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Abstract:

Introduction/purpose: The paper analyses and optimizes the welded I-girder
of the single-beam bridge crane with a U-profile as the top flange. This
solution is to provide a lighter carrying structure, so the main goal is to
minimize the weight of the main girder, i.e., the cross-sectional area while
fulfiling the requirements defined by national standards and geometric
constraints.

Methods: The Moth-Flame Optimization (MFQO) algorithm was chosen for
solving this single-objective multi-criteria optimization task using MATLAB.
Also, the results were verified by using the Finite Element Analysis (FEA).

Results: The proposed girder shape is justified in examples of real solutions
of single-beam bridge cranes and the previous research results. In this
case, significant savings in the material and better results are achieved
compared to the examples from the previous research.
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Conclusion: The proposed girder shape, methodology, the optimization
algorithm and the achieved savings fully justify this research. Furthermore,
this algorithm enables the application of many constraint functions, whereby
the optimal values of numerous variables are obtained in a relatively short
period. Therefore, it would not be possible to find the solution for that
engineering task by applying analytical optimization methods.

Key words: bridge crane, welded girder, FEA, optimization,
metaheuristic.

Introduction

Single-beam bridge cranes are used for handling the load in industrial
facilities and warehouses as well as in transport, servicing, and
maintenance. They are used increasingly in practice, and, in certain cases,
their application is more economical than that of double-beam bridge
cranes. The main engineering task is a proper choice of equipment and
lightweight design of the single-beam bridge crane carrying structure. The
welded box-girder or different types of standard rolled I-profiles are most
often used as the main girder of single-beam bridge cranes, depending on
the span and carrying capacity. However, the applied standard I-profiles
are not usually used rationally, so the main crane girder is over-
dimensioned. For this reason, a standard I|-profile is often combined with
the U-profile or L-profiles to increase global stability and achieve a lighter
structure.

The analysis and optimization of crane support structures and I-
girders have been the research subject in numerous publications. The
optimization process can often be performed within the 3D modelling
software. For example, Cvijovi¢ & BoSnjak (2016) used the 3D Finite
Element Analysis (FEA) for local bending effects of the bottom flange of
the monorail crane structure. Qin et al. (2015) presented the Solid Isotropic
Material with Penalization (SIMP) optimization method on the example of
the bridge crane's box girder, and the results were verified by using the
FEA. Rézyto (2016) used ABAQUS on the example of the I-girder. Finally,
Ky et al. (2014) considered the problem of selecting optimal standard
profiles of a steel structure by using SAP2000, where these results were
compared with a heuristic optimization algorithm.

The application of various optimization algorithms is very present in
engineering practice, for both single-objective and multi-objective
optimization problems. For example, Qi et al. (2015) presented the
Specular Reflection Algorithm application to optimize the box cross-
section of the double-beam bridge crane. Wang & Diao (2012) solved a
similar optimization problem using the Adaptive Genetic Algorithm.




Metaheuristic algorithms have been widely used in recent years.
Pavlovi¢ et al. (2024) applied the Water Evaporation Optimization (WEQ)
algorithm to minimize the weight of the main girder with a non-symmetric
box-like cross-section of the double-beam bridge crane. Similar to the
previous, Jarmai et al. (2021) optimized the cross-sectional area of the
main girder of the double-beam bridge crane by applying 15 metaheuristic
algorithms. Pavlovi¢ & Savkovi¢ (2022) presented the application of the
Moth-Flame Optimization (MFO) algorithm for the optimal design of the
main girder of the double-beam bridge crane with an asymmetric box
cross-section. It was concluded that the application of that method is
justified. Jarmai et al. (2003) considered the problem of optimizing the
dimensions of the welded I-girder, where three metaheuristic algorithms
were applied, as well as Rosenbrock's method.

The I-girder optimization is an actual problem in many previously cited
papers. The analysis of global stability is specific to this type of structure.
Ellifritt & Lue (1998) analysed the global stability of the I-girder with a
channel cap (U-profile), proposing the analytical model for the calculation.
The model is experimentally verified. Trahair (2009) studied the I-crane
girder concerning lateral distortion buckling according to Australian
Standard (AS). The design method proposed is applied to a concrete
example. Mela & Heinisuo (2014) optimized the weight and cost of the
high-strength steel welded I-girder by the Particle Swarm Optimization
(PSO) algorithm. Gaska et al. (2017) analyzed the stresses due to the local
bending of the I-girder bottom flange within the single-beam bridge crane
using Eurocodes. The obtained analytical results were compared to those
from the FEA conducted by ABAQUS. Pavlovi¢ et al. (2018) applied the
Generalized Reduced Gradient (GRG2) algorithm to the mono-symmetric
welded I-girder of the single-beam bridge crane, with significant material
savings for the given examples. Sitthipong et al. (2018) considered the
complex design of a crane runway beam, composed of an I-section and a
U-section, using ASME standards, concerning deflection and stress. In the
paper by Schaper et al. (2019), lateral torsional buckling is also considered
in various welded I|-girder shapes. Besides the usual checking procedure,
a simplified verification according to Eurocode was made. Molnar et al.
(2022) compared the analytical results to those obtained from the FEA
analysis made in ANSYS on the example of the single-beam bridge crane
I-girder.

The numerous publications mentioned show a broad application of
metaheuristic optimization algorithms. In this paper, the MFO algorithm is
applied for a single-objective multi-criteria optimization problem to reduce
the weight of the single-beam bridge crane girder. MFO is highly efficient
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in solving problems in mechanical and structural design, as shown in the
paper by Mirjalili (2015) which presented the algorithm. Besides the good
mechanical and structural design results compared to some other
algorithms, it stands out in complex examples such as a marine propeller
analysis. The comparison between the MFO algorithm and other
algorithms was also presented in Pavlovi¢ et al. (2022), where authors
studied the weight reduction of the welded cantilever beam subjected to
restrained warping.

The research subject in this paper is the analysis and optimization of
the welded |-cross-section with a U-profile as the top flange of the main
girder of the single-beam bridge crane. A U-profile can be easily
manufactured by cold-forming. Due to its geometry, the cold-formed U-
profile enables a more rational material use, providing better overall
resistance of the girder to the lateral instability, which is the most critical
condition for that carrying structure. Furthermore, as the top part of the
girder, the U-profile can be formed from a 0.5 cm thick plate, which ensures
a lighter type of a carrying structure. This cross-section is simpler than the
standard I-profile reinforced with a standard U-profile or a standard I-profile
reinforced with two L-profiles. In this way, a light welded structure of the
girder is achieved, composed mainly of thin plates (except for the bottom
flange), which satisfies all necessary design and work conditions.

The trolley wheels run on the bottom flange and cause its local
bending, while the top flange is compressed, so it must be stable in both
vertical and horizontal planes. Using standard rolled I-profiles in single-
girder bridge cranes is not rational because of the preceding reasons, so
these girders are mostly overdesigned.

The objective of the proposed solution in this research is to show that,
in this manner, it is possible to gain extra savings in the plate material and
thus reduce the total weight of the girder. Since the upper part of the girder
is exposed to compression, this solution increases the global stability of
the girder and provides the most optimal structure. Finally, the results are
compared to the welded girder optimization results obtained by Pavlovi¢
et al. (2018) for four examples of single-beam bridge cranes.

Optimization problem

The weight reduction of the welded main girder means to determine
the optimal geometric parameters for the proposed type of the cross-
section, while all constraint functions must be satisfied.




Figures 1 and 2 present the general view of a single-beam bridge
crane with the accompanying equipment and the cross-section of the
welded girder with the trolley, respectively.

il -+ u

Figure 1 — General view of the structure of the single-girder bridge crane

m

Figure 2 — Cross-section of the welded girder and the trolley (A — A section)

Figure 1 shows the crane-carrying structure which consists of the
main girder and the end girders. It also shows an electrical winch with the
trolley moving along the main girder.

Figure 2 shows the cross-section of the main girder with the trolley
hanging on the bottom flange. This cross-sectional area is the subject of
the optimization task.
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Mathematical formulation of the optimization problem

This single-objective multi-criteria optimization problem can be
defined as:

min [f,, (X)] subject to, (1)

g (X)=g,(X)-gu(X)<0, [, <x, <u,, 2)

where f,(X) is the objective function, gi(X) are the constraint functions,
gir(X) is the real value of the criterion, gis(X) is the permissible value of the
criterion, i=1,..,m is the number of constraints, j=1,..,n is the number of
design variables, and Xis the design vector made of n variables.

The variables (x;) are values that should be defined during the
optimization process, and each of them is defined by its lower (/}) and upper
limit (u;). This paper considers seven geometric variables (Figure 3):

X=[hdbth ha], (3)

where h is the web height, d is the web thickness, b is the bottom flange
width, t is the bottom flange thickness, b1 is the width of the top side of the
U-profile, hy is the inner width of the lateral side of the U-profile, and as is
the weld thickness, (Figure 3).

The input parameters for the optimization process are, Ostri¢ & ToSi¢
(2005): the Classification class, Q - the carrying capacity, L - the span, mx
- the mass of the trolley, b - the distance between the wheels of the trolley,
e1 - the distance between wheel 1 and the resulting force in the vertical
plane (Figure 4), nx — the number of trolley wheels (4 in all examples),
r=1.5 cm — the distance from the edge of the bottom flange to the vertical
load of the trolley wheel (Figure 3), y - the coefficient which depends on
the Classification class, y - the dynamic coefficient of the influence of load
oscillation in the vertical plane, k. - the dynamic coefficient of crane load
in the horizontal plane, Kr - the coefficient of stiffness (depending on the
Classification class, the purpose of the bridge crane, and the control
condition), Ty - the permissible time of the damping of oscillation of the
girder (depending on the purpose of the crane), vi — the load case 1
factored load coefficient, v — the load case 2 factored load coefficient,
E=21000 kN/cm? - Young's modulus of the plate material, and R. - the
minimum yield stress of the plate material.

In all considered examples in this research, the crane control is by an
operator on the floor, using a pendant system.




Cross-sectional area (the objective function)

The cross-sectional area (Figure 3) f, of the welded girder is given by
the following equation, Eq. (4):

foZAp+As’ (4)

where A, is the area composed of the U-profile (Ay), the web (Ay), and the
bottom flange (Ar), and As is the area of the welded joints.

Hy

Ya
¥,

Figure 3 — Cross-section of the main girder of the single-beam bridge crane
A, =4, +A4,+ A4, (5)
A =4a2, (7)

where A, is the area composed of the U-profile (Ay), the web (Ax), and the
bottom flange (Ar), As is the area of the welded joints, ri=r>+s is the outer
radius of the U-profile, r2 is the inner radius of the U-profile (r.=0.6 cm),
and s is the thickness of the U-profile (s=0.5 cm).
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Besides variables, Figure 3 depicts all other necessary geometry
parameters used in this analysis.

The principal central axes' position and the geometric properties in
the cross-section's characteristic points are calculated by well-known
equations.

The geometric constraints for some of the dimensions are given as
follows:

g=H-H,=h+t+s-H, <0, (8)
g2:bU_bUd:bl+2'(r2+S)_ va <0, 9)
g =H,-Hy, =h+nrn+s-Hy <0, (10)

where H is the profile height, Hq is the permissible value of the profile
height, by is the width of the U-profile, buq is the permissible value of the
width of the U-profile, Hy is the height of the U-profile, and Hyqs is the
permissible value of the height of the U-profile (Figure 3).

Static model of the main girder

The following static scheme shows a model of the main girder in the
form of a simple beam with loads in the vertical and horizontal planes
(Figure 4). The location of forces on the beam corresponds to maximum
bending moments, which are predominant for this type of structure.

b«

€1 €2
F1 Rv F2
q
A & o) B
Finll | Fon™ 2
(L-eyr2 7T
€e1/2 L/2

|
L

Figure 4 — Static scheme of the main girder of the single-beam bridge crane

where Ry is the resulting force in the vertical plane, F, F. are the acting
forces in the vertical plane, upon the bottom flange, from trolley wheels 1
and 2, respectively, e; is the distance between wheel 2 and the resulting
force in the vertical plane, Fin, F21 are the acting forces in the horizontal
plane, upon the bottom flange, from trolley wheels 1 and 2, respectively,
and q is the specific weight per unit of length of the girder.




The quantities necessary for defining the optimization criteria are
being calculated by using the well known expressions (Ostri¢ & ToSic,
2005).

The next sub-chapters introduce the criteria for analyzing and
calculating the single-beam crane main girder. All conditions that have to
be fulfilled related to strength, stability, stiffness and oscillation are taken
into account according to Ostri¢ & ToSi¢ (2005) and Serbian Standards:
SRPS U.E7.121:1987, SRPS U.E7.081:1987, SRPS U.E7.086:1987, and
SRPS U.E7.101:1991 (Petkovi¢ & Ostri¢, 1996).

Strength criterion

In this research, only normal stress components are considered.
Tangential stresses are neglected, as the bending moments are
predominant for this type of structure.

The maximum stresses at the observed points (Figure 3) must be
lower than the permissible ones (047 or 0g42). In addition, the local stresses
in the x and z directions must be lower than oy4/, where gq1, 042 are the
permissible stresses for the load case 1, and the load case 2,
rescpectively.

For this criterion, the constraint functions are:

M, My
=0,-0y=—+—-0,<0, 11
84 1 d1 A le d1 (11)
M, My
=0, -0, =—+——0, <0, 12
&5 2 a1 w, Wzy a1 (12)
M, My
0y, — 0y =—+—"-0, =0, 13
86 3 a1 W, W3y d1 (13)
g, =0,,—04 <0, (14)
M
gSZO-Az_O-dIZ_V_O-dISOa (15)
Ax
g =04.—-0,4=K, -B/t*? -0, <0, (16)
€0=0u—0n =K, -B/t*? -0, <0, (17)
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g1 =0c, =04, =0, (18)
M M
812=0c, =04 = V+_H_Gdlgoa (19)
WCx Cy
g3=0¢. — 0y =K, B /t?—0,<0 (20)
g4=0cn—0n=K¢ B /t* -0, <0, (21)
2
O 4u :\/(GAZ+O-A](Z) +0Akx2_(GAz+GAkz)O-Akxa (22)
2
Ocu= \/(O-Cz +UCkz) + 0o’ _(O-Cz +O—Ckz)O-Ckx ) (23)
o,=R, /v, v,=1.5, (24)
o, =R, /v,, v, =1.33, (25)

where 0gp; is the normal stress at the observed point p (p=1, 2, 3, A, C),
Wpx, Wpy are the section moduli of the area A, for the point p, Gaxz, Oaxx are
the local stresses at the point A, in both directions, respectively, Ockz, Ockx
are the local stresses at the point C, in both directions, respectively, 0a.,
Oc,u are the equivalent stresses at the point A and the point C, respectively,
My, My are the bending moments in the vertical and horizontal planes,
respectively, Py is the maximum pressure of the trolley wheel, Kaz, Kax are
the corresponding coefficients for the local stresses at the point A, and Kc.,
Kcx are the corresponding coefficients for the local stresses at the point C
(Ostri¢ & Tosi¢, 2005).

Strength criterion for the welded joints

The maximum stress in the welded connection (os) must be lower than
the permissible one (o0ys). The constraint functions for this criterion are:

F.-S
g5 =0, ~0, =———-0.75.0, <0, (26)
2-1, -a,
g =a,—0.7-min(s, d)<0, (27)




where Fris the maximum shear force, Sy is the static moment of the area
A, about the x-axis, and I is the moment of inertia of the area A, about the
X-axis.

Local stability of the web

Checking the local stability of the web is performed according to
Standard SRPS U.E7.121:1987 (Petkovi¢ & Ostri¢, 1996). The constraint
function is:

g7 =vi-M, /W, —min(R,, ¢, x,-R,)<0, (28)

where Wiy is the section moduli of the area A, for point 4, X is a reduction
factor of the web, SRPS U.E7.121:1987 (Petkovi¢ & Ostri¢, 1996), and c,
is a coefficient, SRPS U.E7.121:1987 (Petkovi¢ & Ostri¢, 1996).

Global stability of the welded girder

The verification of global stability, in this case, is performed based on
Serbian Standards: SRPS U.E7.081:1987, SRPS U.E7.086:1987, and
SRPS U.E7.101:1991 (Petkovi¢ & Ostri¢, 1996). The constraint functions
for this criterion have the foIIowing form:

813 = Mmax O-lzao-ZZ -1.14- Xp Oal <0, (29)

g =1, / ,/23 (30)
Ay

where X, is a non-dimensional coefficient of the global stability, SRPS
U.E7.081:1987 (Petkovi¢ & Ostri¢, 1996), i, is the radius of gyration of the
U-profile about the y-axis, iy, is the required value of the radius of gyration,
and I,y is the moment of inertia of the U-profile about the y-axis.

Criterion of oscillation

With this criterion, the damping time (T) of oscillations (relaxation
time) of the mass my, located in the middle of the main girder, must be
checked (Ostri¢ & ToSi¢, 2005). The constraint function has the following
form:

g0 =T-T,=7-In(20)/y, - T, <0, (31)
m=Q+m, +17-m/35, (32)
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r=m-\Jm-1/(12-B,), (33)

where m is the mass of the girder, m; is the mass concentrated at the
midspan, B,=E-I, is the flexural rigidity of the girder, 7 is the period of
oscillations, and yy is the logarithmic decrement which shows the rate of
oscillation damping (depending on the ratio between the height of the
welded girder, H and the span, L) (Ostri¢ & ToSi¢, 2005).

Criterion of stiffness

This criterion analyses deflection in the vertical plane. In addition to
the acting of trolley wheels (f;), the specific weight of the main girder (f;) is
also observed. The total deflection (f,) must be lower than the permissible
one (fa):

Su=h+ 1, s fa=K; L, (34)
F,-D F. ?
fi=— =L 1—6-(b—kj : (35)
48Bx E,St L
5.q-If
O )

where F1 s, F2st are the static forces in the vertical plane, upon the bottom
flange, from trolley wheels 1 and 2, respectively (Ostri¢ & ToSi¢, 2005).
The constraint function, based on Egq. (37), is:

g2l:ﬁ4_fd:ﬁ4_Kf'LSO' (37)

Optimization method

The MFO algorithm is a relatively new population nature-inspired
metaheuristic algorithm based on the computer simulation of the
navigation of moths, introduced by Mirjalili (2015). This algorithm is widely
used in science and engineering. Moths use their unique navigation
methods at night. They have evolved to fly at night using the moonlight,
where a moth flies by maintaining a fixed angle in relation to the moon.
Since the moon is so far from a moth, a moth flies in a straight line. Moths
fly spirally around the artificial lights because they are tricked by them.
When moths see artificial light, they try to maintain an angle to the light




source. Since such a light source is extremely close compared to the
moon, maintaining the angle to the light source causes a useless or deadly
spiral flying path for moths. In this algorithm, it is presumed that the
candidate solutions are moths, and variables are the positions of moths in
the space. Moths and flames are both solutions. The difference between
them is the way how to treat and update them in each iteration. The moths
are actual search agents that move around the search space, whereas
flames are the best position of moths that have been obtained so far.
Therefore, each moth searches around a flame and updates it if it finds a
better solution. In this way, a moth never loses its best solution.

The pseudocode for this metaheuristic optimization algorithm is
shown in Mirjalili (2015).

Optimization results

The optimization process will be based on the presented MFO
method, in the MATLAB software. In addition, the solutions of single-beam
bridge cranes, taken from Pavlovi¢ et al. (2018), will be considered as
examples to compare the results obtained (four examples of single-beam
bridge cranes).

Table 1 shows the data of single-beam bridge cranes that are in
exploitation. These data also represent the input parameters for the
optimization process, where A, represents the cross-sectional area of the
standard rolled profile and bmin represents the minimum value for the
bottom flange width. All cranes are in Classification class 2.

Other input parameters are: y=1.05, w=1.15, K=1/500, and T4=15 s.

Table 1 — Technical parameters of single-beam cranes

Q L Mg bk €1 bmin ka Re Apr
Bxample ) m) (ko) (mm) (mm) (mm) () (KNem?) (cm?)
1 5 16.78 350 405 202.5 100 0.1 27.5 260
2 3.2 10.0 340 196 98 82 0.1 23.5 143
3 10 7.75 610 708 354 100 0.05 235 239
4 6.3 5.92 380 420 225 100 0.1 23.5 181

The control parameters of the MFO algorithm used for each example
in this paper are N,0,=200 - population size and max_it=300 - maximum
number of iterations.

The maximum values (in centrimeters) for the characteristic geometric
quantities are: Hy = 100, byq = 40, Hys = 20.
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The boundary values (in centrimeters) of the variables for all bridge
cranes are: 20 h<100,05<d<2, bmin<b=<30,06<t<4,10< b <
40,3<h1<20,0.3<as<0.7.

After applying the MFO optimization procedure, the following optimal
geometric parameters, the value of the objective function and the
characteristics of the optimization procedure are obtained (Table 2), where
Std is the standard deviation of the optimization process.

Table 2 — Optimization results

Example d b t b hy o Std
(cm) (em) (cm) (em) (cm) (em)  (em?) ()

1 8152 05 10.00 1.88 37.80 1524 9544 1654

2 4648 05 820 174 3380 300 59.14 597

3 68.95 05 1000 269 3742 3.00 8473 6.41

4 4414 05 1000 220 3249 300 64.98 363

The optimal value for the variable as is 0.3 cm in all examples.
The following figures show the convergence graphs for all examples

(Figures 5-8).

Objective function

Figure 5 — Convergence graph for Example 1
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Figure 6 — Convergence graph for Example 2
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Figure 7 — Convergence graph for Example 3
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Figure 8 — Convergence graph for Example 4
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Table 3 shows the rounded values of the optimal geometric

parameters, the optimal areas Aop, and the material savings.

Table 3 — Rounded values of the optimal geometric parameters and the material savings

Example d b t b1 h1 Aop Saving
(cm) (em) (cm) (cm) (em) (cm) (cm?) (%)

1 815 05 10.0 1.9 37.8 153 9529 63.35

2 46.5 05 8.2 1.8 33.8 3.0 59.25 58.57

3 69.0 05 10.0 27 37.5 3.0 84.59 64.61

4 441 05 10.0 2.2 32.5 3.0 64.64 64.29

To determine which criteria are the most critical, Table 4 shows the
values of the optimization criteria (for the obtained optimal geometric
parameters, Table 2) g and the boundary (permissible) values for two
characteristic examples of optimization gis. In addition, Example 1 with the
largest bridge span and Example 3 with the largest carrying capacity were

analysed.

For all values of i=1,..,m, m=21, g is less than or equal to gis, which
means that the boundary conditions were not exceeded. Then, comparing
two examples of bridge cranes, where the first one has a twice greater
span than the second one, and the second one has a twice greater
carrying capacity than the first one, it is determined which criteria are the
most critical for both cases.

Table 4 — Calculated and permissible values of all criteria for Example 1 and Example 3

i Example 1 Example 3

Qir Jid Gir Jid
1 (cm) 83.90 100 72.13 100
2 (cm) 40 40 39.62 40
3 (cm) 16.34 20 4.10 20
4 (kN/cm?) 15.25 18.33 15.67 15.67
5 (kN/cm?) 15.26 18.33 15.61 15.67
6 (kN/cm?) 14.81 18.33 11.77 15.67
7 (kN/cm?) 14.14 18.33 11.80 15.67
8 (kN/cm?) 12.86 18.33 9.74 15.67
9 (kN/cm?) 3.21 18.33 3.14 15.67
10 (kN/cm?) | 10.51 18.33 10.27 15.67
11 (kN/cm?) | 20.68 20.68 17.67 17.67
12 (kN/cm?) | 14.38 18.33 11.40 15.67
13 (kN/cm?) | 8.72 18.33 8.52 15.67




i Example 1 Example 3

Qir Jid Qir Jid
14 (kN/cm?) | 6.31 18.33 6.17 15.67
15 (kN/ecm?) | 1.25 13.75 2.27 11.75
16 (cm) 0.3 0.35 0.3 0.35
17 (kN/cm?) | 14.57 14.58 16.42 19.06
18 (kN/cm?) | 15.26 15.26 15.67 16.41
19 (cm) 15.66 45.38 12.89 19.38
20 (s) 14.03 15 4.05 15
21 (cm) 2.74 3.36 0.64 1.55

The FEA for Examples 1 and 3 were carried out in Autodesk Inventor
Nastran software to check the optimization results for the stress and the
stiffness (deflection) criteria. The 3D CAD models of the main girders were
made in Autodesk Inventor software using the data from Tables 1 and 3.
They were the basis for creating the finite element models using the shell
elements. The analyses were conducted for the critical trolley position
depicted in Figure 4.

Figures 9 and 10 depict the equivalent stress and the deflection for
Example 1, respectively.

CONTOUR: SHELL VON MISES STRESS (MPa)

Element: 2829
SHELL VON MISES STRESS TOP (MPa) = 58.58!
SHELL VON MISES STRESS BOTTOM (MPa) = 1'

Figure 9 — Equivalent stress for Example 1
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CONTOUR: DISPLACEMENT (mm) (TY)
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Figure 10 — Deflection for Example 1

Figures 11 and 12 depict the equivalent stress and the deflection for
Example 3, respectively.

CONTOUR: SHELL VON MISES STRESS (MPa)

Element: 1387
SHELL VON MISES STRESS TOP (MPa) =
SHELL VON MISES STRESS BOTTOM (MP.

Figure 11 — Equivalent stress for Example 3

I B — e i B
7.320 6405 -5.490 -4.575 -3.660 -2.745 -1.830 0915 0.000

CONTOUR: DISPLACEMENT (mm) (T}

24—1

Figure 12 — Deflection for Example 3




Conclusion

This research presents the analysis and the optimization procedure
for a welded I-profile with a U-profile as the top flange (the main girder) of
the single-beam bridge crane, according to national standards, using the
MFO optimization method. The criteria of permissible stresses in the
characteristic points of the cross-section, the stress in the weld joints, the
local stability of the web, the global stability of the girder, the deflection of
the girder, the damping time of oscillations, and the geometric limits were
applied as constraint functions. The objective function is the cross-
sectional area.

The results justify the application of the presented model of the
welded |-girder with a U-profile as the top flange and the applied nature-
inspired optimization algorithm. This is concluded by comparing the results
from Table 3 to the results in Pavlovic et al. (2018).

Significant material savings within 58.57-64.61% are achieved
compared to the considered examples of single-beam bridge cranes
(made of standard |-profiles, Table 1). These results are better than those
in Pavlovic et al. (2018) (which are within 47.36-61.98%).

It should be noted that the global stability of the welded girder is of
primary importance (except for the last two examples where there are
smaller spans and higher carrying capacities). It is to be expected, so when
designing these types of structures, one should pay attention to this
condition. The local stability of the web is also essential in the analysis and
optimization of these types of girders, which is specific for the examples
where spans are larger than 10 m (Example 1, Table 4). Considering the
strength criterion, in all examples, the stress at the point C achieved its
boundary value, while in the cases of higher carrying capacities, it occurred
in points 1 and 2. The stiffness criterion was not dominant in these
examples. Also, the oscillation damping period did not have values close
to the limit, except in the case with a larger span (Example 1). The stress
in the welded joints was far lower than the limit values in all examples.

Regarding the applied metaheuristic optimization algorithm, the MFO
method proved to be very efficient, which can be seen from the
convergence graphs (Figures 5-8), i.e. the standard deviation (Std, Table
2). Furthermore, the graphs show that the minimum value of the objective
function is achieved in fewer than 100 iterations, in one example in fewer
than 50 iterations (Figure 8).

The FEA for Examples 1 and 3 (Figures 9-12) showed good
compliance with the optimization results (Table 4). The relative deviation
for the Example 1 maximum equivalent stress was 3.7% (the optimization
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result was 20.68 kN/cm? while the FEA yielded 19.93 kN/cm?), and the
relative deviation for the Example 1 deflection was 1.1% (the optimization
result was 2.74 cm while the FEA yielded 2.71 cm). In addition, the relative
deviation for the Example 3 maximum equivalent stress was 5.5% (the
optimization result was 17.67 kN/cm? while the FEA yielded 18.69 kN/cm?),
and the relative deviation for the Example 3 deflection was 12.5% (the
optimization result was 0.64 cm while the FEA yielded 0.73 cm).

As a large number of constraint functions can be used in the
presented procedure, this analysis can be further expanded. Additional
conditions may be included in future research, such as manufacturability,
green design, material fatigue, economic aspects, etc.
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Solucién 6ptima para la viga puente de grda monoviga mediante el
algoritmo Moth-Flame

Goran V. Pavlovi¢, autor de correspondencia, Mile M. Savkovi¢,
Nebojsa B. Zdravkovi¢, Goran B. Markovi¢, Predrag Z. Mladenovi¢

Universidad de Kragujevac, Facultad de Ingenieria Mecanica y Civil de
Kraljevo, Departamento de Maquinaria Pesada, Kraljevo, Republica de Serbia

CAMPO: ingenieria mecanica
TIPO DE ARTICULO: articulo cientifico original

Resumen:

Introduccion/objetivo: El articulo analiza y optimiza la viga I- soldada del
puente grua monoviga con perfil en U como ala superior. Esta solucién
tiene como objetivo proporcionar una estructura de transporte mas ligera,
por lo que el objetivo principal es minimizar el peso de la viga principal, es
decir, el area de la seccién transversal, al tiempo que se cumplen los
requisitos definidos por las normas nacionales y las limitaciones
geomeétricas.

Métodos: Se eligio el algoritmo Moth-Flame Optimization (MFO) para
resolver esta tarea de optimizacion multicriterio de un solo objetivo
utilizando MATLAB. Ademas, los resultados se verificaron utilizando el
anélisis de elementos finitos (FEA).

Resultados: La forma de viga propuesta se justifica en ejemplos de
soluciones reales de puentes grua monoviga y en los resultados de
investigaciones anteriores. En este caso, se consiguen ahorros
significativos en el material y mejores resultados en comparacién con los
ejemplos de la investigacion anterior.

Conclusién: La forma de viga propuesta, la metodologia, el algoritmo de
optimizacion y los ahorros conseguidos justifican plenamente esta
investigacion. Ademas, este algoritmo permite la aplicacion de muchas
funciones de restriccion, con lo que se obtienen los valores optimos de
numerosas variables en un periodo relativamente corto. Por tanto, no seria
posible encontrar la solucion para esa tarea de ingenieria aplicando
meétodos de optimizacion analitica.

Palabras claves: puente grua, viga soldada, FEA, optimizacion,

metaheuristica.
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OnTumankeHoe pelleHvne Anst ogHo6anoyYHoON NoakpaHoBoW banku
MOCTa C ucnosb3oBaHueM anroputma Moth-Flame

lopaH B. MaBnosu4, koppecnoHAeHT, Mune M. CaBkoBuy,

Hebotiwa B. 3ppaBkoBuy, MopaH [1. Mapkosuy, [Mpedpaz 3. MnageHoBu4
KparyeBaukuin yHuBepcuTeT, akynbTeT MeXaHUKN U rpaxgaHCcKoro
cTpouTenbcTBa B KpaneBso, kacdeapa TsKenoro MalmHOCTPOEHUS,

r. Kpaneso, Pecny6nuka Cepbus

PYBPUKA TPHTW: 55.51.31 KpaHbl n kpaHoBoe obopyanoBaHue
BWO CTATbW: opurnHanbHasa Hay4Hasi ctTaTbsl

Pesrome:

BsedeHue/uernb: B  OaHHoOU cmamebe aHanusupyemcsi u
onmumusupyemcsi ceapHasi 0symaspoeasi barnka 00HOb6aro4YHo20
mocmoeoeo kpaHa ¢ U-obpasHbiM ripogurniem 8 kadyecmee eepxHel
namenu. 3mo peweHue obriee4aem HeCyuwyo KOHCMPYKYU, mak Kak
OCHOBHOU Uesibio 8/19emcsi MUHUMU3auusi eeca 0CHoO8HoUl 6arku, mo
ecmsb nowadu rornepeyHo2o cevyeHus npu cobmodeHuu mpebosaHul,
ornpeodeneHHbIX 20cydapcmeeHHbIMU cmaHdapmamu u
2e0MempuYeCcKUMU O2paHUYeHUsIMU.

MemoOsi: [nsa peweHusi odHoyenesol 3adadyu MHO20KpumepuasbHoU
onmumu3sauuu ¢ ucrosib3ogaHuem MATLAB 6bin ebibpaH anzopumm
onmumusayuu no npuHyuny "lnams mombinbka” (MFQO). Nomumo
moeao, pe3yribmamsi bbinu NPo8epeHbl ¢ MOMOWbI0 Memoda KOHEeYHbIX
anemeHmos (FEA).

Pesynbmamei: [NpednoxeHHas ¢popma 6anku obocHosaHa ripumepamu
pearnibHbIX  peweHuli  00HObaroYyHbIX  MOCMO8bLIX  KpaHo8 U
pesynsmamamu npedbidywux uccredosaHul. B amom crnyvae
docmuezaromcesi 3HadyumersibHas 3KOHOMUSI Mamepuaros U fydwue
pesynbmambl [0 CpasHeHUo €  npumepamu  rnpedbidyuux
uccredosaHudl.

Bbigodbl: [NpednoxeHHas ¢hopma barnku, Memodosioaus, aneopumm
onmumusayuu u docmuaHymasi 3KOHOMUSI MOSIHOCMbIO orpasobigarom
OaHHoe uccrnedosaHue. [TomumMo moeo, amom anzopumm fo3gosssem
MPUMeHSsIMb MHOXeCcmeo o2paHudugarouux chyHKyul, briaeodapsi yemy
onmumaribHble 3Ha4YeHUs] MHoXecmea repeMeHHbIX 8bI800sImcsl 3a
OMHOCUMEIbHO KOpomkKul rpomMexXymok epemeHu. CriedogameribHo,
pewums 3my UHXeHepHylo 3adauyy, [pUMeHsis aHaniumuyeckue
mMemoOb! onmumu3auuu, 66110 6b1 HEBO3MOXXHO.

Knoyesble criogsa: mocmosol KpaH, ceapHas banka, MKO,
onmumu3sayus, Memasspucmuka.
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OnTuMMarnHo pellewe Hocaya jeaHorpegHe MOCHe ausanuue
npuMmeHom anroputma Morsua

lopaH B. MNaenosuh, aytop 3a npenucky, Mune M. Caskosuh,

Hebojwa b. 3gpaskosuh, MopaH . Mapkosuh, lpedpae 3. MnageHoBuh
YHuBep3uTeT y KparyjeBuy, ®akynTeT 3a MaWwMHCTBO M rpaheBUHapCTBO y
KpambeBy, Kategpa 3a Tewwky mawmnHorpagky, Kparseso, Penybnuka Cpbuja

OBJIACT: mawmnHCcTBO
KATETOPWJA (TWUM) YNTAHKA: opurvHanHm HayyYHu pag

Caxemak:

Yeod/urb: Y pady ce aHanusupa u onmumu3upa 3asapeHu I-Hocay
JjedHoepedHe mocHe dusanuue ca U-rnpoghuriom kao 20pHOM fiaMesiom.
Os0 pewerse obesbehyje nakwy Hocehy KOHCMpyKuujy, mako 0a je
efasHu Uuib MUHUMU3Upar-€ MeXUHEe eflagHoe2 Hocada, OOHOCHO
rospLuuHe rorpeyHoe npeceka, y3 ucrymwasare ycrosa OeuHUCaHUX
HayuoHanHumM cmaHdapduma u 2e0MempujcKUM O2paHuYerHUMa.

Memode: Aneopumam Mosbuya (MFQO) usabpaH je 3a pewasar-e 0802
JedHouurbHoe suweKkpumepujymcko2 3adamka onmumu3auuje npuMeHom
MATLAB-a. Takohe, pe3synmamu cy eepuchukogaHu Kopuwhemem
memode KoHayHux esiemeHama (MKE).

Pesynmamu: lNpednoxeHu obnuk Hocaya je ornpasdaH Ha npuMepuma
pearnHux peuwera jedHo2pedHUX MOCHUX Ousanuua. Y osom cry4ajy
nocmuxy ce 3HadyajHe ywmeode y mamepujany u 6orbu pesynmamu y
00HOCY Ha fpuMepe U3 rPemxo0Ho2 UCmpaxueara.

Sakbyyqak: [NpednoxeHu obnuk Hocada, Memodoroeuja, ansopumam
onmumu3auyuje u ocmeapeHe ywmede y nomryHocmu orpasdasajy 080
ucmpaxuear-e. lNloped moea, oeaj aneopumam omoeyhaea npumeHy
MHO2UX (byHKUUja O2paHu4er-a, fpu 4YeMy ce y penamueHO Kpamkom
nepuody Oobujajy onmumarHe epedHocmu 6pojHux eapujabriu. 36oe
moea, MpuMeHoM Memoda aHanumuyke onmumu3ayuje He 6u 6uro
moeyhe Hahu pewere 3a makag UHXeHepcKuU 3adamakx.

KbyyHe  peyu: wmocHa Qusanuua, 3asapeHu Hocady, MKE,
onmumu3sayuja, Memaxeypucmuka.
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