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Abstract:

Introduction/purpose: Studying the dynamics of the mutual influence of
supply and demand is relevant in connection with the financial losses that
arise due to uncertainty in demand and forecast errors. The work aims to
build a mathematical model of the dynamics of this interaction for the market
of one product.

Methods: The paper proposes a mathematical model of the states of the
supply-demand system, within the framework of which the processes
occurring in this system are considered from the perspective of the
methodology of economic synergetics. The mathematical model of
dynamics has the form of a system of two differential equations with
quadratic nonlinearity.

Results: The use of the proposed model to reproduce various dynamic
states of market self-requlation processes made it possible to identify the




hierarchy of transition from stable dynamic regimes to unstable ones with
the appearance of corresponding bifurcations. The main attention was paid
fo studying the behavior of the system at the boundaries of the stability
region.

Conclusion: The existence of a saddle-node bifurcation of limit cycles has
been revealed, which suggests the appearance of stable self-oscillations in
the case of a “soft” cycle and unstable ones in the case of a *hard” cycle.
When studying a bifurcation of codimension two - “double zero” - special
dynamic structures were discovered, determined by the properties of global
bifurcations. This type of behavior is characterized by self-oscillations with
a low frequency, which gives rise to the so-called “ultra-long waves” of the
economic state.

Key words: dynamics of the supply-demand system, time lag, limit cycle,
bifurcation, chaos.

Introduction

The formation of market equilibrium in the supply-demand system for
a particular product in quantitative terms, as well as the equilibrium price
for this product, has long attracted the attention of researchers. The
problem of constructing a market equilibrium model is currently the focus
of research programs of the world's leading scientific centers specialized
in microeconomic analysis. The ability to analyze and make informed
forecasts regarding the dynamics of the interaction of supply and demand
allows decision makers to optimize resource allocation, ensure consumer
satisfaction, reduce risks, and improve production efficiency.

Neoclassical economic theory offers two main models to explain the
processes leading to the formation of market equilibrium in the supply-
demand system. These are the Walras model and the Marshall model
(Davar, 2015; Donzelli, 2008; Arena & Caldari, 2024 and etc.). In his
model, Leon Walras analyzed the establishment of equilibrium between
supply and demand occurring in the short term. According to his model,
when the price increases, the quantity demanded will decrease, as a result
of which the quantity supplied will exceed the equilibrium value. The
market for a particular product is in equilibrium if, at the prices prevailing
on the market for all goods, the quantity of the product required to satisfy
the demand of potential buyers is equal to the quantity supplied by
potential sellers. In contrast to the approach proposed by Walras, Alfred
Marshall considered the price of the product as the driving force which is
leading the market to a state of equilibrium. If the demand price exceeds
the supply price, then, according to the Marshall model, such a price
difference stimulates producers to increase supply, and buyers will be able
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to expand their demand until the price is established at a new, higher
equilibrium level. This is true for a longer period. The last statement from
the standpoint of the theory of the firm regarding equilibrium in the supply-
demand system is formulated as follows: at the moment of market
equilibrium, the price of output must be equal to the marginal cost of the
enterprise. The equilibrium price, as well as the equilibrium volume of
goods (supply), are determined by the intersection of the supply and
demand curves. This is the so-called Marshall Cross Diagram (Figure 1).

A
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Supply
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v

Quantity (demand and supply)

Figure 1 — Market equilibrium as the point of the intersection of the demand curve and the
supply curve

It should be noted that both the Walras model and the Marshall model
consider market equilibrium as the final result of the interaction of the
demand and supply functions, while at the present stage of economic
theory development, it is of interest to analyze the dynamics of the
processes leading to the establishment of this equilibrium.

Mathematical models of varying complexity are proposed to describe
economic dynamics (Li & Ma, 2020; Voronin et al, 2020; Fu et al, 2023;
Chen et al, 2024 and etc.), but this problem is still far from being resolved.
The founder of the study of economic dynamics is Griffith Conrad Evans,
who proposed a mathematical model of monopoly. In his model, Evans
used a first-order differential equation with constant coefficients to
describe the demand function, which depends on price dynamics. Within
the framework of this model, cyclical price fluctuations in the market of one
product are considered under the assumption that the price changes
smoothly over time. This model has been developed in a number of studies
and still continues to attract interest (Nahorski & Ravn, 2000; Pomin, 2018;
Dilenko & Tarakanov, 2020 and etc.). But in real conditions, price changes
occur abruptly, and it is especially important to take this fact into account




when constructing mathematical models in which the forecast is carried
out for a short-term period (He, 2018; He et al, 2021; Zabolotnii & Mogilei,
2023). In addition, the presence of a delay that occurs in the process of
establishing the equilibrium price may cause instability of the system and
lead to fluctuations. In particular, when analyzing mathematical models of
nonlinear systems with delay, which were developed for systems of
different nature, such complex phenomena as bifurcations and chaos were
discovered (Liao et al, 2007; Wei & Yu, 2011; Le et al, 2012 and etc.).

The study of real economic processes allows us to conclude that
changes in the price of goods and production volume have a mutual
influence and cannot be considered in isolation from each other. In a
number of recent articles (Voronin et al, 2020; He et al, 2021; Zabolotnii &
Mogilei, 2023 and etc.), much attention is paid specifically to the dynamics
of the processes of interaction between supply and demand. Thus, an
increase in operating costs or a shortage of raw materials may cause
production delays, as a result of which the supply of goods may not
correspond to immediate demand, i.e., there is some delay (Cai, 2005;
Hattaf et al, 2017; Davizon et al, 2023). For example, there may be a time
lag between the adoption of an investment decision and its
implementation. The result of this delay is the emergence of stable
fluctuations of price around the market equilibrium, the emergence of large
growth cycles and even the possibility of a sudden market collapse (Levi
et al, 2018; Chen et al, 2024). This chaotic behavior in the system is the
result of the appearance of the Hopf bifurcation, when the delay reaches
a critical value (Li et al, 2019; Elkarmouchi et al, 2024).

The purpose of this work is to construct a mathematical model that
would allow analyzing the dynamics of the balance between supply and
demand. In this work, we will limit ourselves to the simplest situation, when
there is only one type of product and its implementation is carried out on
one market. Models of such a dimension were studied by both traditional
and modern methods of mathematical stability theory with the
corresponding conclusions about the behavior of the economic system
near the equilibrium position (and no more!), which gives only approximate
information about the evolution of the object under consideration. The
mathematical model of dynamics proposed in the work also allows us to
consider the processes occurring in the market of several goods, but not
in a quantitative, but in a qualitative form with the corresponding order
parameters. At the same time, changing the system parameters allows us
to observe a wide range of market dynamics, namely, the equilibrium state,
periodic and chaotic behavior.
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Method used and the basic mathematical model

In microeconomic analysis, when constructing mathematical models
of the market equilibrium, the following notations are traditionally used:
p=p(t) isthe price of a unit of goods depending on time ;; y = y(¢) is the
volume of products, which also depends on time; D=D(p;y) is the
volume of demand in the market; S=S(p;y) is the volume of supply of

goods produced; P, = P,(p; y) is the market demand price for a product;

and P, = P.(p;y) is the market offer price from the manufacturer.

The principles of constructing dynamic models consist of ways to
describe time lag factors on both the demand and supply sides. The
simplest assumption regarding the delay, if the analysis is carried out in
discrete time, is a concentrated delay (lag) of supply from demand for one-
time interval (the lag T):

D(p; y;t)=S(p;y;t—T)- (1)

Equality (1) occurs when a certain period of time is required to produce

a given volume of goods. This period of time is called the production lag.

In this case, as a rule, it is assumed that there are no inventories, i.e., to

meet demand, all manufactured products are supplied to the market in full.

It should also be emphasized that the manufacturer builds his expectations

of the future price based on the existing price, i.e., actually focuses on the
price of the previous period 7, :

P(p;y;t)=P(p; y;t=T,). )

If we consider the processes of interest to us in continuous time, then

we should replace distributed delays with continuously distributed ones.

One example of this type of model with a continuously distributed delay is

Voltaire’s system of integral equations for determining the price p(¢) and

the volume of a product ¥():

D(piy; 1) = [ K\(57)S(p; y; 1)
‘j (3)
P(p;0) = [ K, (6:2)P,(p; y; 7)d.

Functions of two variables KX, (;;z) and K,(s;r), called integral

equation kernels, determine the shape of the distributed delays.

In this article, which is a further development of the study of one of the
authors (Voronin & Chernyshov, 2007), in a qualitatively basic
mathematical model we will consider a system of two differential equations




that describe the evolution of the mutual influence of prices and volumes
of goods produced:

a% =D(p)~y;
dy_ dC(y) @
ﬂz—p—d—y,
where p — the unit price of the product; y — the volume of production
of goods in physical terms; D(p) — the market demand for a manufactured
product, depending only on the price at the current moment in time (here

dC(y)

and now); C(y) — the production cost; =P (y) — the supply price,

which is equal to the marginal cost of production; and «,f - the

parameters that have the meaning of the characteristic times for dynamic
variables.

The first of the equations of system (4), which is a system of two
ordinary differential equations, is essentially a reflection of the classical
market pricing scheme in the form of Leon Walras. Its basis is the price
formation mechanism which is focused on finding a position of equilibrium
between supply and demand. If the volume of demand exceeds the
quantity of supply, the price of a unit of goods increases, and in the
opposite case, it decreases. The second equation of system (4) describes
the process of establishing an equilibrium between the demand price (the
actual price of a unit of goods) and the supply price (marginal production
costs). The logic of this process provides for the fact of imbalance with the
need to regulate the volume of production of goods. Accordingly, if the unit
price of a product is greater than the producer's marginal cost, then the
firm's profit increases. Conversely, in the opposite case, there is a need to
limit production capacity. Significant assumptions were made when
constructing the model. The first of these assumptions should be
considered the hypothesis about producing only one type of product. The
second assumption relates to simplifying the market structure since either
the absence of competition is assumed or its impact is considered
insignificant. However, despite the above simplifications, system (4) has
quite complex behavioral properties, which will be the subject of this study.

Results and discussion

A substantive analysis of the qualitative behavior of system (4) should
begin with determining the price of a unit of goods P and the value of the
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output y, corresponding to the equilibrium position. To do this, we solve
a system of two algebraic equations with two unknowns:
D(p)=y;
{ (p)=y (5)
r=F ).

Let us assume that the algebraic system (5) has at least one positive
solution p~ and y*. The demand function D(p) will also be assumed to
be a nonlinear function of the price and that in a small neighborhood of the
equilibrium price value p* there is an expansion of this function in a Taylor
series up to and including cubic terms:

o dy(p-p)Y d(p-p) .
Dp)=dy+d(p-p)+ EEZLL L BEZL) oY) (6)
In equation (6), the coefficients 4, (izﬁ) have the meaning of the

corresponding derivatives of the demand function at the point p.

The cost function is usually represented as a quadratic function of the
variable y:

2
S
) =%+soy +G,. (7)

In equation (7), the coefficients in each term of the function C(y) are

constant values. Having differentiated the cost function by the output
volume variable y, one obtains:

P(y)=sy+s,. (8)
Then, from (5), one finds the relationship between the equilibrium value of

the price p* and the equilibrium value of the production volume y*:
sD(p")+s,~p =0,
* ¥ —S (9)
y=t=
Sl
At the next stage, it seems advisable to move in system (4) to new
variables f?=p—p* and )7=y—y*, which have the meaning of the
deviation of the original variables p and y from their equilibrium values.
To reduce the number of parameters in system (4), the time scale is
a
changed by introducing the coefficient 7=E. System (4), in this case,

takes the form:




(10)

From system (10), it is easy to obtain the equations for calculating the
equilibrium values p and y':

—~

(1)
(s, -0 + 2825 + 3% (5) =0

Obviously, one of the solutions of this system is trivial: p =0and y =0.
The second equation in system (11) is transformed to the form:
—k — 2 —_
5 (sld3(p ) +3sd,p +6(sldl—1)):O. (12)

It is obvious that equation (12), in addition to the trivial solution p =0,
can have two more roots:

. =3d, +4/9d —24d,(d, ~1/s,)

= 13
D> 2d, ( )
For the value p~ to be valid, the following condition must be true:
24d
9d; —24d,d, +—=>0. (14)

S

PR 3 ,
If 5,d, =1, then from (13) it follows that p, = p, =0 and p, =—d—2 . This
3
means that there is a double zero root.
To analyze the stability of the trivial equilibrium position p, and 3, of

system (10), let us construct a characteristic equation to determine the
eigenvalues of the linear part:

A +(ys,—d)A+y(1-ds,)=0. (15)
Quadratic equation (15) has negative real parts if the conditions for
stability of the equilibrium position are met:

}/Sl<dl; (16)
ds, <1.
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The system of inequalities (16) allows the construction of the stability
regions in the parameter space y, s,, d,. An example is the image of the

stability region on the plane y0s, (Figure 2).

\ s1=1/d,
si=d\/y

7
il

Figure 2 — Stability region at a fixed value d, on the plane y0s,

A
S1

It is of significant interest to study the dynamics of system (10) on one

of the boundaries of the stability region, namely ;/=a%. Let us assume
1

thatys, ~ d,, and the measure of approximation is determined by the small
parameter u:

u=d —ys,. (17)

By its nature, the parameter » is dynamic, i.e., it is associated with

the characteristic times of transition processes in price and output. Let us
express this parameter through purely static characteristics of the demand
and supply price functions, i.e., through 4, and s,, respectively:

_ d, _ﬂ.
Sl
In this case, the characteristic equation (15) takes the form:
d —
2 -w+S " 1—as)=o0. (19)
Sy
Considering that ¢, and s, are positive numbers and the second condition
is satisfied, which follows from the stability conditions of system (16),
namely d;s, <1, it makes sense to introduce the following notation:

2
o= o Lo (20)

Sy 5 d,
Then quadratic equation (19) takes the form:

4 (18)




/12—,u/1+a)2[ —dﬁ]:O. (21)

1
Accordingly, one obtains a solution to the quadratic equation (21):

2 2
A=ty B 8 2 (22)

227\ 4 4

Neglecting those powers of the parameter x that are higher than the first,
the following linearization of the roots of the quadratic equation is obtained:
s =§im{ 1_2%]. (23)

Since the parameter u is essentially a small variable quantity, it
follows from relation (23) that the trivial equilibrium position of system (10)
is the focus. Moreover, if the condition z <0 is met, this focus is stable, but
otherwise if x>0, the focus is unstable. It is obvious that when a small
parameter u passes through zero, one can expect the appearance of a

special periodic regime in the dynamic system (10), the implementation of
which is due to the Hopf bifurcation. This regime can only be observed in
a nonlinear system. It is called a self-oscillatory or limit cycle. Such cycles
are characteristic of dissipative systems. In this regard, it is necessary to
check an important condition of the Hopf bifurcation theorem concerning
the derivative of eigenvalues (23) with respect to the parameter .

Having differentiated one of the roots represented by relation (23) with
respect to the parameter y, one obtains:

di 1 o

A (24)
du 2 2d,

. . di 1
Obviously, the real part of (24) is not equal to zero: Red—zzio. For

7
system (10), this means the absence of conservatism conditions with an
infinite number of periodic trajectories. In other words, in accordance with
the conditions of Hopf's theorem, the appearance of one or several limit
cycles near a trivial singular point is possible.

To find the basic characteristics of the limit cycle such as its frequency,
amplitude, and direction of stability, the system of differential equations is
reduced to a normal form, for which we introduce new phase variables:

p=x,Y=dx +ax,, and t = o7 . Let us pretend that x=0. We obtain the
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following system of two differential equations for the variables x, and x,,
which is the Poincaré normal form with respect to system (10):

dx; _ d, x} dy x

TR e e o5
dv, _dd, ¥ _dd; x

dr ' @ 2 w 6

System (25) will store all the information necessary to calculate the
so-called first Lyapunov quantity /. This quantity determines the direction

of stability of the limit cycle. According to fundamental research on the
theory of bifurcations (Hassard et al, 1981), the following expression is
obtained:

d,o’ +d3d,
16w*
where , — the frequency of self-oscillations, which depends on the
static parameters 4, and s,:

w=d, /L—1>0. (27)
5,d,

The analysis of expression (26) allows one to draw the following
conclusions:

1) if d,@ +d;d, <0, then the limit cycle is stable and a “soft” mode
of self-oscillation occurs.

2) if dy +d;d, >0, then the so-called “hard” periodic regime is
observed, which is accompanied by a catastrophic loss of stability.

1(0)= ; (26)

For us, the most interesting case is when the first Lyapunov quantity
is a sign-alternating parameter close to zero, and accordingly, we
introduce the following notation: / =v . This situation is possible if the

following conditions are met: d,@’ +d.d, ~0. From this condition, it follows
2

that d, z—dzf‘ . Since there is the inequality 4, > 0, it follows that ¢, <0.
(4]

In terms of economic theory, this means that the demand function D(p)

has a saturation effect, i.e., the demand function cannot increase without
limit as price decreases. From a mathematical point of view, the fact that
the first Lyapunov value |/ is close to zero means that stable and unstable

limit cycles coexist in the system, which can be transformed into a double

cycle by merging.
1562



For a subsequent analysis of the two-parameter bifurcation of the limit
cycle, it is necessary to calculate the so-called second Lyapunov quantity
1,(0). Using the corresponding bifurcation formulas given in the work
(Golubitsky & Langford, 1981), one obtains:

dd, (4dd; 3

IZ(O)ZW( 0)2 _Ed")j' (28)

2
Taking into account the fact that there is a relation d, = _% fl formula (28)
0

takes the form:

11d}d;

L(0)=—"""2.

0= Sg40

From relation (29) it follows that 7,(0)<0.
In (Kuznetsov, 2023), the corresponding normal form of a bifurcation

of codimension two in polar coordinates is given, where  is the magnitude

of the amplitude, and ¢ is the phase of the emerging limit cycles:

dr
7 =r(8, + 6,7 —rt);

(29)

30
do_, (30)
a
Moreover, &, = u and 6, =v4/1,(0) are small alternating parameters.

The first equation of system (30) has three special solutions. The
value r=0 corresponds to the ftrivial equilibrium, and the remaining
solutions must satisfy the biquadratic equation:

=8, =8 =0. (31)
In order for all solutions of equation (31) to be positive, the following
conditions must be met: § <0, &,>0 and & +46,>0. There is a Hopf
bifurcation on the line & =0. For it, the first Lyapunov quantity has the
following meaning: /, =4, . If 5, <0, then this corresponds to birth of the
“soft” limit cycle, and if 8, > 0, this corresponds to the occurrence of hard
self-oscillations. That is, both stable and unstable limit cycles coexist at
the same time. On the line &, +46, =0 under the condition &, >0, both

cycles, due to the compaction of trajectories, merge into one double cycle
and disappear, i.e., there is a bifurcation of the “fold” type. These results
of the bifurcation analysis are similar to those published for the double limit
cycle in the work (Dorokhov et al, 2023).
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Let us return to equation (12) and use it to determine the equilibrium
price Z)*. First, it is necessary to find out the number of real roots of cubic
equation (12) under the conditions of the occurrence of a double cycle.

2 d
With the equalities d, :—dzfl and @' =—1-d}, expression (12) is
w S,
transformed to the form:
p(p* +3np+6n")=0, (32)
ds, —1
where n=21""
dys,
Equation (32) can be represented in a different form by highlighting
the complete square:
3n 15n°
p+— | + =0. 33
p([p 5 j 2 } (33)

Obviously, (33) has only one trivial solution p =0 if the specified

restrictions on the parameters of equation (12) are met. But the bifurcation
behavior of system (10) does not end there. Before exploring other
bifurcations of codimension two, it is necessary to transform system (10)
into another form. Let us reduce system (10), consisting of two differential
equations, to one second-order differential equation with respect to the
price p. After successive identical transformations, one obtains the

following differential equation:
d’p
ar’

dp A dp D
=(a?1—}/s1)7154—;/(s1611—l)p+7/s1 5 +d2pd +ys,d, ?‘F 2 dt

Let us assume that the parameters for the linear terms of differential
equation (34) are small, i.e., d, —ys, = u, and y(s,d, —1) = 1, . We take the

dp
following notation: p=x and 7]:=x2. Using the new notation, we

transform equation (34) into a system of two differential equations:
dx,

s
! (35)

2

2
a: —Z = ux, + px, +dd, +dx1x2+dd 6 a@ﬁ

dt



Considering that the parameter ., is small, one can use the
coefficient 4, instead of the product ys, for nonlinear terms 4, .

It should be emphasized that system (10), which is represented in the
variables p (price) and » (volume of production), has now been

transformed into system (35) with relatively new variables x, (price) and
x, (surplus demand). The linear part of system (35) corresponds to the

~ (0 1

matrix 4 :( j , for which the characteristic polynomial has the form:
M Ky

A’ = A+ =0. The equality s, =u, =0 implies the presence of a
Bogdanov—Takens bifurcation, the so-called “double zero” (Guckenheimer
& Holmes, 1983). This means that the analysis of the stability of system
(35) should be carried out in close proximity to the stability boundaries,

1 d
namely s, :Z and s, =— (see Figure 2).
I v

Let us analyze the dynamic properties of system (35). For this
purpose, consider two cases. In the first case, assume that 4, =0. Then

system (35) takes the form:

dx, .

a7 (36)
dx, x;

o WX, + ,x, +dd, > +d,xx,.

To pass to the Poincaré normal form for the Bogdanov-Takens bifurcation,
one carries out a change of variables: x, =RV,, x,=R,V, and r=R,r.
After substituting new variables into system (35) and performing algebraic
transformations, one obtains:

dv; _

2
T
(37)
My 2y iy,
dr  d d,
8 16 2
where R =——, R,=—/— and R,=—.
did, dyd, d,
2

Using the shift ¥, =U, T and v, =U, , one obtains the final form of
1

the Poincaré normal form for system (37):
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dT 2 (38)
du, ,
?:é +§2U2 +U1 +U1U2,

4 2 7
where & =——"-L and & =—| u, — 1 |.
51 d14 52 dl [/'12 dl j
In the works (Takens, 1974; Kopell & Howard, 1975) for a system
similar to system (38), a complete topological analysis of the stability of
the equilibrium position was performed when the corresponding
bifurcations appeared. Accordingly, system (38) has two equilibrium

positions: U, =(—\/—§1; 0) and U;‘z(«/—fl; 0). In this case, the point
(1/—51 ; 0) is a point of unstable equilibrium for & <0 and for any values of
&, . In turn, the equilibrium point (—1 [-&s 0) is an unstable focus for & <0

and & >./-& ; conversely, it is a stable focus for & <0 and & <y-¢& .

Thus, it should be assumed that the occurrence of the "saddle - node"
bifurcation takes place on the line & =0, & =0, and the occurrence of the

Bogdanov - Takens bifurcation takes place on the half-parabola
& =4-&, & <0. Moreover, the analysis of the Hopf bifurcation stability

indicates that the limit cycle is unstable, i.e., “hard” self-oscillations arise.
A similar result was obtained in the work (Elkarmouchi et al, 2024), the
authors of which propose a mathematical IS-LM model with two-time
delays, which describes many equilibrium positions in the investment-
savings markets and the money market. Numerical modeling revealed the
presence of a bifurcated periodic solution, which occurs when the time
delay exceeds a critical value.

It should also be emphasized that in system (38), there is a global
bifurcation, where the limit cycle annihilates inside the separatrix loop of
the saddle. Using a special scaling transformation, we convert system (38)
into a system close to Hamiltonian (Carr, 1982), and at the same time we
obtain an approximate global bifurcation equation:

49
G~ —2—59‘22, 20 (39)

Returning to the original small parameters 4, and u,, we can draw

the following conclusions:
1) The “saddle-node” bifurcation takes place on the line x4, =0;




2
2) Hopf bifurcation takes place on the lines 1, =0 and x, =%;
1
: . : . 12 44
3) Global bifurcation exists on the half-lines 1, =—-z and
1
2
y7A =Z .24 if the constraint is satisfied Hy S A
7 d, d

1

In this version, algebraic equation (12), when the condition ¢, =0 is met,
takes the form:
dlsl _1 —~k d2 —~k 2

'L .y + 2. =0, 40

P 2(p) (40)
and when the condition x4 =0, i.e., d;s,=1, there is a twofold trivial
equilibrium p =0, y =0.

Let us consider a different configuration of system (35), assuming,

accordingly, in this case, there is no quadratic nonlinearity. Now let us
rewrite system (35) as follows:

dx,

a7 (1)
dx, X, x'x,
E=y1x1 + ,X, +d1d3?+d3 2 .

It is easy to see that system (41) has central symmetry, or symmetry with
respect to rotation through an angle of 180°. Let us transform system (41)
to the Poincaré normal form for the “double zero” bifurcation with cubic

-2d d |-2d
nonlinearities. Using the new variables: x, = [—y,, x, =— Ly, and
3d, 3\ 3d,

3
ZZET’ let us reduce system (41) to the form:
1

dy, .

dr = 49
d,_9 3 - 42)
dr _d_lzlu’lyl +;llu2y2 N =N,

The main results of the study of this system based on its mathematical
model can be presented in the form of comments to the bifurcation diagram

shown in Figure 3.
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Ns

Figure 3 — Bifurcation diagram of "double zero"

System (42) has three equilibrium positions, one of which is trivial
E,=(0;0),and if x4 >0 there are two nontrivial solutions: E , = (i s 0)
. In region 1 (see Figure 3), where y <0, there is a single trivial
equilibrium E_, which is a stable node that smoothly passes into the focus.
On the left side of the straightline N,, where N, ={(u; 11, ): 11, < 0; p1, = 0}

, there is the Andronov—Hopf bifurcation with the appearance of a stable
limit cycle. Two stable nodes E, and E, are separated from the ftrivial

equilibrium position £, when the half-line v, = {(,u]; Hy): =05, > 0} is

crossing those on the border between regions 2 and 3 as a result of the
“pitchfork” bifurcation. In region 3, all three equilibrium positions E,, E,

and E,, are inside the "large" Ilimit cycle. On the half-line
3

N3={(ﬂ1§ﬂz)iﬂz=zﬂ12 y1>0} the foci £, and E, pass through the
1

Andronov—Hopf bifurcation. This effect leads to the appearance of two
small unstable limit cycles around the equilibrium positions £, and E, . In

other words, three limit cycles coexist in region 4. On the half-line
12

Mz{(ﬂl;yz):yz:gyl; y,>0} as a result of the homoclinic
1

bifurcation, “small” cycles are contracted to the trivial equilibrium position
E, and form a symmetrical curve that has an external resemblance to




Bernoulli’s lemniscate. On the half-line ~, the saddle point £, has two
closed homoclinic orbits. When passing through the half-line n,, which is

the boundary between regions 4 and 5, the destruction of “small” cycles
occurs with the simultaneous appearance of a “large” cycle. In area 5, two
“large” cycles with different types of stability simultaneously coexist: the
outer one is stable, and the inner one is unstable. Both of these cycles

3k
merge and disappear along the half-line N, =(y2 :7"#1; H >0j, where

1
k, =0.752... is a transcendental number. The disappearance of these two

cycles is explained by the presence of a saddle-node bifurcation of the limit
cycle. With this, the cyclic behavior of system (41) is completely
exhausted. All three equilibrium positions, E£,, E, and E,, in area 6,

merge on the half-line N, ={(x;u,): 4, =0;u,<0} as a result of the

“pitchfork” bifurcation, and a return to area 1 occurs.

Regarding algebraic equation (12), it should be noted that in the
context of the above assumptions, the three equilibrium positions merge
to form a threefold equilibrium value.

In further research, while constructing a mathematical model, it is
advisable to introduce a cyclic component into the demand function, which
corresponds to seasonal fluctuations. In this case, one can expect the
occurrence of resonance in the system, which can cause complex chaotic
behavior of the system.

Conclusion

The mathematical model of a dynamic system proposed in the work
describes the state of the market for one product as a result of the
interaction of supply and demand functions with a time lag. The model is
a system of two differential equations with quadratic nonlinearity, which
made it possible, using qualitative analysis (along trajectories), to study
the basic properties of this economic system. It was discovered that the
nonlinear demand function ensures the presence of non-unique market
equilibrium positions, which is a fact that is far from ftrivial. From the
authors’ point of view, the main problem for this dynamic system is to study
the stability of equilibrium positions, taking into account the nonlinear
interaction of its main variables which are the price of a product and the
volume of its supply. Modeling of the behavioral properties of multi-product
markets, which was carried out by Sir John Richard Hicks, Vasily Leontiev,
and Oskar Ryszard Lange, is a much more complex task, the solution of
which is complicated by the high dimensionality of the economic system,
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and the presence of nonlinearity of connections does not allow the use of
analytical methods. However, the existing approximate methods of
reducing multidimensional dynamic systems allow such systems to be
reduced to a system with one or two degrees of freedom, but this problem
requires independent study and was not considered in this work.

As a result of the research, the area of stability of the economic
system was identified and the parameters of this area were determined,
as well as an analysis of the behavior of the system at the boundaries of
the area of stability was carried out and a bifurcation diagram was
constructed for the characterization of the processes occurring at these
boundaries. A number of types of changes in the stability of the equilibrium
regimes with the appearance of characteristic bifurcations have been
identified. This includes the saddle-node bifurcation, as well as the
bifurcation of the birth or death of a limit cycle. In addition, there is a
symbiosis of the above-mentioned bifurcations in the form of a bifurcation
of codimension two, i.e., the so-called Bogdanov-Takens bifurcation
arises. This is accompanied by a global restructuring of the phase portrait
with the appearance of ultra-low frequency cycles. Such trends in the
production and economic system evolution are a unique phenomenon
manifested in the presence of so-called turning points, at which a change
in the increasing phase of long waves to a decreasing one and vice versa
occurs. All these factors should be taken into account when developing
strategic plans for managing under conditions of a constantly changing
market environment. The ability to anticipate the existence of such
phenomena and eliminate their occurrence allows decision makers to
optimize the allocation of resources thus increasing production efficiency
and fully satisfying customer needs.
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Resumen:

Introduccién/objetivo: El estudio de la dinamica de la influencia mutua de la
oferta y la demanda es relevante en relacion con las pérdidas financieras
que surgen debido a la incertidumbre en la demanda y los errores de
pronéstico. El trabajo tiene como objetivo construir un modelo matematico
de la dinamica de esta interaccion para el mercado de un producto.

Métodos: En el presente trabajo se propone un modelo matematico de los
estados del sistema oferta-demanda, en cuyo marco se consideran los
procesos que ocurren en dicho sistema desde la perspectiva de la
metodologia de la sinergética econdémica. EI modelo matematico de la
dinamica tiene la forma de un sistema de dos ecuaciones diferenciales con
no linealidad cuadrética.

Resultados: La utilizacion del modelo propuesto para reproducir diversos
estados dinamicos de los procesos de autorregulacion del mercado
permitio identificar la jerarquia de transicion de regimenes dinamicos
estables a inestables con la aparicibn de las correspondientes
bifurcaciones. Se presto especial atencion al estudio del comportamiento
del sistema en los limites de la region de estabilidad.

Conclusion: Se ha revelado la existencia de una bifurcacién de los nodos
de silla de los ciclos limite, lo que sugiere la aparicion de autooscilaciones
estables en el caso de un ciclo “suave” e inestables en el caso de un ciclo
“duro”. Al estudiar una bifurcacion de codimension dos — “doble cero”— se
descubrieron estructuras dinamicas especiales, determinadas por las
propiedades de las bifurcaciones globales. Este tipo de comportamiento se
caracteriza por autooscilaciones de baja frecuencia, lo que da lugar a las
llamadas “ondas ultralargas” del estado econémico.

Palabras claves: dinamica del sistema de oferta y demanda, desfase
temporal, ciclo limite, bifurcacion, caos.

Mogenv MMKPO3KOHOMUYECKOW ANHAMUKK: BUdypKaLMOHHbIE
anropuTMbl NOBEAEHUS CIIOXKHbBIX CUCTEM
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a8 XapbKOBCKMI HaLMOHAMNbHbIN 3KOHOMUYECKUA YHUBEPCUTET
nmeHn CeméHna KysHeua, XapbKoB, YKpanHa

6 TapTyckuit yaueepcuteT, TapTy, AcToHckas Pecny6nuvka

PYBPUKA NPHTW: 06.35.51 3koHOMMKO-MaTemMaTUYeckue MetToabl U Mogenu
BWO CTATbW: opurmHanbHasa Hay4Has ctaTbs

Pesome:

BeedeHue/uenb: U3yyeHue OuHaMuKu 83aUMHO20 8USHUSI cripoca u
npeodnoXxeHusi akmyarnbHO 6 C€853U C (bUHaHCOBbIMU MOMePsMU,
B803HUKAKOWUMU U3-3a HeonpedeneHHocmu crnpoca U owubok
rpoeHo308. Llenbto pabombi Aensemcs rnocmpoeHue
Mamemamuyeckol Modenu OuHaMuKu 3moeo e3aumodelicmeusi Ors
pbIHKa 00HO20 mosapa.

Memodsi: B cmambe npedroxeHa Mamemamuyeckass MoOesb
cocmosiHUl cucmeMbl cripoca U npedrioxXeHus, 8 pamMKax Komopol
npouyeccsl, rnpoucxodsawue 8 amou cucmeme, paccMampugaromcs ¢
nosuyuu memodonoauu SKOHOMUYecKoU CUHepaemuKu.
Mamemamudeckass modenb OuHaMuku umeem 8ud cucmembl 08yX
OugbgbepeHyuarbHbIX ypagHeHul ¢ keadpamu4yHOU HETUHEUHOCMbIO.

Pesynbmambi:  Mcrnionb3oeaHue  rpedrioxeHHoU  modenu  Onis
80CpPoU38e0eHUsT Pa3/luYHbIX OUHaMU4YEeCKUX COCMOSHUU rpoyeccos
PbIHOYHO20 CamMopezynuposaHusi 0380/1UMI0  B8bISIBUMbL  UePapXuto
rnepexoda om ycmou4ugbix OUHaMUYECKUX PEXUMO8 K HeycmoUyugbiM
C B03HUKHOBeHUeM coomeemcmeyruwux bugpypkayuld. OcHogHoe
8HUMaHuUe yOenieHO U3y4YeHUl0 MosedeHUss CucmeMbl Ha epaHuuyax
obsiacmu ycmodidugocmu.

Bbigo0bi: BeisisrieHo cyujecmeosaHue y3r108ol bugbypkauyuu rpedesibHbIX
UUKI108, 4YmMO 03HaYyaem 803HUKHOBEHUE yCcmoU4usbiX agmokonebaHul 8
criyqae «Msi2Koeo» UUKria U HeycmoUYuBbIX 8 CIly4ae «KecmKo20» UUKra.
Takke 0bHapy»xeHbl 0Cobbie QuHaMu4ecKue cmpyKmypabl, onpedensembie
ceoticmeamu 2rnobarnbHbIx bugbypkayud. s amoeo muna rogedeHusi
cucmembl xapakmepHbl aemokoniebaHusi ¢ Hu3koli yacmomod, 4mo
npueodUM K 803HUKHOBEHUIK MaK Ha3bleaeMbIX «C8ePXOSUHHbLIX BOSTH»
3KOHOMUYECKO20 COCMOSTHUSI.

Kntovesbie criosa: dOuHamuka cucmeM crpoca U MpedroXeHusl,
8pemeHHoU nae, npedesibHbIU YUK, bugbypkayus, xaoc.

Mopenvn MMKPOEKOHOMCKE ANHAMUKE: anroputmMu budypkaumje n
noHallama CroXeHux cuctema
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Caxxemak:

Yeod/yure: [poyyasarse OuHaMuke y3ajamHo2 ymuuaja roHyde u
rnompaxmwe 8axHO je Kada je pedy O (buHaHcujckum 2ybuuyuma ycrned
HeussecHe rompaxe U epewaka y npedsuhamy. Llurb pada jecme Oa
Kpeupa Mamemamu4ku mModes1 QUHaMUKe 08e UHMepaKyuje 3a mpxuwime
JjedHoe npou3seoda.

Memode: Y pady ce npednaxe mamemamuyku mModes1 cmara cucmema
roHyGe u nompaxre yHymap okKeupa y KojeM ce pasmampajy npouecu
Koju Oernyjy y oeom cucmemMmy ca acriekma memodorioauje eKOHOMCKe
CuHepauje. Mamemamuyku moden duHamuke uma obruk cucmema 0se
dughbepeHuujanHe jedHa4quHe ca keadpamHOM HernuHeapHowhy.

Pesynmamu:Kopuwherwe npednoxeHoz modena 3a penpolykyujy
pasnuyumux OUHaMUYKUX Cmarsa rfpoueca mpxuwHe camopeayrnauuje
omoayhuno je udeHmucbukauujy xujepapxuje npenacka u3 cmabusnHux
OuHaMUYKux pexuma y HecmabunHe ca rojagoM 00zo8apajyhux
bugbypkauyuja. Hajeuwe naxr-e rnoceeheHo je npoy4yasary rOHaWaHa
cucmema Ha epaHuyama obnacmu cmabunHocmu.

Sakpyqak: OmkpuseHo je rniocmojarbe bughypkauyuje cedno-4eop
2paHUYHUX UuKryca Wwmo yKa3yje Ha riojagy aymoocuyunauyuja kKoje cy
cmaburHe y criyyajy ,Mexo2” Yukyca, a HecmabursHe y criyJajy ,mepdoe”
uuknyca. [lpunukom npoyyagama bugpypkayuje kodumeHsuje 2 -—
,080CmpyKa Hyna” OmKpugeHe cy crieyujanHe OuHamuyke cmpykmype,
odpeheHe ceojcmeuma onwmux bugypkayuja. Osa epcma rnoHawara
Kapakmepuuwe ce aymoocyunayujama HUcKe ghpexkseHyuje wmo 0o8odu
00 mako3eaHuX ,,ynimpadyaux” marnaca eKOHOMCKO2 cmarba.

KrbyyHe peyu: OuHamuka cucmema roHyoe u nompax e, 8PeMeHCKO
Kalwrere, 2paHudHU Yukyc, bugypkayuja, xaoc.
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