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Abstract:

Introduction/purpose: In the realm of development and use of computer
vision and Al methodologies, this research introduces a combination and
advanced method using YOLOVY, a deep learning concept of whole image
processing in one pass through a convolutional neural network (CNN) and
the OpenCV Python image processing library to determine the geometry of
planar coils. These geometric parameters are the main parameters used to
calculate the inductance value using Mohan's formula, which exclusively
utilizes only geometric data to estimate inductance values. This method
significantly speeds up the verification and calculation processes, while also
playing a role in improving quality control after manufacturing.

Methods: The methodology is divided into two main phases. Initially, a
YOLOvV9 model was trained for object recognition using a generated
synthetic dataset of coil shapes created with Python's Turtle graphics
library. Then, after the detection phase, OpenCV was used to identify the
geometric parameters of the images. The pixels were converted into
millimeters using a ratio method to calculate the inductance value
accurately.

Results: The YOLOv9 model successfully identified various planar coil
shapes, and the geometric parameters were identified through OpenCV.
Subsequently, the inductance was successfully calculated.

Conclusion: The results show that the proposed method is a novel and
effective way of calculating inductance.

Key words: Convolutional Neural Networks (CNN), OpenCYV, planar coil,
inductance, YOLOV9, image processing.
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Introduction

Planar coils are crucial components in electronic systems and can be
found in the architecture of wireless power transfer (WPT) systems,
ensuring energy management and transmission. They are useful in
applications such as electric vehicle charging. Their operation is based on
electromagnetic induction between two parallel coils; without physical
contact, electrical energy is transferred when electrical current is passed
through one of them (Luo & Wei, 2017). Additionally, they can be used for
position sensing in permanent magnet synchronous motors, offering a
resilient design compared with traditional sensors like Hall sensors. They
are easy to produce without occupying a lot of space and function as
converters of magnetic flux in the air gap of the motor into an electrical
signal (Im & Hur, 2021). Moreover, planar coils are used as monolithic
integrated circuits on chips to minimize planar surface area and are
subsequently integrated into DC-DC Forward converters for both high and
low frequency uses, allowing perfect miniaturization for modern electronic
devices (Derkaoui et al, 2021). In the implementation of biomedical
devices, they play a principal role, offering an ideal solution for wireless
recharging of pacemakers' batteries using square-shaped printed spiral
designs (Ahire et al, 2022). In NFC-enabled devices, planar coils play a
crucial role, with those in the PICC (Proximity Integrated Circuit Card)
harvesting energy from the magnetic field created by the PCD (Proximity
Coupling Device). Thus, they perform a dual role: facilitating data transfer
between the reader and the receiver, and serving as power supply for the
NFC system (Couraud et al, 2020).

The inductance is the main parameter related to coils in the field of
electromagnetics. Various estimation methods and calculations are used
to calculate or estimate it with an objective of a low level of error. The
formula of Mohan (Mohan et al, 1999) is one of them. What makes it
different is that it is based solely on the geometrical parameters of the
planar coil. Knowing these parameters will give an inductance value with
a 3% error margin compared to field solver predictions. Researchers have
successfully employed Mohan's formula to optimize the performance of
planar inductors on Kapton (Kharbouch et al, 2017). It is not complex to
estimate the inductance value using this method, and because the
parameters used are purely geometrical and some constants, it facilitates
the integration of computer vision technologies to capture these values
and automate the inductance calculation.

Building upon the idea of capturing geometrical parameters, an image
treatment process was employed. It can be divided into two main sections:




the first is coil shape recognition using a YOLOV9 deep learning object
detection model (Wang et al, 2024), and the second is geometrical
parameter capturing and calculating inductance using the OpenCV image
treatment Python library.

A number of studies have started using YOLOV9 for different
objectives. For example, YOLOV9 has been applied for fracture detection
in pediatric wrist X-ray images (Chien et al, 2024). It has also been used
for the objective of detecting small-scale (<20km) ocean eddies to monitor
changes in the Earth's oceans and climate (Mostafa et al, 2024). To train
the YOLOV9 coil shapes detection model, a synthetic dataset was created
using the Python Turtle library. This allowed the generation of a varied
dataset with multiple spiral configurations (square, hexagonal, octagonal,
and circular). After the creation of the data, augmentation was applied
using the Roboflow platform. Then, OpenCV was used to detect the
contours with perfect accuracy, leading to precise distance measurements
of the geometry. All values were in pixels, so we made a ratio based on
the known diameter of a coin to convert all values to millimeters for
inductance calculation. Figure 1 presents our work in the form of a chart
flow visualization to summarize the entire process.
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Figure 1 — Flowchart: Process for coil shape detection and inductance calculation using
YOLOv9 and OpenCV
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Overview of Mohan’s formula

Mohan developed a simple and accurate expression for calculating
the inductance of single-layer spiral shapes, including square, circular,
hexagonal, and octagonal (Mohan et al, 1999). Since this expression relies
directly on geometric parameters, the integration of computer vision is
applied to automate inductance measurements.

The expression of the inductance is given in equation (1)
_ /‘()”Zdavg C]
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The average diameter d,,, and the form factor p are generally defined
as follows:
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where d;,, is the inner diameter, d,; is the outer diameter, y, is the

vacuum permeability, and n is the number of turns. The coefficients from
C+ to C4 vary based on the coil geometry and are listed in Table 1.

Table 1 — Coefficients for the analytical calculation of inductance

Form C1 C2 Cs Ca
square 1.27 2.07 0.18 0.13
hexagonal 1.09 2.23 0 0.17
Octagonal 1.07 2.29 0 0.19
Circular 1 2.46 0 0.2

Figure 2 illustrates the single-layer coil spiral shapes in various
geometries, including square, circular, hexagonal, and octagonal forms.




Figure 2 — Single-layer coil spiral shapes (Square, Circular, Hexagonal, And octagonal)
Dataset creation and pre-processing
Synthetic planar coil image dataset generation

Machine learning and deep learning fields latest research is highly
focused on data generation to train models. The geographic information
system (GIS) framework generates realistic pictures using deep neural
networks and adversarial training for instance segmentation (Abu Alhaija
et al, 2019; Paulin & lvasic-Kos, 2023). Others render 3D geometric
models using the ShapeNet dataset as a method for 3D object
reconstruction (Richardson et al, 2016). A Python library called Turtle was
utilized to generate the coils dataset. Different scripts were programmed
to generate realistic pictures of planar spiral coils in hexagonal, octagonal,
circular, and square geometries. This library was chosen for its capability
and feature to design spiral shapes using coding. The code for each shape
controlled the geometric parameters. Figure 3 is an example of how the
Turtle library scripting plots the generation of spiral shapes. Each shape
represents a distinct algorithmic approach to drawing patterns (Anderson,
2018).

o

e

Figure 3 — Different patterned shapes plotted using the Turtle library (Anderson, 2018)

Four distinct scripts were developed to generate the dataset. The
specific variable parameters included the number of spiral turns, the width

Benazzouz, Y. et al, A computer vision approach with OpenCV and deep learning for determining inductance in planar coils, pp.1645-1670



&VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 4

range, and the side lengths range, including inner and outer diameters.
Using nested loops, each script iterates through a combination of these
parameters, resulting in multiple outputs. The resulting pictures were
created with the dimensions of 640 x 640 pixels, saved as EPS files, and
then converted to JPEG. This automated approach ensures a perfect
method to generate a comprehensive dataset. The focus was on creating
a high-quality set of synthetic images to represent various geometries of
planar spiral coils. The entire dataset consisted of binary color images,
with each class designed to follow a clear and distinct pattern, with each
single image represented in a simple 2D format with a single top-view
angle. The key variations within each class were limited to the turn number
and width as primary distinguishing features. This careful and clear
diversity in class design ensured that even with a smaller dataset, the
model had sufficient information to learn and differentiate between the four
shape classes. The clear distinction between the classes made it easy for
the model to recognize and learn the differences between them. Figure 4
shows a sample of generated spiral shapes using the Turtle library scripts.

vidth_jpg.rf

666d527h...

Figure 4 — Generated spiral shapes using the Turtle library scripts

Data labeling and annotation

Data labeling is an important step in dataset preparation tasks. After
creating 230 different images, the annotation and labeling process was
conducted using Makesense.ai, a manual online platform for annotation.
Each spiral coil was labeled and annotated to categorize them into four
classes. This involved perfect identification of shapes, leading to the
division into specified classes, as illustrated in Figure 5, which shows the
labeled classes: Hexagonal, Octagonal, Square, and Circular.




Hexagonall Iimﬂ
Octagonal Square

=i

Figure 5 — Labeled classes (Hexagonal, Octagonal, Square, Circular)

Data augmentation and splitting

After the manual annotation, Roboflow, an open-source platform for
data augmentation, was used to enlarge and diversify the dataset. This
process expanded the dataset to a total of 547 different pictures. The
techniques that were applied include blurring, rotation, flipping, and
zooming. Specifically, horizontal and vertical flips, as well as 90° rotations
in clockwise, counter-clockwise, and upside-down directions, were used.
Preprocessing steps included auto-orientation and resizing with a center
crop to 640x640 pixels. In the end, the augmented dataset was split into
87.4% for training (478 images), 8.4% for validation (46 images), and 4.2%
for testing (23 images). This step is important to achieve a balanced and
representative distribution of data, making it a perfect input for the Al
model, as shown in Figure 6, which displays a screenshot from Roboflow
showing the data split numbers with rounded percentages to 87%, 8%,
and 4% for simplicity.

Dataset Split

TRAIN SET @ VALID SET O TEST SET D

478 Images 46 Images 23 Images

Figure 6 — Screenshot from Robotflow

YOLOV9 classification model implementation

Choice of a model

Deep learning model training requires high-performance computers
to handle the training process. Google Colab found a solution for that by
providing an online notebook environment that serves as an integrated
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development environment (IDE) to execute the Python code directly from
a browser. Colab is integrated directly with Google Drive, allowing for
online file management, and comes with many machine learning libraries.
The key point of the performance is the Tesla GPU acceleration, which is
a suitable configuration for intensive deep learning training tasks. Figure 7
shows the specifications of the Tesla T6 GPU used.

© !nvidia-smi

E) Sun Mar 10 13:49:11 2024

| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |
|
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| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| MIG M. |
| |
| © Tesla T4 0ff | 00000000:00:04.0 Off | 0|
| N/A 49C P8 1ew / 70w | OMiB / 1536@MiB | 0% Default |
| [ I N/A |
Processes:
GPU GI CI PID Type Process name GPU Memory

|
|
| ID 1ID Usage
|
|

No running processes found

Figure 7 — Tesla T6 GPU specifications

The YOLOV9 model was implemented and programmed as a novel
deep learning classification method for real-time object detection, released
in February 2024. YOLOvV9 came with Programmable Gradient Information
(PGI), which addresses the issue of information loss through deep network
layers. The new framework, PGI, generates reliable gradients using an
auxiliary reversible branch, ensuring that deep features retain essential
characteristics for accurate predictions. Another key improvement of this
model compared to older models is the Generalized Efficient Layer
Aggregation Network (GELAN), which optimizes parameter utilization and
computational efficiency without affecting accuracy. It maintains
lightweight and fast inference capabilities (Wang et al, 2024).

The decision to utilize YOLOvV9 was made because of its status as the
most recent version in the YOLO series, so it offers improved performance
in terms of speed and accuracy compared to earlier versions and
effectively handles complex patterned image data in classification and
object detection, aligning perfectly with the needs of this study.




Training setup and hyperparameters

The model was trained with a configuration of a batch size
Nbaten_size=4, indicating that 4 data samples were processed simultaneously
during each training iteration. After processing these 4 data samples, the
model parameters were updated. This batch size was applied uniformly
throughout each epoch, with a training duration of 50 epochs. The
hyperparameters for Stochastic Gradient Descent (SGD) were as follows:
momentum of 0.937 and weight decay of 0.0005. Other augmentation
techniques include blur, median blur, gray conversion, and CLAHE
(Contrast Limited Adaptive Histogram Equalization). This augmentation
introduces further specified variations and it helps the model to better
generalize new, unseen data by exposing it to a wider range of data
distortions. It aims to reduce overfitting and it fine-tunes the model's ability
to be adapted with different data conditions while this augmentation is
often applied automatically as part of the data preprocessing pipeline of
the YOLOV9 model. The model architecture comprised 930 layers with
60,804,152 parameters, and TensorBoard was used for process logging
and visualization. The model has a perfect focus on the recognition of
geometrical patterns over color. Even though the dataset consisted of
black and white synthetic images, the model learned the spatial
arrangements of pixels that form pattern shapes during training. Thus, it is
capable of detecting shapes without color differences and can identify
high-level features such as shapes, edges, and patterns.

Model evaluation indicators

To observe and evaluate the model's performance in detecting
various classes of shapes, different evaluation indicators are used. The
primary key metric is the Mean Average Precision (mAP), which yields a
total value by averaging the aggregation of the precision-recall curves from
each class. Precision is the measurement of positive predictions. Accuracy
and recall detect all relevant instances of the coil shapes by measuring
them. The F1 Score is also used, which is the harmonic mean of precision
and recall, indicating how reliable the model is. It ranges between 0 and 1.
mAP was used for the evaluation, computing the AP of each class and the
average over several classes. These metrics are good indicators of the
YOLOvV9 model's ability to detect and classify objects, and they are
represented mathematically as:

True Positive
4)

Precision=
True Positive +False Positive
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Recall= True Positive ( 5)

True Positive +False Negatives

2 X Precision X Recall
F] Score: recision eca. (6)

Precision+ Recall
1
mAP =~ 3| AP, (7)

where N is the number of classes and AP; represents the average
precision for the class i.

Geometric parameter extraction using OpenCV

Overview of OpenCV

After using the deep learning model to detect the classes of different
spiral coils, the next step is processing each image of the detected shape
separately using OpenCV (Open-Source Computer Vision Library), a
widely-used computer vision library (Xie & Lu, 2013). It provides a set of
tools and functions for processing image and motion data (Mishra et al,
2022) at the pixel scale. OpenCV supports multiple techniques such as
filtering, edge detection (Xie & Lu, 2013), and contour detection (Ni et al,
2016), leading to efficient extraction of geometric parameters. Images of
the spiral coils were captured using a phone camera from the top view.
The following image shows the setup with the phone camera capturing the
spiral coils from above. These images were then processed using
OpenCV. Figure 8 shows the setup with a fixed phone capturing the spiral
coils, which were then processed using OpenCV to experiment with
geometry extraction and calculation.

Figure 8 — Fixed phone capturing a spiral coil from above




Planar coils images preprocessing

OpenCV has a large collection of functions, with over 500 functions in
computer vision that can be applied in different fields for various purposes
(Mohamad et al, 2015). Specific functions are used in our research to
calculate different distances and geometric parameters. These functions
are described in the following steps:

Grayscale conversion and noise reduction with Gaussian blur

After capturing the image using a camera phone, the image will be
loaded for processing. The first treatment involves converting this colored
RGB image to a grayscale image by eliminating color information. This
reduces unnecessary information from the image and decreases
complexity, using the function cv2.cvtColor(). Once the image is converted
to grayscale, Gaussian blur is applied to enhance the accuracy of the
subsequent thresholding operation and minimize the impact of noise by
smoothing the image. This is achieved using the function
cv2.GaussianBlur(), which performs a convolution operation with a
gaussian kernel of parameter size (9, 9) and a standard deviation (o) of 10
to control the amount of blur. This value of kernel size was selected to
achieve an optimal balance between noise reduction and detail
preservation so it reduces high-frequency noise and prevents essential
structural details, particularly important for the intricate patterns of planar
coils. The standard deviation was set to 10 to ensure extensive smoothing
for broader impact, minimizing digital noise distortions.

Figure 9 shows a grayscale image of the planar coil after the
application of this process.

Original Image Grayscale Image

Figure 9 — Color image and its grayscale version
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Binarization using Otsu's thresholding

The blurred grayscale image is then converted to a binary image
using Otsu's thresholding method (Otsu, 1979). This adaptive thresholding
technique calculates an optimal threshold value to separate the foreground
coil image from the background, ensuring effective binarization. The
function cv2.threshold() is used for this purpose, with the parameters
including the blurred grayscale image an initial threshold value of 128 that
serves as a starting point that typically works well for images with fair
contrast and provides a balanced approach for separating the foreground
from the background, and a maximum value of 255 for the binary
thresholding type. Binary thresholding is applied to the grayscale image to
produce a binary image where pixel values are set to either 0 or 255 based
on the determined threshold. Otsu's method works by maximizing the
between-class variance £ (t), which is expressed as:

a5 () = wo (Ow; () [ (8) — p1 (D]? (8)

where w (t) and w; (t) are the class probabilities, and i, (t) and 4 (t)
are the means of the two classes. This method ensures the best separation
between the background and the foreground in an image by maximizing
the variance between these two classes.

Binary Image (Corrected)

Figure 10 — Circular coil image after binarization

Contour detection and drawing

After obtaining a binary image with only white and black pixels, it is
now easy to draw and detect contours. This helps identify the boundaries




of the spiral coil. The function cv2.findContours() is applied to the binary
image, and then the contours are drawn and plotted on the original image
using the cv2.drawContours() function, which highlights a green contour of
the detected shape.

Figure 11 illustrates the circular coil image after the process of contour
detection and drawing.

Figure 11 — Circular coil image after contour detection and drawing

Intersection points and parameters calculation

The measurement of specific geometries and extracting distances
requires a logic to be implemented as an algorithm. For this purpose,
guiding lines were designed to aid in calculating specific geometries by
utilizing the cv2.line() drawing function. These lines make the intersection
points with the contour. A custom-developed function detects these
intersections between the guide line and the contour of the spiral coils, and
these points are recorded and enumerated.

The first parameter is the width of the coil, which is calculated by the
distance between the first and second intersection points along the guiding
line. d,,:represents the outer diameter of the spiral coil, which is
calculated by the distance between the leftmost and rightmost intersection
points. d;; is the inner diameter, and the logic to calculate it involves finding
the first right point and the first left point near the middle of the guiding line.
The number of turns n is calculated since each set of four intersection
points makes one turn, so it is calculated by dividing the total number of
points by four.

Figure 12 displays the measurements annotated in pixels.
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Width: 28px, D out: 556px, D in: 129px, Turns: 4

Width: 28px

Figure 12 — Circular planar coil with pixel-extracted geometry

These geometric calculations serve as a conceptual framework for
analyzing spiral coils:

Width = distance (iy, i,) (9)
din = diStance(iﬁrst left near middle » iﬁrst right near middle) (1 0)
dout = distance(i leftmost i rightmost) (1 1)

number of intersection points|
4

ne|

(12)

where i, and i, represent the first and second intersection points
along the guiding line, i jopmosr@NA i ignmos are the extremal points on the
left and right sides, 7 . iefi near middie 8N i first right near midare Y€fEr to the closest
intersection points to the center of the object on each side.

Pixel-to-millimeter conversion

After extracting the required geometrical parameters of the spiral coil
shapes in pixels, they should be converted to real-world units, which are
millimeters. This conversion is done using a pixel-to-millimeter ratio. To
calculate this ratio, a reference object with a known size is used. For this,
a 10 euro cent coin was used; the diameter of the coin is 19.75 mm, so it
serves as the basis for conversion. An important point to ensure the




consistency and reliability of the measurement taking is that both the
reference object and the spiral coil should be captured in the same
condition of the camera angle from the top and at the same distance too.
The coin image processing begins by converting it to grayscale, then
applying Gaussian Blur. This step reduces image noise and smooths the
edges with a kernel size of (5, 5). This kernel size was selected based on
preliminary tests that indicated it minimized edge distortion while
adequately preserving the necessary details for accurate edge detection.
Next, the Canny edge detector is applied to identify the strong edges while
ignoring weaker ones with the parameters Lower Threshold: 50 and Upper
Threshold: 150. These thresholds were empirically determined to provide
the best balance between sensitivity to true edges and immunity to noise-
induced false edges, as validated by repeated trials under varying imaging
conditions. Then, the diameter can be calculated based on the last result
of this image processing using a script that can detect the extreme left and
right edges of the coin image. Measure the distance between these points
using the Euclidean distance formula and finally, using the actual diameter
of the coin and the measured diameter in pixels, calculate the conversion
ratio from pixels to millimeters.

distance (pixels) = (xright—xleft)z + (yright—YIeft)z (13)

distance (pixels) ( 1 4)
Actual Diameter (mm)

Ratio(px/mm)=

where x4, and y,;4n¢ are the coordinates of the rightmost point, and
Xiere @nd y.r; are the coordinates of the leftmost point, measuring the
maximum span across their widest points to get the diameter. Figure 13
demonstrates the coin image processing used for converting pixels to
millimeters.

Figure 13 — Coin image processing for pixel-to-millimeter conversion
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The obtained pixel-to-mm ratio is utilized to convert various parameter
values of the spiral coil for all captured shapes. In Table 2, these values
are presented with the conversions, allowing them to be used as inputs in
Mohan's Law to compute the inductance.

Table 2 — Geometric values of different shapes: measurements in millimeters and pixels

Number of | Width | Width | dout dout dip dip
Shape turns (n) (mm) (px) (mm) (px) (mm) | (px)
Circular 4 0.63 28 12.61 556 2.92 129
Hexagonal | 3 0.77 34 10.34 456 3.43 151
Octagonal | 3 1.18 52 14.01 618 1.72 76
Square 3 1.09 48 11.95 527 2.86 126
Results

The results section is divided into two parts: the first evaluates the
YOLOV9 classification model performance, and the second is about
geometric parameter and inductance value calculation validation.

Model performance

The model indicates an improvement in the accuracy of bounding box
coordinates and object class detection. This indication is proven by the
consistent decrease in box loss, classification loss, and focal loss, across
50 epochs. In Table 3, the results demonstrate that the model is effectively
learning, with performance improvement evident. The mAP values at an
intersection over Union (IOU) 0.5 and other thresholds from 0.5 to 0.95
remain high and stable. The maximum recorded values for precision,
recall, and F1 score are 0.989, 1.000, and 0.995, respectively.

Table 3 — Performance variability of the YOLOv9 model during training

Metric 25th Median 75th Max
Percentile Percentile

Precision 0.579 0.881 0.982 0.989

Recall 0.541 0.973 1 1

F1 Score 0.532 0.882 0.991 0.995

mAP (loU=0.5) [0.496 0.988 0.995 0.995

mAP 0.264 0.83 0.89 0.913

(loU=0.5:0.95)




The F1-Confidence curve reflects that the model has strong
predictive capabilities for different shape classes. This curve is a graphical
representation that illustrates the relationship between the confidence
level of predictions and the corresponding F1 score, and it combines the
precision level and the recall into a single metric, achieving an optimal
macro-average F1 score of 0.98 at a confidence threshold of 0.501 with a
balanced precision and recall. The Octagonal and Circular classes show
a well-balanced trade-off between precision and recall. The Hexagonal
class also performs impressively well, with high F1 scores at lower levels
of confidence. The class of Square, on the other hand, has a bit of
fluctuation at high confidence but gives good F1 scores. Figure 14
illustrates the F1-Confidence curves for various coil shapes.

F1-Confidence Curve

——

‘ —— Octagonal
| Hexagonal
Circular
Square
= all classes 0.98 at 0.501

F1

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 14 — F1-Confidence curves for different coil shapes

After experimental testing, the model demonstrated that a Square coil
was detected with a confidence level of 0.91, a Circular coil with a
confidence level of 0.80, a Hexagonal coil with a confidence level of 0.60,
and an Octagonal coil with a confidence level of 0.65. In this context, the
confidence level represents the model's degree of certainty in correctly
identifying and classifying the detected object as belonging to a specific
geometric shape class as a final prediction level. These confidence levels,
which are directly related to the model's classification task in the image,
indicate how certain the model is that the identified shape corresponds to
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its labeled class, such as Square, Circular, Hexagonal, or Octagonal.
These results confirm the robustness and reliability of the model in
categorizing different geometric shapes. Figure 15 presents the detection
confidence levels for various coil shapes.

Circular 0.80

{

Octagonal 0.65

Figure 15 — Detection confidence scores for coil shapes

Geometric parameter and inductance value validation

A comparison is made between the extracted inductance values
calculated based on the design geometry created with the computer aided
design (CAD) software, and the values computed from the results of
OpenCV. Table 4 shows the difference between the value sets of different
shapes.

Table 4 — Inductance measurement comparison across different geometric shapes based
on CAD and computer vision (CV) data

dout din

CAD | CV CAD | CV Inductance | Inductance
Shape (mm) | (mm) (mm) | (mm) | CV (nH) CAD (nH)
Circular 125 [ 1261 |3 2.92 113.24 114.13
Square 11.8 [ 1195 | 2.8 2.86 73.09 72.80
Octagonal 14.07 | 14.01 1.73 1.72 56.73 55.20
Hexagonal 10.3 [ 10.34 | 3.3 3.43 65.08 63.12




The accuracy of the geometric parameters extracted by OpenCV is
remarkably high, leading to good accuracy in the estimated inductance
value. These results underline the effectiveness of our high-resolution
measurement techniques, which are essential for in-depth assessments in
precision engineering contexts and quality control during construction.
Figure 16 shows the inductance value for a circular coil geometry, where
the CV system measured 113.24 nH, closely matching the CAD value of
114.13 nH. At the same time, Figure 17 presents the hexagonal coil
geometry, with an inductance of 65.08 nH measured by CV, aligning well
with the CAD value of 63.12 nH. Figures 18 and 19 display the octagonal
and square geometries, with inductance values of 56.73 nH and 73.09 nH,
respectively, both showing good agreement with their CAD values.

The difference with the values of the computer vision method and the
inductance value of design geometry may be explained by the fact that, in
realistic coil manufacturing, physical dimensions and software design
values may not be exactly identical to each other. Deviations from the
manufacturing process and small deviations in physical dimensions can
result in theoretical design parameters that differ from actual measured
values. Overall, the results show good agreement between the inductance
values. Minor inconsistencies, as indicated, may be expected with the
granularity of the pixel-based measurements too and have little or no
impact on the overall inductance -calculations while working with
nanohenries. This means that the computer vision method can be relied
upon to establish inductance values accurately. Figures 16 to 19 present
the results of the analysis and inductance calculations for various planar
coil geometries using OpenCV.

Number of Turns: 4

Width: C.63mm

The inductance value: 113.24 nH

Figure 16 — Analysis of circular planar coil geometry and inductance calculation with
OpenCV
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Number of Turns: 3

o 0.77 mm

h d | 43 mm

e

The inductance value: 65.08 nH

Figure 17 — Analysis of hexagonal planar coil geometry and inductance calculation with
OpenCV

Number of Tums: 3

Width: 1.18mm

The inductance value: 56.73 nH

Figure 18 — Analysis of octagonal planar coil geometry and inductance calculation with
OpenCV

Width = 1.09 mm

d out: 11.95 mm

The inductance value: 73.09 nH

Figure 19 — Analysis of square planar coil geometry and inductance calculation with
OpenCV




Conclusion

The work demonstrates how computer vision and deep learning
techniques can be useful in assisting the calculation of inductance in the
case of planar coils. Utilizing YOLOV9 for shape recognition and OpenCV
to extract geometric parameters, the proposed methodology resulted in a
way such that it performs with a high accuracy rating. This, in a way, makes
the method reliable for industrial purposes where more precision in the
manufacturing of a component is required. In further work, this model can
be designed to work with more coil shapes, hence reducing the
discrepancy in the measurements in the process. An extension of this work
could be in integrating this computer vision with real-time monitoring
systems for further advancement in automated manufacturing systems.
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Resumen:

Introduccion/proposito: En el ambito del desarrollo y uso de metodologias
de visién por computadora e inteligencia artificial, esta investigacion
presenta una combinacion y un método avanzado que utiliza YOLOVS, un
concepto de aprendizaje profundo de procesamiento de imagenes
completas en un solo paso a través de una red neuronal convolucional
(CNN) y la Biblioteca de procesamiento de imagenes OpenCV Python para
determinar la geometria de bobinas planas. Estos paréametros geométricos
son los principales parametros utilizados para calcular el valor de
inductancia utilizando la formula de Mohan, que utiliza exclusivamente
datos geométricos para calcular los valores de inductancia. Este método
acelera significativamente los procesos de verificacion y calculo, al mismo
tiempo que contribuye a mejorar el control de calidad después de la
fabricacion.

Métodos: La metodologia se divide en dos fases principales. Inicialmente,
se entren6 un modelo YOLOvV9 para el reconocimiento de objetos
utilizando un conjunto de datos sintéticos generados de formas de bobinas
creadas con la biblioteca de graficos Turtle de Python. Luego, después de
la fase de deteccion, se utilizo6 OpenCV para identificar los parametros
geomeétricos de las imagenes. Los pixeles se convirtieron a milimetros
utilizando un método de relacion para calcular el valor de inductancia con
precision.

Resultados:  El modelo YOLOV9 identifico con éxito varias formas de
bobinas planas y los parametros geométricos se identificaron mediante
OpenCV. Posteriormente, se calculd con éxito la inductancia.

Conclusion: Los resultados muestran que el método propuesto es una
forma novedosa y eficaz de calcular la inductancia.

Palabras claves: redes neuronales convolucionales (CNN), OpenCV,
bobina plana, inductancia, YOLOv9, procesamiento de imagenes.
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MpuMeHeHne KOMMbIOTEPHOro 3peHuns ¢ ncnonb3osaHnem OpenCV un
rny60|<oro o6yqum| ana onpeageneHna MHOYKTUBHOCTU MIOCKNX
KaTyLlek

HOHe3 beHa330y3, koppecnoHAeHT, [hxunanusa NyeHaoys

YHuepcutet OpaHa 2 Moxamen ben Axmen, HCTUTYT TeXHUYECKOro
obcnyxmBaHust U NnpomblwneHHon 6e3onacHoctu (IMSI), kadegpa
TEXHUYeCKOro 06CnyxmBaHMs KOHTPOSbHO-N3MEPUTENBHBLIX NPUGOPOB,
JlTabopaTopus Npon3BOACTBEHHOTO MHXWUHUPWHIA U NPOMBbILLIIEHHOTO
obenyxumeanus (LGPMI),

r. OpaH, Amxupckasa HapoaHas Jemokpatuyeckas Pecnybnvka

PYBEPUKA TPHTW: 28.23.37 HelpoHHble ceTw,
20.23.25 NHdopmaumoHHbIE cucTeMbl ¢ 6a3amu 3HaHUNR,
47.09.29 MNMonynpoBoaHNKOBLIE MaTepuarnbl

BWO CTATbW: opurmHanbHasa Hay4Has ctaTbs

Pesome:

BsedeHue/uenb: B ceeme pa3sumusi U ucrionb3oeaHus mMemodosioauli
KOMIMbIOMEPHO20 3PeHUsT U UCKYCCIMBEeHHO020 UHMmesiiekma OaHHoe
uccnedosaHue  npedcmaensem  cobol  KOMOUHUPOBaHHbIU U
rpodsuHymsiti Memod, ucrionb3yrouuti YOLOVY, koHuenuyuro 2r1yb0Ko2o
0byyeHus 0r1s 0b6pabomku MomHO20 U30bpaxkeHus1 3a 00UH MPOX00 Yepes
c8EpmoYHyt0  HelpoHHyto cemb (CNN) u 6ubnuomeky obpabomku
usobpaxeHuti OpenCV Python dnsa ornpedesneHus 2eoMempuu riiocKux
Kamywek. [laHHble 2eoMempuyeckue rnapamempsb! s18/Is0MCsi aragHbIMU
8 pacuéme 3HayeHul UHOYKMUBHOCMU C UCIMOb308aHUEM (bOpMYIibl
MoxaHa, Komopasi ~ ucriofie3yem  2eoMempuyecKue OaHHbIe
ucko4umernbHO Orisl OUEHKU 3HavyeHul UHOyKmusHocmu. 3mom memood
3HayumersbHO ycKopsiem Mpouecchl 8epuuKayuu u pacyéma, a makxe
crnocobcmeyem nosbIWEHUI0 Ka4yecmea KOHMpPOJIs rpou3eodcmea.

Memodbki: Memodonoeus uccredosaHus pacripederneHa Ha 08a OCHOBHbIX
amaria. CHavarna bbina obydeHa modenb YOLOVY Onia pacriosHagaHusi
06BEKMOB,  UCIONb3Ys CeeHepupo8aHHbIl  cuHmMemuyeckuli  Habop
OaHHbIX ¢bopMm KamywekK, co30aHHbIl ¢ romowbto bubmuomexu Turtle
Graphics e Python. 3amem, riocrie asmana ObHapyeHusi, C MOMOWbIO
OpenCV 6binu udeHmughuyuposaHbl 2e0MempuYyeckue napamempbsl
usobpaxerud. [Mukcenu 6biiu rpeobpasosaHbl 8 MUMIUMEMmPbI,
ucrionb3ysi Memod COOmHoweHUs1 01T MOYHO20 pacdema 3HauqyeHusi
UHOYKMUBHOCMU.

Pesynbmamel:  Moderns YOLOVY9 ycnewHo udeHmugbuyuposana
pasnuyHble ¢hopMbl MIOCKUX KamyWwiek, @ 2e0MempuYecKue napamemps|
6b1nu onpederneHsbl ¢ nomouwibto OpenCV. MHOykmusHocmb makke bbiia
yCewHo paccyumana.

BbigoObl:  Pesynbmamb! rokasbigaom, 4Ymo rpeosioxXeHHbIl mMemood
s8/155emcsi  UHHOBAUUOHHBIM U 3¢hghekmusHbIM  criocobom pacyema

UHOYKMUBHOCMU.
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Knrouesbie cnoea: ceepmoyHble HelipoHHble cemu (CNN), OpenCV,
nnockass  Kamywka, uHOykmusHocmb, YOLOVY, obpabomka
u3obpaxeHud.

MpumeHa padyHapckor Buga nomohy OpenCV u gybokor yvewa 3a
oapenuBakbe NHAYKTUBHOCTM Y NfbOCHATUM HaMmoTajuma

JyHe3 beHnasys, ayTtop 3a npenucky, [ajnuja M'ynays

YHusepsuteT OpaH 2 Moxamepg ben Axmen, WHCTUTYT 3a MHOYCTpWjCKO
oppxaBatre 1 6e3benHocT (IMSI), Oger-ere 3a ogpxaBare

WHCTpYMeHTauuje, JlTabopaTopuja 3a Npon3BoAHO MALLUNMHCTBO U MHOYCTPWjCKO
oppxaBame (LGPMI), OpaH, HapogHa JemokpaTtcka Peny6nuka Amkup

OBNACT: padyHapcke Hayke, eneKkTpoHuKa
KATEIOPWJA (TUIM) YNAHKA: opurHanHu Hay4yHu pag

Caxxemak:

YBod/yurs: Y obnacmu paseoja u npumeHe memodosioauja padyHapckoa
guda u eewmayke UHMesU2eHyuje, 080 ucmpaxueare npedcmassba
KoMbuHauujy u HarpedHy memody koja kopucmu YOLOV9 — KoHuernm
0ybokoz ydyera 3a 0bpady UeroKyrnHe Criuke y jeGHOM rporiady Kpo3
KOH8011yUUOHY HeypoHcKy mpexy (CNN) u 6ubnuomeky 3a obpady criuka
OpenCV Ha Pythonu 3a o0peRhusawe eeoMempuje MrbOCHaMUX
Hamomaja. O8u OCHOBHU 2e0MempuUjCKU napamempu Kopucme ce 3a
uspadyyHagare epedHocmu  UHOyKmueHocmu  romohy  MoxaHose
opmyrie, Koja UCK/bYyHUBO yriompebrbasa 2eomempujcke nodamke 3a
npoueHy epedHocmu uHOykmusHocmu. Osa mMemoda 3HamHO ybp3aea
npouece sepugukayuje U uspadyHasara, a nobosbluasa U KOHMPOIY
Kearnumema riocrie rpou3eo0m-e.

Memode: Memodonoeuja je noderbeHa Ha 0ge anasHe ¢hase. Y noyemxy
je modenn YOLOV9 6uo koHcmpyucaH 3a npero3Hasame objekama
Kopuwhersem eeHepucaHo2 cUHmMemuy4koe cKyna nodamaka obriuka
Hamomaja cmeopeHoea riomohy Pythonove bubnuomeke Turtle Graphics.
Bamum, HakoH ¢paze Oemekuuje, OpenCV je kopuwheH 3a
udeHmucbukauujy eeomempujckux rnapamemapa cnuka. [lukcenu cy
pemeopeHu y musnuMempe rnpumMeHoMMemode nporopyuja 3a mavyHo
u3padyHagsar-e 8pedHOCMU UHOYKMUSHOCMU.

Pesynmamu: Modenn YOLOVY je ycriewHo udeHmughbukosao passudume
obrniuke M/bOCHaAMuUX Hamomaja, a eeoMempujcku napamempu cy
udeHmucpukosaHu rymem OpenCV. HakoH moea, UHOyKmusHocm je
yCrewHo uspadyyHama.

Bakrbyyak: Pesynmamu nokasyjy Oa je npednoxeHa memoda Hog U
eghukacaH Ha4yuH 3a uspadyHasarbe UHOYKmMU8HOCMU.

KmbyuHe pe4qu: KoHeonyuuoHe HeypoHcke mpexe (CNN), OpenCV,
nreocHamu Hamomaj, uHOykmusHocm, YOLOV9, obpada cruka.
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