are additionally publicly available RF
fingerprinting datasets (Al-Shawabka et al, 2020) and (Soltani et al, 2020)
that can be used for automatic modulation classification in ADRO systems.
Such datasets can be used to train the ADRO system to filter out non-
interesting RF signals (Wi-Fi, Bluetooth) and concentrate on drone RF
signal classification procedures.

Authors (Allahham et al, 2019) presented a DroneRF dataset
incorporating three drones, recorded in four operating modes in only one
ISM band (2.4 GHz). This dataset was used in over 60% of the reviewed
literature. The studies whose results were verified on the DroneRF dataset
are presented in Table 2.

The inscription "H" stands for hybrid and "A" for advanced engineering
techniques. The inscription "F" stands for features and "R" for raw 1/Q RF
signal. It is important to note that no classic engineering techniques are
employed on the DroneRF dataset. Moreover, for drone detection, there
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are several approaches with excellent results that are lower for drone
identification and flight mode identification.

Table 2 — Comparative analysis of publicly available studies verified on the DroneRF

dataset
. Drone Type Flight mode
ez Uehirze | [reciiliizg detection |identification [identification
(Al-Sa’d et al, 2019) A R 99.7 84.5 46.8
(Allahham et al,
2020) A R 100.0 94.6 87.4
(Al-Emadi & Al-
Senaid, 2020) A R 99.8 85.8 59.2
(Akter et al, 2020) A R - 92.5 -
(Swinney & Woods,
2020) A F 100.0 90.4 87.5
(Zhang, 2021) A R 100.0 98.7 79.2
(Kilig et al, 2022) A F 100.0 98.6 95.1
(Huynh-The et al,
2022) A R 99.9 98.6 95.3
(Donatus et al,
2023) A R 99.7 94.2 81.5
(Mohammed et al,
2023) A R 99.6 96.9 96.0

Similarly, (Sazdic-Jotic et al, 2021) introduced a dataset with three
drones recorded in four operating modes in two ISM bands (2.4 and 5.8
GHz). Moreover, this dataset contains records of multiple (two and three)
drones operating at the same time simultaneously.

Such data makes the VTl _DroneSET unique because there is no
such dataset in the available literature.

Three studies whose results were verified on the VTI_DroneSET are
presented in Table 3.
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Table 3 — Comparative analysis of publicly available studies verified on the
VTIl_DroneSET

Drone Type Multiple drone
Reference  [Technique [Features detection identification detection
2.4GHz [5.8GHz |2.4GHz |5.8GHz |2.4GHz [5.8GHz
(Sazdic-Jotic
et al, 2022) A R 98.6 99.8 96.1 95.7 96.2 97.3
(Mokhtari et ) ) ) )
al, 2021) A R E
(Mokhtari et _ _ _ -
al, 2022) A R 99.9
(Sazdic-Jotic
et al, 2023) A R 98.6 |100.0 | 98.8 95.7 99.0 99.2

It is worth mentioning that the VTI_DroneSET provides multiple drone
detection on real RF signals rather than simulated RF signals. It is
essential to note that authors (Sazdi¢-Joti¢ et al, 2022) engaged FC-DNN
while (Mokhtari et al, 2021), (Mokhtari et al, 2022) and (Sazdi¢-Joti¢,
2024b) investigated CNN and CNN with recurrent layers (CRNN),
respectively.

It is crucial to consider the input data and the corresponding
preprocessing steps for adequate results of comparative analysis. Authors
(Sazdi¢-Joti¢ et al, 2022) used power spectrum data obtained from raw 1/Q
radio signals for TFSR. Other authors engaged spectrograms as images
for input data and achieved better results because they kept more valuable
features for CNN/CRNN learning and testing. Moreover, through ablative
analysis, it is possible to establish which TFSR is the best for processing
raw 1/Q radio signals when CNN is engaged as a neural network. The
accuracy results of such an experiment are presented in (Sazdi¢-Joti¢,
2024b) and shown in Table 4. The ablative experiment was performed with
the AlexNet model introduced by (Krizhevsky et al, 2017) for the 2.4 GHz
frequency band.

The results shown in Table 4 show that TFSR choice is essential for
CNN accuracy. Moreover, the Short-Time Fourier Transform (STFT)
method outperformed the Continuous Wavelet Transform (CWT) and the
Wigner-Ville Decomposition (WVD) methods for all scenarios in the
presented ablative experiment.
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Table 4 — Comparative analysis of accuracy for different TFSRs in 2.4 GHz in ablative

experiments

the AlexNet / Drone Type Multiple
TFSR detection identification drone detection
STFT 97.3 96.6 99.1
CwWT 95.3 96.2 97.9
WVD 86.6 86.0 96.6

An additional ablative experiment compares CNN accuracy with the
radio signal segment length on which TFSR is performed. The accuracy
results of such an ablative experiment for drone detection are presented
in (Sazdi¢-Joti¢, 2024b) and shown in Table 5.

Table 5 — Comparative analysis of the accuracy for different lengths of input data in
ablative experiments

Segment length Segment duration (thzrz?eigztterzté%rél /
eemzEs] g 2.4 GHz frequency band)
100,000 0.67 97.3
200,000 1.34 100.0
700,000 4.69 100.0

This ablative experiment was performed within the AlexNet model, the
STFT method, with radio signals in the 2.4 GHz frequency band and with
three-segment lengths (100,000, 200,000, and 700,000 samples). It can
be observed that with the increase in the segment length of the drone radio
signal, the accuracy improves. Moreover, the detection accuracy is 100%
when a segment length is bigger than 200,000 samples.

Challenges in RF-based drone classification

Drone classification procedures encounter a complex challenge
regardless of the sensor type and input data. As discussed in the paper
(Aledhari et al, 2021), one solution, such as optoelectronic and radio
sensors, uses sensor fusion. However, sensor fusion is not widely utilized
in this application due to its complex implementation. Moreover, radio
sensors are often paired with diverse DL algorithms to navigate the
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complex and frequently unpredictable RF environment. Such a robust
combination enables the ADRO system to classify and identify drones
accurately, even in challenging conditions.

At (Ozturk et al, 2020; Medaiyese et al, 2022; Noh et al, 2022; Mohammed
et al, 2023), great emphasis is placed on signal preprocessing as a crucial
step in enhancing the accuracy and reliability of detecting and identifying
drones. By carefully processing and analyzing incoming signals, it is
possible to uncover hidden patterns and extract valuable information that
would have otherwise been missed. This meticulous approach enables
researchers to deliver superior results and stay ahead of the curve in the
fast-evolving field of drone technology with improved accuracy of DL
algorithms.

Finally, the multistage classification presented in (Medaiyese et al,
2022) is often employed to enhance the accuracy of the classification
process and minimize the inclusion of superfluous input data. Typically,
the initial stage entails detecting the drones and classifying the specific
drone types. The final stage of identifying drone behavior is generally not
required in practical applications.

Conclusion

This study provides a comprehensive analysis of the existing research
on drone classification in the radio frequency domain and explores the
potential of deep learning algorithms in addressing this issue. According
to the findings, the proposed algorithms exhibit promising results in
effectively resolving the problem of drone classification. However, further
research is necessary to evaluate their practical implementation and
testing in real-world antidrone systems. According to the findings in our
review, the most effective method for categorizing drones in the radio
frequency domain is through deep learning technigues. Nonetheless, it is
crucial to remember that most of the research in this area is still in the
experimental phase and needs to be implemented practically. One of the
significant challenges is the need for a general specification of a drone
classification system based on real-world requirements and experience
from combat engagement.

Future research should focus on merging multiple datasets or
evaluating classification techniques on different datasets to address this
issue. Additionally, it is crucial to investigate the new multimodal deep
learning algorithm that combines various features and raw 1/Q radio
signals for more accurate drone classification. Overall, this study
contributes to drone classification in the radio frequency domain and
highlights the need for further research.
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Resumen:

Introduccién/objetivo: Este articulo analiza la bibliografia disponible
publicamente sobre la clasificacion de drones en el dominio de la
radiofrecuencia, centrandose en la deteccion e identificacion. Los drones
se utilizan cada vez mas con fines ilegales, lo que hace que las técnicas de
clasificacién sean cruciales. Este articulo de revisién cubre sensores
pasivos de radiofrecuencia, técnicas de clasificacion y conjuntos de datos
que destacan los desafios.

Métodos: Los investigadores estan desarrollando soluciones anti drones
porgue los drones se han convertido en herramientas valiosas y objetivos
para actividades ilegales. Debido al alcance del tema, la revision incluyo
solo la clasificacion de drones mediante sensores pasivos de
radiofrecuencia con una descripcion de las técnicas de clasificacion
(conjunto de algoritmos, métodos y procedimientos) y los conjuntos de
datos utilizados para las pruebas de rendimiento. Este estudio introduce
una nueva categoria y ofrece informacion mas profunda sobre las técnicas
de clasificacion de drones disponibles publicamente.

Resultados: Con base en los resultados de este estudio, es evidente que
los algoritmos de aprendizaje profundo son actualmente el enfoque mas
eficaz para abordar el desafio de la clasificacion de drones dentro del
dominio de la radiofrecuencia. Uno de los principales obstaculos es la
ausencia de un estandar integral para clasificar los drones en el dominio
de la radiofrecuencia, que deberia basarse en los requisitos del usuario
final. Ademas, los resultados de dos experimentos ablativos destacan el
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preprocesamiento de sefiales de radio 1/Q sin procesar como un paso
esencial en la clasificacion de drones.

Conclusién: En resumen, la clasificacion propuesta proporciona una
herramienta valiosa para la revision de la bibliografias. El aprendizaje
profundo es la técnica mas eficaz para la clasificacién de drones, pero los
conjuntos de datos disponibles publicamente con sefiales de radio de
drones son limitados. La fortaleza clave de este estudio es que representa
la primera revisiéon de conjuntos de datos disponibles publicamente con
sefiales de radio de drones.

Palabras claves: aprendizaje profundo, drone, deteccion, clasificacién,
identificacién, radiofrecuencia.
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PYBPUKA MPHTW: 28.23.37 HewpoHHble ceTn (VICKYCCTBEHHDBIN MHTEMMEKT)
BWO CTATbW: 0630pHas ctaTtes

Pesome:

BeedeHue/uenb: 3a nocnedHee Oecamunemue  MHO20KpPamHO
803pOC/I0 UcroIb308aHue 6ecnuiomHbIX fiemamesibHbIX arnapamos
unu OPOHO8 Kak 8 KOMMepYeCcKUX (2paxkGaHCKUX umnu nobumernbcKux),
mak U 8 (byHKUUOHaIbHbIX (80EHHbIX UMU MPOMBbIWIEHHbIX) uensx. B
€es3u ¢ amum 8 GaHHOU cmambe npedcmassieH 8CeCmopPOoHHUU 0630p
obwedocmyrnHolU u akmyasnbHOU numepamypbi 0 Knaccugukayuu
(obHapyxeHuro u udeHmucgpukayuu) OpoHO8 U Ux paduovyacmomHO20
cnnekmpa. Ocoboe e6HUMaHue yOesieHO arnesopummam 2ry60Ko20
0byyeHus u pesyribmamam, rnosly4eHHbIM u3 obu,edocmyrnHo2o Habopa
OarHbix VTI_DroneSET.

Memodbl: Bbnazodapsi 3HadumersnibHOMY rpozpeccy OpPOHbl cmarnu
M0MI€3HbIM UHCMPYMEHMOM 8 OCYWecmesieHuU pasnuyHbix uesned.
HononHumenbHbIM npeuMywecmeom s81s1emcsi mo, 4mo OHU cmarnu
Oeweerie u docmyrnHee, gcriedcmeue 4eao ygesnuyusnacb 0rnacHoCMmb
Om UCronb308aHUss OpOHO8 8 [POMUBO3aKOHHOU OesimesibHOCMU.
Takoe paszsumue cobbimuli 8bI38asI0 [10BbILIEHHOE B08MeYeHUe
uccnedosamenel e pa3pabomky peweHuli no 6oprbe ¢ dpoHamu. C
y4yemom 6oribuwio2o obrema obuwedocmyriHbix uccriedogaHuli 8 aHHOU
Cmambe paccMampueaemcsi  UCKIKYumesnsHO  8ud  OpOHOS,
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cobuparowux OaHHbIU C MOMOWBIO MAacCUBHbIX pPaduoyacmomHbIX
damyukoe C ornucaHueM  UCrosib3yeMbix Memodos (Habopa
aneopummos, Memodos U npouedyp) u Habopoe OaHHbIX,
ucrnonb3yembiX 8 UcrnbimaHusx aghgpekmusHocmu. [ns rnoHumaHus
npobnemsi Knaccugukayuu OpoHO8 bbil MpoeedeH KOu4eCcmeeHHbIU
U Ka4yeCcmeeHHbIlU aHanusbl MemodaMu MmexHUYeCKo20 aHanu3a Uu
obpabomku paduocuzHanos. KonuyecmeeHHble rokazamesnu ¢
epaghuyeckum usobpaxkeHUeM UCoMb308anuch 8 cucmeMamusayuu
cobpaHHbIX cmamel, 8 Mo 8peMs Kak Onsi oripedesieHUss 803MOXHOCMU
Knaccugukayuu  OpoHo8 o  paduo4acmomHoMy  OuarnasoHy
ucrnosnb308auchk aneopummesl eriybokozo oby4yeHus. lNomumo amoeo, 8
OaHHOU cmambe rpedcmassieHbl  8bI308bl U  OgpaHUYeHusi
Knaccugukayuu OpoOHO8 Ha OCHOBaHUU paduoCcugHasos.

Pesynbmamesi: Pesynbmambsl 0aHHO20 uccriedoeaHuss GoKa3biearom,
umo aneopummsbl erlyboko20 06yyYeHus 8 Hacmosiwee 8pems
senstomcsi  Haubonee a¢bghekmusHbIM  100X000M K  peweHur
npobrniems! Knaccugukayuu poHo8 o paduoyacmomHoMy duanasoHy.
O0OHako cnedyem ommemumsbs, 4mMoO 607bWUHCMEBO CO8PEMEHHbIX
uccnedosaHuli umerom aKcrepumMeHmarnbHbI Xapakmep,
criedogameribHO, OHU Oe2paHUYeHbl 8 MPaKmMu4YeckoM pUMEHEeHUU.
asHol npobnemol siensgemcsi omcymemeue obwel crnieyugukayuu
8 Knaccugukayuu OpoHO8 o paduodacmomHomMy Ouarna3oHy,
OCHOBaHHOU Ha mpebosaHUsIX, UCXOOSWUX U3 eXXeOHEe8HOU rpakmuKu.

Bbigodbi:  Bknad  daHHoeo — uccriedoeaHusi  3aKnwdaemcsi 8
cucmemamu3ayuu  8cex  O0oCmyrnHbIx  pabom,  MOCBAUEHHbIX
Knaccugpukayuu OpoHoe no paduodyacmomHomMmy Ouarnal3oHy, U
npedcmasnieHuU HEKOMOopPbIX 803MOXXHOCMeU as2opummos a2/1y6oko20
0byy4eHusi. MoxHo cOenamp 8b1800, YMO NPeOoXeHHbIe anzopummbl
mMo2ym 6bimb UCMO/Ib308aHbl 8 peweHuUU 3mou npobrems:, a 8
bnuxatiwem 6ydywem MOXHO bOydem ucrnbimamb Ha MNPakmMuke 8
pearbHbIX CUeHapusix aHmudOpOH cucmemMy 3auumel om 6ecrnunomHbIX
JilemameribHbIX arnapamos.

Knoyesbie crioga: enybokoe obydyeHue, OpoOHbI, OBHapyxeHue,
Knaccugbukayus, udeHmucgpukayusi, paduoyacmomeil.

Mpernea knacudukaumje opoHOBa Y paano-PpPeKBEHLNjCKOM JOMEHY:
TEXHUKEe, CKYMNOBU NofaTaka u n3a3oBu

bobaH Casguh-JoTuh3, ayTop 3a npenucky, MeaH MNMokpajau?,
Joear Bajuetuh®, Henad CtedaHosuh®

2 BojHOTEXHWYKM MHCTUTYT, Beorpaga, Penybnvka Cpbuja
6 Khaoticen, Georpaa, Peny6nuka Cp6uja

B Bojcka Cpbuje, LieHTap 3a npymereHy MaTeMaTuKy 1 efeKTPOHNKY,
Beorpan, Penybnuka Cpbuja
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OBJIACT: padyHapcke Hayke, TeENeKOMyHUKaLuje
KATEIOPWJA (TWUM) YIAHKA: nperneaHu pag

Caxemak:

Yeod/uurs: Kopuwherme 6ecriurilomHux easdyxorisioea — OpPOHO8a,
mokom rocnedmwe OeueHuje MHO20Cmpyko ce yeseharno, kako 3a
KoMepuujanHe (yususnHe unu amamepcke), mako U 3a ¢hyHKUUOHarHe
(eojHe unu uHOycmpujcke) nompebe. Y ogom ucmpaxueadykom pady
npedcmassbeH je ceeobyxeamaH nipeaned jagHo docmyrnHe U
akmyesnHe  fumepamype 0  Knacugukauyuju — (Gemekyuja U
udeHmucpukayuja) 0OpoHosa y paduo-hpPeKeEeHUUJCKOM OOMEHY.
lMocebaH acnekm npedcmassbajy anzopummu 3a OyO6OKO y4yew-e U
pesynmamu Koju cy 0obujeHu ca jagHO docmyrnHUM CKyrom (6a3om)
nodamaka VT| _DroneSET.

Memode: 3axearbyjyhu 3HayYajHum yHanpehemuma OpOHO8U CYy
rnocmanu KopucHa cpedcmea 3a pasnudume HameHe. [JodamHa
rnoeoOHocm jecme wmo cy jehmuHuju U npucmynadHuju 3a
Kopuwhere, wmo npedcmassba ornacHocm 00 Huxose 3710ynompebe.
Cmoea je noja4yaHo aHzaxoeare ucmpaxusadya Ha pa3eojy aHmuoOpoH
pewera. 3602 obuma jagHO OocmyrnHUX ucmpaxueara, ogeaj pad je
o0byxeamuo camo Kracughukayujy OpoHoea rymeM nacusHuUx paduo-
bpeKkseHUUJCKUX CeH3opa ca OnucoM KopuwheHux mexHuka (ckyn
aneopumama, memoda u npouedypa) u ckyrnogsa nodamaka Koju ce
Kopucme 3a mecmupare nepgpopmaHcu. Padu pasymesama
npobrnema Knacugukayuje OpoHO8a U3BPUWIEHa je KeaHMumMamueHa u
KeanumamueHa aHanusa ca MemodaMa mexHu4Kke aHanuse u obpade
paduo-cueHana. KeaHmumamueHu rnoka3amesbu ca epahuydkum
unycmpauyujama KopuwheHu cy 3a cucmemamu3auujy npuKyrnbeHuUx
padoea, 00K cy 3a ymephugare MmoayhHocmu knacugukayuje poHosa
y paduo-ghpekseHyujckom AomeHy kopuwheHu aneopummu Oybokoe
yyerma. Lllmasuwe, npedcmasrbeHU Cy U3a308U U O2paHU4Yer-a
Knacucgpukauyuje OpoHoea Ha OCHO8Y paduo-cueHarna.

Pesynmamu: [lokasaHo je 0Oa cy anezopummu OQybokoz y4yera
mpeHymHo Hajborbe pewere 3a peulagare numara Knacugukayuje
OpoHosa y paduo-gppekseHyujckomM JdomeHy. MehymumMm, eehuHa
caspeMeHuUx ucmpaxuearba je ekcriepuMeHmarsHa u uMma o2paHu4yeHy
npakmuyHy umrnnemedmauujy. [locebaH npobnem npedcmassrba
Hedocmamak onuwime creyugukayuje 3a knacugpukauyujy dpoHosa y
paduo-ppekseHyujckom doMeHy Ha OCHO8Y 3axmesa U3 C8aKOOHEe8HOo2
uckycmea.

Sakmbyyak: [ornpuHoc 0802 ucmpaxueama je y cucmemamu3ayuju
ceux docmyrHux padosa Koju ce baee knacugukayujom OpoHosa y
paduo-gppekseHyujckom OOMeHY, Kao U y nNpukasy Hekux moa2yhHocmu
aneopumama Aybokoe ydera. Moxe ce 3akrby4yumu 0a ce npedrnoxeHu
anzopummu Mogy uckopucmumu 3a HasedeHy rpumeHy, me 0a je y
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HapedHoOM rnepuody mozyhe mecmupamu npakmu4He
umrnieMeHmauyuje, Kao U epwumu mecmupare Yy peasHum
cueHapujuma yrompebe aHmMudpPoH cucmema.

KbyuHne pedu: Ayboko y4qerse, OpOH, Oemekuyuja, Krnacugukauyuja,
udeHmucpukauyuja, paduo-ghpekeeHuyuja.
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