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Abstract:

Introduction/purpose: This paper established a new mathematical frame-
work by uncovering the relationships between Kannan contractions and
interpolative Kannan contractions. The concept of unified interpolative
Kannan contractions was introduced in the framework of a relational met-
ric space. Additionally, the study aimed to broaden the concept of alpha
admissibility by incorporating specific relational metric ideas.

Methods: A detailed exploration of the properties and characteristics
of Kannan contractions and interpolative Kannan contractions was con-
ducted. The research introduced the concept of unified interpolative Kan-
nan contractions and formulated new fixed point results for these map-
pings.

Result: The study successfully established fixed point results for unified
interpolative Kannan contractions within the framework of relational met-
ric spaces. Additionally, an application of these results to solve a problem
concerning nonlinear matrix equations was provided, further emphasiz-
ing their significance.

Conclusion: The findings of this study significantly advanced the under-
standing of Kannan contractions and interpolative Kannan contractions,
offering a unified framework for their analysis. The introduction of unified
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interpolative Kannan contractions and the expansion of alpha admissi-
bility have broad implications for the field of mathematics.

Key words: unified interpolative Kannan contraction, R-admissible, re-
lational metric space.

Introduction

Kannan made a significant contribution to metric fixed point theory after
Banach’s influential fixed point theorem. While mappings satisfying the Ba-
nach contraction inequality are necessarily continuous, Kannan introduced
a novel class of contractions in 1968, addressing the intriguing question of
whether discontinuous mappings defined in a complete metric space and
satisfying specific contractive conditions could possess a fixed point.

Kannan stated the following result.

THEOREM 1. Let (X, 0) be a complete metric space, and S be a self-map
defined on X. If S is a Kannan contraction (KC, for brief), meaning that
there exists a X in the interval [0, §) such that,

O(Sv,Su) < ANo(v,Sv) + 9(u, Sp)], forallv, e X, (1

then, S possesses a unique fixed point v € X, and for each v € X, the
sequence of iterates {S"v} converges to .

Kannan’s fixed-point theorem represents a notable extension of Ba-
nach’s remarkable work (Banach, 1922), leading to several generaliza-
tions, see (Debnath et al., 2021). Among these, a recent variant intro-
duced by Karapinar, termed as interpolative Kannan-type contraction (or
Kannan interpolative contraction), was demonstrated in Karapinar (2018).
To guarantee the existence of a fixed point in a complete metric space, this
contraction condition allows more flexibility in choosing the constants that
control the contraction rate and can also incorporate the distance between
points in the contractive condition. Additionally, it is worth mentioning that
many classical and advanced contraction concepts have been recently re-
examined through interpolation, see (Debnath et al., 2020; Hammad et al.,
2023; Jain & Radenovic¢, 2023; Jain et al., 2022; Karapinar, 2021; Karapinar
et al., 2018a,b, 2021).

In his work, Karapinar (2018) presents an example that falls outside the
scope of Kannan contractions but aligns with interpolative Kannan con-
tractions. This highlights an additional advantage of interpolative Kannan
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contractions over Kannan contractions. Despite existing research on the
subject, there is a notable gap in the literature concerning the converse
relationship, i.e., whether Kannan contractions imply interpolative Kannan
contractions.

Recent studies Nazam et al. (2023a,b) have suggested that Kannan
contractions do indeed imply interpolative Kannan contractions. However,
this paper diverges from this perspective and, through illustrative exam-
ples, establishes that not every Kannan contraction implies an interpola-
tive Kannan contraction. Consequently, this paper asserts that these two
classes of contractions are independent from each other. This comprehen-
sive understanding emphasizes the significance of both contraction types,
providing valuable insights into their practical applications.

Karapinar (2018) introduced the concept of an interpolative Kannan con-
traction as follows:

DEFINITION 1. A self-mapping S defined on a metric space (X, 0) is con-
sidered as an interpolative Kannan type contraction (IKC, for brief) if there
exists a pair of constant o, A € [0,1) with « # 0, satisfying

I(Sv,Sp) < N[o(v,Sv)* - O, Sp) %], forall v,u € X, and v # Sv. (2)

By employing the interpolative Kannan contraction, Karapinar (2018)
established a unique fixed point theorem. Subsequently, Karapinar et al.
(2018a) identified a limitation in the aforementioned result, highlighting that
fixed points obtained from the contractive condition (2) may not necessar-
ily be unique. To illustrate that not every Kannan contraction implies an
interpolative Kannan contraction, these authors examine the following ex-
ample.

EXAMPLE 1. Let X = [0, 1] and consider the mapping S : X — X defined
by Sv = £. Let 9 denote the usual metric.

Then, one can observe that, 9(Sv,Sp) = ilv — pl,0(v,Sv) =
¥, and d(u, Sp) = L.

For A = 2 € [0, }), one can verify that:

1 2 4
0(Sv,Sp) = ¢lv —pl < ¢ - = (v +p) = A-[0(v, Sv) + 0, Sp)].
This confirms that S fulfills condition (1). Now, the next task is to demon-
strate that S does not satisfy (2). Suppose if possible S satisfies (2),
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then two points are chosen, W and 19090, from the interval [0, 1]. Clearly,

100 # S (100) and 100 7é S (100)

Case I: When v = ;15 and p = {5, there have,
49 - A-99i-«
< @, =
Case ll: When v = 100 and p = 100, there exists,
49 - A - 992
= < a, o] — .
omg = 061 S1) < [0, Sv)* - A, Sp)' ] = S0 (4)

Since S satisfies (2) for all v, u € X\ F(S), from (3) and (4), there exists
a pair of constants A\, a € [0,1) with a # 0, such that

49

< XA -min{99'7* 99°}. (5)
Now, if A = 0, a contradiction of (5) is obtained. Therefore, A € (0,1), and
in such a case, there is

4
Tg < 2-min{99' "% 99°}.
However, this again leads to a contradiction, as expressed by the following
inequality

49

inf — >2- sup [min{99'7% 99°}].
A€(0,1) A a€(0,1) [min{ /]

Therefore, there does not exist any o« € (0,1) and A € (0,1) for which
equation (5) holds true for all v, u € X\ F(S). Thus, the initial assumption
is incorrect, and S does not satisfy condition (2).

Therefore, based on Example 1 and Example 2.3 of Karapinar et al.
(2018a), it can be inferred that conditions (1) and (2) are independent.
In the current study, these authors endeavor to establish connections be-
tween these conditions by extending them to a more generalized contrac-
tion condition in a relational metric space.

It is noteworthy that in relational metric spaces, one often considers
weaker properties such as R-continuous (not necessarily continuous), R-
complete (not necessarily complete), etc. In this setting, additional flexibil-
ity is beneficial in that the contraction condition need not be applied to every
element but rather to related elements only. Importantly, these contraction
conditions revert to their conventional counterparts when the universal re-
lation is taken into account.
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Preliminaries

Before presenting the main results of this paper, it is important to intro-
duce formal notations that will be used throughout. Let X be a non-empty
set, with a binary relation R. In this context, the pair (X, R) is acknowl-
edged as a relational set. Similarly, within the framework of a metric space
(X, 0), one designates the triplet (X,0, R) which constitutes a relational
metric space (RMS, for brevity). The collection of fixed points of the self-
mapping S is indicated by F'(S), and let Xz denote the set defined by,
Xr ={(v,p) € X% : (v,u) € Rand v, ¢ F(S)}. Furthermore, X(S,R)
is a subset of X, containing elements v such that (v, Sv) € R. These for-
malized notations ensure precision and consistency throughout the subse-
quent analyses and discussions.

DEFINITION 2. (Alam & Imdad, 2015) Let S be self-map on X, and (X, R)
be a relational set,
(1) any two elements v, u € X are considered R-comparative if (v, 1) €
R or (u,v) € R. This relationship is symbolically represented as
[v,u] €R,
(i7) a sequence {v,} C X satisfies the condition (v, vi+1) € R for all
k € Ny, is referred to as an R-preserving sequence.

(7i1) R is designated as S-closed when it satisfies the condition that if
(v, u) belongs to R, then (Sv, Sp) also belongs to R, forany v, € X.

(iv) R is referred to as 0-self-closed under the condition that whenever

there exists a R-preserving sequence {v;} such that v, 9, v, there
can always be found a subsequence {vy, } of {v} such that vy, , V]
belongs to R for all n € Ny.

DerINITION 3. (Alam & Imdad, 2017) (X, 0, R) is considered R-complete if
every sequence in X, which is both R-preserving and Cauchy, converges.

DEFINITION 4. (Alam & Imdad, 2017) A self-map S defined on X is termed
R-continuous at v € X, if any R-preserving sequence v 9, v, implies
Sy, i> Sv. Furthermore, if S exhibits this behavior at every point in X,
it is simply categorized as R-continuous.
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DEFINITION 5. (Alam & Imdad, 2018) Consider a self-mapping S defined on
X. Iffor every R-preserving sequence {v,} C S(X), with a range denoted
as F = {v, : n € N}, R|g is transitive, then S is designated as locally
S-transitive.

Samet et al. (2012) introduced the concept of a-admissible mappings,
which has been applied by various authors in numerous fixed-point theo-
rems.

DEFINITION 6. (Samet et al., 2012) Suppose S is a self-map on X, and
a : X x X — RT is a function. Then, S is considered a-admissible if
alv,p) > 1= a(Sv,Su) > 1forallv,pu € X.

In the following definition, this concept is generalized by incorporating
certain relational metrical notions.

DEFINITION 7. Let (X, R) be a relational set. A self-map S defined on X
is termed R-admissible if there exists a function ¥ : X x X — [0,+00),
satisfying the following conditions:

(r1) Y(v,pu) > 1forall (v,n) € R,

(r2) R is S-closed.

REMARK 1. From the above two definitions, it can be observed that if S is
«-admissible, it also holds that S is R-admissible when considering R =
{(v, 1) € X% :9(v,n) > 1}. However, it should be noted that the converse
is not necessarily true, as illustrated in the following example.

ExAmPLE 2. Let X = {0,1,2,3},9: X x X — R* by

2, (np)€{(0,1),(1,2),(2,3)}
Hvyp) =491 (vp) €{(0,2),(1,1),(2,1),(2,2)}
2=, otherwise.
and S : X — X is defined by SO0 =0,851 =2,582 =1, and §3 = 3.
In this example, it is evident that ¥(2,3) > 1, but ¥(S52,83) = ¥(1,3) # 1,
indicating that S is not ¥-admissible. Now, let us consider the binary relation
R defined as,

R ={(0,1),(0,2),(1,2),(2,1),(1,1),(2,2)}.
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It is straightforward to observe that R is S-closed, and for all v, u € X with
(v, 1) € R, ¥(v,u) > 1. Therefore, S is R-admissible.

Let ¢, ¢ : [0,+00) — [0, +00) be two functions. Then the following condi-
tions are considered:

(C1) ¢ is u.s.c. such that ¢(0) = 0,
(Co) ¢isl.s.c.,

(Cs) 1, ¢ are non-decreasing,

(Ca) Y(t) > ¢(t), forall t >0,

(C5) hm sup o(t) < (c+), forall ¢ >0,
(Ce) hm Sup ¢(t) < liminf (¢).

Main results

This section introduce a novel concept of a unified interpolative Kan-
nan contraction condition and establish some fixed-point results for such
contractions. Through an example, it will be demonstrated how the unified
interpolative Kannan contraction condition extends the classical notions of
contraction mappings defined in (Kannan, 1968; Karapinar, 2018; Nazam
et al., 2023a).

DEFINITION 8. Let (X,0,R) be an RMS. A self-mapping S defined on X
is characterized as a unified interpolative Kannan contraction (UIKC, for
brief) if there exist functions 1, ¢ : [0,+0c0) — [0, +00), and a function ¥ :
X x X — [0, +00), along with a parameter o € (0, 1), such that

v, W)y (0(Sv, Sp)) < ¢ (2 (9(v, Sv), 0(u, Sp))),  forallv,u € Xg, (6)
where Q2 : R? — R be a function satisfying Q(v, ) < max {v, p, v*pu' =},

EXAMPLE 3. Let (X, d) be a metric space with X = [0,400) and 0 is the
usual metric, define the self-map S on X by,

o ifv<i
Sy =<7 -
{VQ’ i

Then, it is important to note that S is not a Kannan contraction (Kannan,
1968). This is evident that when considering v = % and p = 2, as there
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does not exist any A € [0,1) that satisfies (1). Additionally, for the same

values of v = £ and p = 2, there is no pair of A € [0,1) and a € (0, 1) for
which (2) holds. Consequently, S is not an interpolative Kannan contraction
(Karapinar, 2018). Now, let us define the binary relation R on X as,

R ={(v,pn) € X?: max{v,u} < 1}.

Observing the definition of R, it is evident that R is not an orthogonal re-
lation. It is important to recall that a binary relation R is considered as an
orthogonal relation if for any element 1, € X, either ( for all u, (vp, 1) € R)
or (forall , (1, 9) € R). As a consequence, the function S is nota (¢, ¢)-
orthogonal interpolative Kannan-type contraction (Nazam et al., 2023a).
However, it will now be demonstrated that S is indeed a unified interpola-
tive Kannan contraction. Consider 9 : X x X — [0,400) defined by

Iy, p) = {

Observing that 9(v,p) > 1 for all v,p € X with (v,n) € R, and that
(v, ) € R implies (Sv, Sp) € R, it follows that S is R-admissible. Suppose
there exist functions ¢, ¢ : [0, +00) — [0, +o0) defined by ¢(t) = &,

, ifv,pe|0,1],
, otherwise.

M= Do

Loife<i,
and, y(t) = {gt ift>1

9>
The aim now is to show that S satisfies (6). Consider the function 2 :
X x X — [0,400) defined as Q(v, ) = “52. For every v,u € Xg, the
following inequality holds,

o ot s = S (|4 - £))

3

= %P/ —

< & (20(,50). 00, 51)
=¢ (Q(a(y, SV)78(M7S:U))) :

Consequently, it is deduced that S is a unified interpolative Kannan con-
traction.
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REMARK 2. From Example 1, Example 3, and Example 2.3 in Karapinar
et al. (2018a), one arrives at the following conclusion

ke OIKC

UIKC |< (¥, )-OIKC

Now, let us proceed to establish this paper’s main results concerning
the unified interpolative Kannan contraction maps.

THEOREM 2. Consider the RMS (X,0,R) where R is a locally S-transitive
binary relation. Suppose that S is a unified interpolative Kannan contraction
and there exist functions v, ¢ : [0, +00) — [0, +00) satisfying conditions C;,
(1 =1,2,3,4). Under the following conditions:

(D1) S is R-admissible,

(D) there exists Y C X with S(X) C Y, such that (Y,0,R) is R-

complete,

(D3) X(S,R) is non-empty,

(Dy) either S is R|y-continuous or R is 0-self-closed,
there exists at least one v € X such that v € F(S).

Proof. Under the assumption (Ds), suppose that 1y € X (S, R). Define the
sequence {v,} of Picard iterates with the initial point vy, i.e. v, = S", for
alln € Ny. As (19, S1p) € R and S is R-admissible, using (r) it follows that
(8™, S yy) € R. Consequently, (v, v,11) € R for all n € Ny, and this
yields that the sequence {v,} is R-preserving and from (r2) there holds
Y (Vp,vnt1) > 1. Let 0, = 9(vn, vn11); applying contractive condition (1)
yields that

¥ (0n) < I(Wn1, ) (O(Svn—1,Svy))
< ¢ (UI(Wn-1,SVn-1),0(vpn, Sty)))
= ¢ (Q(0n—-1,0))
< ¢ (max {9n—1,00,05_1 - 0, "})
< 1 (max {Op—1,0n,05_ - aqla_a}) : (7)
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By the monotonicity of the function ) one obtains
Op < max {Op—1,0n,05_1 - 8}[6“} . (8)

Now suppose there exists n € N for which 0,1 < 0,, then from (8) it
yields that 9,, < 9,, a contradiction. Therefore 9,, < 9,,_1, now it can be
concluded that {v,, } is a non-increasing sequence and thus a non-negative
constant C exists such that, lim 0, = C+. Suppose if possible C' > 0,

n—-+00

then from (7), it can be deduced that
¢(0+) < lim inf¢(an) < lim sup ¢(an—1) < ¢(C+)a

but, from (C,) there exists (v) > ¢(v) for all v > 0, therefore C' must be
0,ie. lim 0, = 0. The next objective is to establish that the sequence

n—-+oo

{vn} is Cauchy. For the sake of contradiction, suppose it is not; then there
exists a positive real number ¢ > 0 along with sub-sequences {v,, } and
{vm, } of {v,,}, with ny, > my, > k, such that

O(Vm,,vn,) > €, forallkeN. 9)

Selecting n;, as the smallest integer exceeding m;, such that (9) holds, it is
deduced that
Oy, Vn—1) < €. (10)

Using triangular inequality and (9), (10) one obtains that

e < a(ymk’ Vnk) < a(mGa Vnk—l) + a(Vnk—ly Vnk)
<€+ 0(Vny—1,Vn,)-

on taking the limit & — +o0o0 and utilizing the fact that lim 0, = 0, one

n—-+o0o

gets
lim O(Vm,,Vn,) =€+ (11)

k—4o00

By using triangular inequality, one obtains that

la(l/mk“l‘l?l/nk“‘l) - 8(l/mk’ V”k)‘ < 8mG, + 6V'flk'
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Letting limit &k — +o0 in the above inequality and employing (11) yields the
following:

kggl-l a(ymk-i-l? Vnk+1) kgr—il—loo 8(mG, Vnk) =€+ (12)
Since {v,} € S(X) and {v,,} is R-preserving, the local S-transitivity of R
leads to the implication that (v, , v, ) € R. Thus, it can be deduced

¢(a(ymk+17ynk+1)) (mG7ynk) (8(Sl/m“SVnk))
( ( (mG7SmG) 8(ynk,81/nk)))
¢ (92

(O On,.))
Sqﬁ(max{@m O, 02 - Oh ).

Nk ~¥my,

Taking the limit as £ — +oo in the aforementioned inequality leads to the
conclusion that ¢ < 0, a contradiction. Hence, {v,} is the R- preserving
Cauchy sequence in Y. The R-completeness of the metric space (Y,0,R)
now guarantees the existence of a point v € Y such that, lim v, =~.

n—-+o0o

First, one assumed that S is R-continuous; one can deduce that

lim v,41 = lim Sy, = Sv. Applying the uniqueness of the limit, one
n—+oo n—+o0o

consequently establishes that Sy = ~, indicating that v € F(S).
Alternatively, let R|y is 0-self-closed. The fact that {v,,} is R-preserving
and {v,} — ~ can be utilized again. This implies the existence of a sub-
sequence {v,, } of {v,} with [v,,,~7] € R, forallk € Ny. If (v,,,,7) € R,
then since S is a unified interpolative Kannan contraction, there exists

V(0(SVn,; 87)) < 0 (Vn,, 1)Y(O(Svny, S))
< d(A(vny,, Svn, ), 9(7, S7)))
= A(Q(Ony, (7, S7)))
< ¢ (max {On,,0(7,87), 05, - 0(v,Sv)'°}),  (13)

on taking the limit ¥ — 400, in (13), one obtains

Y(0(7,87)) < ¢(9(v, S7))- (14)

Itis important to note that in equation (14), if (v, Sv) # 0, itis contradictory
to (Cy4). Similarly, if (v,v,,) € R, then by utilizing the symmetry of 9, we
once again encounter a contradiction of (Cy). Therefore, 9(v,Sv) = 0
implying v € F(S). O
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THEOREM 3. Consider the RMS (X,0,R) where R is a locally S-transitive
binary relation. Suppose that S is a unified interpolative Kannan contraction
and there exist functions 1, ¢ : [0, +00) — [0, +00) satisfying conditions C;,
(i = 3,4,5,6) and D;, (j = 1,2,3,4) holds. Then, there exists at least one
v € X such that v € F(S).

Proof. Following the steps of the previous theorem, one can obtain an R-
preserving and non-increasing sequence {v, } such that there exists some
C > 0 and v, converges to C+ as n — +oo. Suppose C' > 0, then (7)
implies that

¥(C+) < limsup (D)

n—-+o0o

< limsup ¢ (maX {37171, Oy Oy - a}L—a})

n—-+o00

< limsup ¢(k),
k—C+

a contradiction of (C5), thus C =0i.e. lim 0, = 0. Now, to establish that

n—-+0o
the sequence {v, } is Cauchy, one makes a counter assumption. Suppose

it is not Cauchy, then following the steps outlined in the previous theorem,
there exists a positive real number ¢ > 0, along with sub-sequences {v,,, }
and {v,,, } of {v,}, where n;, > my, > k, satisfying condition (12). Since
{vn} € S(X) and {v,,} is R-preserving, the local S-transitivity of R leads
to the implication that (v,,, ,v,,) € R. Thus, it can be deduced

¢(8(mG+u Vnk+1)) < ﬁ(ymk’ V"k)w(a(symwsynk))
< ¢ (max {0, , On,, 0%, - O *}),

on taking the limit £ — +oo in the above equation, it implies that

liminf(a) < %glilgg V(O Vimpsrs Vnesr )

a—re+
< limsup ¢ (max {0, , On,, 9% - Op “})

k—4o00 e
< limsup ¢(a).
a—0
This results in a contradiction of (Cs), thus establishing that the {v,} is
an R-preserving Cauchy sequence is in Y. Given that (Y,90,R) is an R-
complete metric space, there exists v € Y such that ngr—&r-loo v, = 7. If the
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self-mapping S is R-continuous, the desired conclusion can be derived, as
demonstrated in the previous theorem.

Alternatively, let R|y be 0-self-closed then utilizing the fact that {v,,} is
R-preserving and {v,,} — ~. This implies the existence of a sub-sequence
{vn, } of {v,, } with [v,,,,7] € R, for all k € Ny. One claims that 9(v, Sv) = 0.
Let us assume that 0(v,Sv) > 0, if (v,,,,7) € R, then since S is a unified
interpolative Kannan contraction, there exists

w(a(vnm,&y) Vs V)Y (O(SVn,, §7))
¢ (Q2(0(vn,,, Svn, ), 0(7,57)))
¢ (€2 (On,., 0(7,57)))
(max{@nk,a v, S8v), O 0(7,87)1_0‘})

) Nk

< w (max { Oy, 0(7,S7), 05 - 0(v,Sv)'™*}),

by using (C3) and taking the limit as k¥ — +o00, one deduces 9(v,Sv) <
d(v,Sv), which leads to a contradiction. Furthermore, if (v,v,,) € R,
then by utilizing the symmetry of 9, one encounters again a contradiction.
Hence, 0(v, Svy) = 0, implying v € F(S) O

THEOREM 4. Consider the RMS (X,0,R), where R is a locally S-transitive
and S-closed. Suppose the conditions D;,(j = 1,2,3,4) hold and there
exist the functions 1, ¢ : [0,4+00) — [0,+00) satisfying the conditions C;,
(1=1,2,3,4) or (i = 3,4,5,6), such that,

B(O(Sv, Sp)) < 6 (2 (0(, Sv),0(u, Sp))),  forallv,pe Xr  (15)

Then there exists at least one v € X such that v € F(S).

By considering the specific values of the functions ), ¢, 2, and v, in
Theorem 4, one can derive the following relational theoretic versions of
Kannan fixed-point results and Interpolative Kannan fixed-point results re-
spectively.

COROLLARY 1. Let (X,0,R) be an R-complete RMS, where R is a locally
S-transitive and S-closed. Suppose that the conditions D;,(j = 1,2,3)
hold and there exists a parameter 0 < X < %, such that

O(Sv,Sp) < A[o(v, Sv) +0(p, Sp)], forallv,p e Xg.

Then there exists at least one v € X such that v € F(S).
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COROLLARY 2. Let (X,0,R) be an R-complete RMS, where R is a locally
S-transitive and S-closed. Suppose that the conditions D;,(j = 1,2,3)
hold and there exists a pair of constants a, A € [0, 1) with o # 0, satisfying

A(Sv,Sp) < A [0(v,Sv)™ - G(u,S,u)l_a] , forallv,ue Xg.

Then there exists at least one v € X such that v € F(S).

An application

In this section, the authors have applied their research findings to derive
a result concerning the existence of solutions for a nonlinear matrix equa-
tion. In this context, let the set denoted as M (n) encompasses all square
matrices with dimensions of n x n, while #(n), P(n), and K(n), respec-
tively represent the sets of Hermitian matrices, positive definite positive,
and semi-definite matrices. When there is a matrix C from #(n), one uses
the notation ||C||4. to refer to its trace norm, which is the sum of all its sin-
gular values. If there are matrices P and Q from #(n), the notation P = Q
signifies that the matrix P — Q is an element of the set I(n), while P - Q
indicates that P — Q belongs to the set P(n). The upcoming discussion
relies on the significance of the following lemmas.

LEMMA 1. (Ran & Reurings, 2002) If X € H(n) satisfies X < Z,, then
| X < 1.

LEMMA 2. (Ran & Reurings, 2002) For n x n matrices X = O andY = O,
the following inequalities hold:

0 < tr(XY) < || X|tr(Y).

Examine now the following nonlinear matrix equation,

X=A+) > Cr(x)c (16)

i=1 k=1

In the above equation, A is defined as a Hermitian and positive definite
matrix. Additionally, the notation C; refers to the conjugate transpose of
a square matrix C; of size n x n. Furthermore, 1}, represents continuous
functions that preserve order, mapping from #(n) to P(n). It is noteworthy
that 7(O) = O, where O represents a zero matrix.
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THEOREM 5. Consider the nonlinear matrix equation expressed in (16) and
assume the following:

(Hy) there exists A € P(n) with 375, 377, C:Yi(A)C; = 0;

(Hy) forevery X,Y € P(n), X XY implies

ZZCka(X)Cj < Z ZC;TI@(Y)CJQ

Jj=1k=1 j=1k=1

(H3) 25—, CiCs < NI, for some positive number N, and for all X, Y €
P(n) with X <Y, the following inequality holds
maxy(tr(7x(Y) — 71(X))) <

" <X S c_;rk(m) (” 05 c;,yk(m].) ,
j=1k=1

j=1k=1

1 1

Xmax
2]Vi) u v 2 u v 2
tr| X — A= > Cime(X)e; ey —A=D0 D> er me(y)e
j=1k=1

j=1k=1

Then, there exists at least one solution of the nonlinear matrix equation
(16). Moreover, the iteration

X, = A+) Y CN(X, )G, (17)
j=1 k=1
where X, € P(n) satisfies Xo < A+> %, >, C;1%(X0)C;, Convergence
towards the solution of the matrix equation, in the context of trace norm
|- [ler-

Proof. Let T : P(n) — P(n) be a mapping defined by

TX)=A+) D C1(X)c;, forall X € P(n).
j=1 k=1

Consider R = {(X,Y) € P(n) x P(n) : X < Y}. Consequently, the fixed
point of ¥ serves as a solution to the nonlinear matrix equation (16). It is
pertinent to mention that R is T-closed and ¥ is well-defined as well as
R-continuous. From condition (1) there is > %, >~} _, C;73(X)C; = 0 for
some X € P(n), thus (X, T(X)) € R and consequently P(n)(¥,R) is non-
empty.
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Define 9 : P(n) x P(n) — R* by
IX,Y) =X =Y, forall X,Y € P(n).
Then (P(n),0,R) is R-complete RMS. Then

1T(Y) = X)[[er = tr(Z(Y) — T(X))

=1 k=1

= Z Z t’r’(CjC; (7(Y) - T(X)))

j=1 k=1

=tr ((i@-c}‘) v (Tk(Y)Tk(X)>)
j=1 k=1

> cc;

Jj=1

< x v x max ||(Ve(Y) — V(X)) |ler

< Zx maX{HX X[, Y — T o,

DN |

IX = XI5 - Y - <Y 3 }
1

= 5 QX = TX[ler, [Y = FY ler)) (18)

Now, when considering 1 (v) = v, ¢(v) = 5, then equation (18) becomes
P(O(TX,2Y)) < ¢ (2(0(X, T(X)),0(Y,%(Y)))) -

Consequently, upon fulfilling all the hypotheses stated in Theorem 2, it can
be deduced that there exists an element X* € P(n) for which T(X*) = X*
holds good. As a result, the matrix equation (16) is guaranteed to possess
a solution within the set P(n). O

ExAamMPLE 4. Consider the nonlinear matrix equation (16) for u = v = 2, and
n =3, with 71(X) = X1, 1H(X) = X3, i.e.,

X =A+CIXi1C +CiX5C, +CiX1Co+CiX5C, (19)

where
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0.177855454222667
0.001123532012243
0.144562121365390

A

[0.222353216521933
0.277652136521619
10.144563125462493

C1 =

[0.255541232145296
0.074456321236541
10.155462136521421

Cy =

0.001123654123643
0.177856213654500
0.133214526352116

0.104402312563210
0.122365475632174
0.111232145236838

0.177563214532317
0.222351452365355
0.133652123652627

0.144563214565439
0.133214521452362
0.266521364125960

0.077854213651530]
0.066321541236599
0.244512365214147 |

0.277854621452056 ]
0.100321256321427
0.199663251400003 |

By taking N = g the conditions specified in Theorem 5 can be validated
numerically by evaluating various specific values for the matrices involved.
For example, they can be tested (and verified to be true) for

[0.285221251452362
0.192072365214523
10.232862136541254

X =

[0.385224563214521
0.192076541236541
10.232861236541256

Yy =

0.123815632145236
0.219152365214523
0.172062136521452

0.123811236521452
0.319150000000000
0.172061236521452

0.016912136521452]
0.026932365214569
0.096802123652145 |

0.016912365214896 |
0.026931236541526
0.196823652145230 |

To ascertain the convergence of { X, } defined in (17), one commences
with three distinct initial values.

1

&= 0 0
U=|0 & 0

0o 0 +

0.500354112000372

Vo = 10.022141236541532
0.054621236525374
0.100963214521244

Wy = 10.255632122000784

0.111232152412246

0.454632123005061
0.151234561235184
0.045213625456758

0.066321213621732
0.210032145632300
0.080032356212332
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0.398954120000949
0.104256348563137
0.103456212563418

0.005445632123530
0.288632512325983
0.177521363201611



|
=
o
T

Error, 1og(|[Xn+1—Xall,)
AN
[6)]

-20+

—-25F

—— initial value U0
initia value VO
——o6— initial value WQ

8 10 12 14
Iterations

Figure - 1 Convergence behavior

After conducting 15 iterations, the subsequent approximation of the positive
definite solution for the system presented in (16) is as follows:

0.683105295072446
U =~ Uis = |0.342270819335426
0.548632937935167

with error 1.92601 x 1011,
0.683105295076171

V = Vis = [0.342270819338060
0.548632937937984

with error 1.1608 x 1011,

0.342270947152747 0.548634067670387
0.468237110722328 0.450115496162419
0.450115485036356 0.678165537273724

0.342270947155381 0.548634067673204
0.468237110724480 0.450115496164750
0.450115485038687 0.678165537276339
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0.683105295075270 0.342270947154744 0.548634067672523
W~ Wis = |0.342270819337423 0.468237110723960 0.450115496164186
0.548632937937303 0.450115485038123 0.678165537275706

with error 5.3354 x 10712,
Figure 1 is a graphical illustration of the convergence phenomenon.
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CAMPO: matematicas
TIPO DE ARTICULO: articulo cientifico original

Resumen:

Introduccién/objetivo: Este articulo establecié un nuevo marco
matematico al descubrir las relaciones entre las contracciones
Kannan y las contracciones Kannan interpolativas. El concepto
de contracciones Kannan interpolativas unificadas se introdujo
en el marco de un espacio métrico relacional. Ademas, el estu-
dio tuvo como objetivo ampliar el concepto de admisibilidad alfa
incorporando ideas métricas relacionales especificas.

Meétodos: Se realizé una exploracién detallada de las propieda-
des y caracteristicas de las contracciones Kannan y las contrac-
ciones Kannan interpolativas. La investigacion introdujo el con-
cepto de contracciones Kannan interpolativas unificadas y for-
muld nuevos resultados de punto fijo para estas asignaciones.

Resultados: El estudio establecié con éxito resultados de punto
fijo para las contracciones unificadas Kannan interpolativas den-
tro del marco de los espacios métricos relacionales. Ademas,
se proporciond una aplicacion de estos resultados para resolver
un problema relacionado con ecuaciones matriciales no lineales,
enfatizando aun mas su importancia.

Conclusion: Los hallazgos de este estudio han permitido avan-
zar significativamente en la comprensién de las contracciones
Kannan y las contracciones Kannan interpolativas, ofreciendo
un marco unificado para su analisis. La introduccién de con-
tracciones unificadas Kannan interpolativas y la expansion de la
admisibilidad alfa tienen amplias implicaciones para el campo de
las matematicas.

Palabras claves: contraccion interpolativa unificada de Kannan,
‘R-admisible, espacio métrico relacional.

Teopemsl cyLecTBOBaHWUS YHUMDULNMPOBAHHOIO
WHTEPMONSALMOHHOIO CoKpalleHns KaHHaHa ¢ npumeHeHnem
HENUHENHbIX MaTPUYHBIX YpaBHEHUI

Komu H. B. B. Bapa lNMpacag?, Buraii Muwipa®, KoppecnoHAeHT,
CmosiH PapeHoBuy®

& bunacnypckuii yHymeepcuTteT INypy Macugac Buwsaeugbanais,
MaTteMaTuyeckunii akyneTeT, . Bunacnyp, Pecnybnuka NHans

5 Benrpagckui YHUBEPCUTET, MaLLMHOCTPOUTENbHBIN hakynbTerT,
r. benrpaa, Pecnybnuka Cepbus




PYBPUKA 'PHTW: 27.25.17 MeTpuueckas Teopus oyHKLNA
B[O CTATbW: opurnHanbHas Hay4Hasi cTaTbs

Pesrome:

BeedeHue/uenb: B 0aHHOU cmambe bbiriu 0603HaYeHbl HO8bIe
MamemMamuyeckue pamKu, Oceeljarouile 63alUMOCBS3U MeX-
Oy cokpaweHusmu KaHHaHa U UHMepPMonsiUUOHHbIMU COKpa-
weHusimu KaHHaHa. KoHuenuusi yHUQUUUPOBaHHbIX UHMep-
rMonAyUOHHbIX CoKpauwjeHuli KaHHaHa bbinna eeedeHa 8 pamkax
PEnsyUoOHHO20 Mempu4yeckoz2o npocmpaHcmea. [lomumo mo-
20, Uenbio uccrnedosaHusi bbIno passumue KoHUenuyuu anbga-
donycmumocmu 3a cHem BKIIOYEHUS] KOHKpemHbix udeli 8 om-
HOWeHUU omHocuUmersibHbIX rnokasamered.

Memoosi: Ebino nposedeHo nodpobHoe uccredosaHue
ceolicme U xapakKmepucmuk cokpaweHull KaHHaHa u UH-
mepnrionayuu cokpauwieHul KanHaHa. B xode uccnedoeaHusi
bbia npedcmasnieHa KOHUEenuusi yHUUUUposaHHoU uHmep-
nonAyuu cokpauwleHuli KaHHaHa u cghopmynuposaHbl HOBble
pesynbmamsl ¢ (hUKCUPOBAHHBIMU MOYKaMU.

Pesynsmamei: MiccnedosaHue darno ycriewHslie pe3yribmamal ¢
ukcuposaHHOU mo4Kol O yHUDUUUPOBaHHbIX UHMEepPMors-
UUOHHbIX COKpauwieHuli KaHHaHa 8 pamKax pefsiyuoHHbIX Mem-
puyeckux npocmpaHcms. [Nomumo moeo, bbirio npedcmasneHo
rpuMeHeHue amux pesyribmamos 07151 peweHusi 3adaqu, Kacaro-
welicsi HenuHeUHbIX MampUYHbIX ypasHeHUU, mem caMbiM r100-
yepkueas UX 3Ha4umMocme.

Bbigodbi:  Pesynbmambl daHHO20 uccredogeaHusi 3Hadumerib-
HO yriydqwiunu noHUMaHue cokpauieHuti KaHHaHa u uHmepnons-
UUOHHbIX coKpaweHul KaHHaHa, npedcmasug eOuHy OCHO8Y
0515 ux aHanu3a. BeedeHue yHUUUUPOBaHHbLIX UHMEPNoNsayu-
OHHbIX COKpauwleHuli KaHHaHa u pacwupeHue dorycmumocmu
anba-0ornycmumMocmu WUPOKO NPUMEHSIIOMCcs 8 obriacmu ma-
memamuku.

Kntouesnsie criosa: yHuqbuuupoeaHHoe UHMepnosiayuoHHoe
cxamue KaHHaHa, R-Oonycmumoe, periAyUOHHOE Mempu4ye-
CKOe rnpocmpaHcmeo.
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Teopeme nocTojarwa 3a jeQUHCTBEHY MHTEPNONaTUBHY
KaHaHOBY KOHTpaKLujy ca npuMeHamMa Kog HeEMMHeapHUx
MaTpUYHUX jeaHaumHa

Komu H. B. B. Bapa Mpacag?, BuHaj Muwpa®, ayTop 3a npenucky,

CmojaH PapgeHosuh®

@ Mypy Macupac Buwsasuajanaja, Onoerbete MateMaTtuke,
Bunacnyp, Penybnuka NHawvja

5 YuuBepauTeT y Beorpaay, MalumHcku akynTer,
Beorpag, Peny6nuka Cpbuja

OBNACT: maTtemaTtunka
KATEFOPWJA (TWM) YNAHKA: opurMHanHu Hay4Hu pag

Caxemak:

Yeod/uurb: Osum padom ycriocmaesbeH je Ho8u Mamemamuy-
KU oKeup omkpusar-em o0Hoca u3mehy KaHaHose KOHmMpakyu-
je u mezose uHmMepnonamusHe KoHmpakuuje. KoHuenm o06-
jeduweHe uHmepnonamueHe KaHaHogse KoHmpakuuje yesedeH
je y oksupy penayuoHoz mempu4koe npocmopa. [loped mo-
ea, cmyduja je umana 3a yurb 0a npowupu KoHuenm asnga-
npuxeamsbugocmu yepahusarem crieyubuyHUX perayoHUxX
mMempu4kux udeja.

Memode: [emarbHO ucmpaxueare ceojcmasa U Kapakmepu-
cmuka KaHaHoge KOHmMpakuyuje u He208e UHMmepronamueHe
KOHmMpakuyuje burnu cy u paHuje pasmampaHu. O8um ucmpaxu-
sar-eM ygeleH je KOHUuenm yHuguyupaHe uHmepronayuje Ka-
HaHO8e KOHMpaKuyuje Yume cy hopmMynucaHu Ho8U pe3yrnmamu
QUKCHE mayKe 3a HUX.

Pesynmamu: Cmyduja je ycriewHo riomepduna pesynmame
OuKcHe madke 3a yHughuyupaHe uHmepnonamusHe KaHaHose
KOHmpakuyuje y oKkeupy pesiayuoHuUx Mempuykux npocmopa. llo-
ped moea, npuMeHa osux pe3ynmama 3a pewasare rnpobre-
Ma Koju ce mu4e HerluHeapHUX MampuYyHUX jeOHaduHa o0amHo
Haenawasa HUx08 3Hayaj.

Bakrbyyak: Hanasu ose cmyduje 3HayajHO cy yHanpedunu He-
0080/bHO pasymesar-e KaHaHO8UX KOHMpaKyuja U He208UXx UH-
meprnonamugHUx KoHmpakuyuja, Hydehu jeduHcmeeH okeup 3a
Uuxosy aHanuay. Yeod y yHugbuyupaHe uHmeprionamusHe Ka-
HaHo8e KOHmMpaKuuje u npowuper-e anga-npuxeamsbusocmu
uma WUpoKy npumMeHy y obrnacmu mamemamuke.




KrbyyHe peyu: yHuguyupaHa uHmepnonamueHa KaHaHoga KoH-
mpakuuja, R-0orycmue, penauyuoHu MempuyKu npocmop.
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