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Abstract

Introduction/purpose: Extensively ~ engaged  nanocomposite and
biocomposite polymers reinforced with natural fibers as fillers possess the
capability to not only augment material properties but also actively tackle
challenges within green ecosystems. This versatile application underscored
the dual benefits of improved material performance and a proactive
commitment to environmental sustainability. The purpose of the present
study was to investigate the temperature-induced damage to the fiber-
matrix interface in various composite materials.
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Methods: The study examined carbon/polysulfone, glass/polysulfone, and
alfa/polysulfone biocomposite materials. A genetic approach based on the
probabilistic formalism of Weibull was employed to model and analyze the
interface damage caused by temperature variations.

Results: Notably, the alfa/polysulfone biocomposite emerged as a
compelling alternative, showcasing cost-effectiveness and minimal
environmental impact. Its fiber-matrix interface behavior closely paralleled
that of carbon/polysulfone. The results revealed the remarkable resilience
of the carbon/polysulfone composite’s fiber-matrix interface to temperature
impacts, distinguishing it from its counterparts.

Conclusions: This nuanced understanding provided valuable insights into
the distinct responses of composite materials to temperature variations. It
also underscored the advantageous characteristics of the alfa/polysulfone
biocomposite, positioning it as a sustainable and efficient option in the field
of reinforced polymers for modern applications.

Keywords: polysulfone, carbon, alfa, glass, interface, temperature

Introduction

The remarkable attributes of composite and biocomposite polymers
have spurred researchers and manufacturers to delve deeper into this field
(Manu et al., 2022; Agustiany et al., 2022; Chichane et al., 2023). The
pursuit is centred on not only augmenting their existing properties but also
innovating to introduce new materials suitable for a diverse array of
contemporary applications. This exploration reflects a dynamic quest for
advancements, aiming to continually broaden the scope of materials
available for various present-day uses (Akhil et al., 2023; Mann et al.,
2023). Composite materials are designed and produced through the
arrangement of diverse components, including fibers (whether synthetic or
natural), matrices (either thermoset or thermoplastic), fillers, and more
(Sharma et al., 2023; Akter et al., 2024; Elfalehet al., 2023; Seydibeyodlu
et al., 2023). These constituents, initially immiscible, undergo a
transformative process, resulting in the creation of new materials endowed
with superior mechanical, thermal, and physicochemical properties
(Rajeshkumar et al., 2023). These composites often exhibit superior
strength (Syduzzaman et al., 2023), durability (Zuccarello et al., 2023), and
resistance to environmental factors compared to their individual
constituents (Nagalakshmaiah et al., 2019; Das Lala et al., 2018).
Moreover, the advent of biocomposite polymers, where natural fibers or
fillers are incorporated into a polymer matrix, reflects a conscious effort
toward sustainability and eco-friendliness in material design (Lee & Jai
2009; AL-Ogla & Omari, 2017). The applications of these advanced
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materials are far-reaching, from aerospace to automotive industries
(Asyraf et al., 2022; Al Maadeed & Ponnamma, 2023), in construction to
offer novel solutions for durable and sustainable building materials (Alam
et al., 2021). Additionally, the medical field benefits from biocomposite
polymers, where their biodegradability and compatibility with biological
systems open avenues for innovative biomedical devices and implants
(Sivaraman et al., 2012; Teoh et al., 2016). In this study, we focus on a
detailed examination of the influence of three specific fiber types: carbon
fiber, glass fiber, and alfa fibers on the properties and performance of
polysulfone (UPS). PSU is an amorphous matrix with an amber-colored
transparency that resembles in its properties. This type of plastic with very
good performance has a balanced ratio between high thermal stability,
rigidity, toughness and high creep resistance. Due to its long-term strength
and limited tendency to creep, PSU is predestined for long-term
exposures. The primary objective is to gain a comprehensive
understanding of how these reinforcing materials impact the polymer
matrix. In the literature, numerous recent research studies have delved
into the multifaceted impact of polysulfone across an array of practical and
innovative applications. In (Nica et al., 2023), Nica et al. have
characterized high-performance nanocomposite materials based on
modified polysulfone using various amounts of modified carbon nanotube
fillers for electronic applications. The study's findings unveiled a
substantial improvement in the electrical conductivity of composite
materials. This enhancement was particularly pronounced at higher filler
loadings, suggesting promising prospects for the development of
advanced electronic applications using these modified polysulfone
nanocomposites. In another study (Stepashkin et al., 2023), Stepashkin et
al. have investigated the impact of carbon fiber type, polymer mass
fraction, and loading rate on tensile strength of polysulfone polymer using
a polymer solution method. Scanning Electron Microscopy (SEM) analysis
provided further insights, revealing that at low loading rates, elementary
filaments within the impregnated fiber could align themselves along the
applied load axis. This alignment, facilitated by the flow of the
thermoplastic matrix under tensile stresses, led to more effective
realization of the fiber's strength properties in thermoplastic-based
composites compared to analogous composites with an epoxy matrix. In
(Li et al., 2022), Li et al. studied the repercussions of hydrothermal aging
on the long-term durability, specifically focusing on stress relaxation and
creep properties, for both virgin and recycled PSU, where specimens of
virgin and recycled polysulfone PSU were subjected to exposure to pure
hot water at temperatures of 98 °C for varying durations ranging from 1 to




12 months. The findings of the study reveal that virgin PSU demonstrates
exceptional resistance to hydrothermal aging across various mechanical
parameters, including tensile, flexural, impact, and fracture toughness
properties, as well as stress relaxation and creep resistance, even after a
year of aging in 98 °C hot water. Additionally, the investigation establishes
that the activation energy required for stress relaxation in PSU is
consistent with that needed for creep. In another recent study (Lim et al.,
2022), the authors have investigated the separation characteristics of
polysulfone hollow fiber membranes for the removal of carbon dioxide and
sulfur compounds from biogas. The research offers valuable insights into
the impact of various operating conditions on the membrane's separation
performance. Their findings revealed that the polysulfone membrane
exhibited robust removal efficiency for sulfur compounds, ranging between
70% and 80%, within a feed pressure range of 2.3-2.6 bar. Importantly,
the presence of sulfur compounds was observed to have a negligible effect
on the separation performance of the polysulfone membrane. Building
upon recent studies, this investigation focuses on probing the temperature-
induced damage to the fiber-matrix interface in carbon/polysulfone and
glass/polysulfone composite materials, as well as in alfa/polysulfone
biocomposite material. The interesting mechanical properties of alfa fibers
show that they can present an interesting alternative for the reinforcement
of different polymer matrices.The study of morphological, physical and
mechanical properties showed that alfa fibers present promising properties
for use as reinforcement in composite materials. Its potential as
reinfforcement in composites requires the understanding of its
microstructure, its mechanical properties, adequate control of fiber
extraction as well as the transformation process (Brahim & Cheikh, 2007 ;
Paiva et al., 2007; Bessadok et al., 2007; Bessadok et al., 2009; Arrakhiz
et al., 2012; Marrakchi et al., 2012; Hamza et al., 2013; Mounir et al., 2014;
Helaili & Chafra, 2014 ; Ghali et al., 2006).Traditional material
characterization methods are efficient, but to characterize the behavior of
a new material requires numerous physical tests (fracture, shear, bending,
buckling, torsion, relaxation, etc.). These problems can be solved by
adopting a more powerful Al-based strategy. This offers speed and
precision in the development of new materials.

Artificial Intelligence (Al) tools, in our case, the approach employed is
a genetic one, grounded in the probabilistic formalism of Weibull, can
exploit and analyze large quantities of data to predict the properties of
these materials, reducing the need for expensive and time-consuming
physical testing. The obtained results revealed that the fiber-matrix
interface of the carbon/polysulfone composite remained relatively
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unaffected by temperature variations when contrasted with the interfaces
of the alfa/polysulfone and glass/polysulfone composite and biocomposite
materials. This insight contributes to a nuanced understanding of the
diverse responses of different composite materials to temperature-induced
stress, emphasizing the unique advantages and characteristics of the
alfa/polysulfone biocomposite in this context.

Materials, models and methods

Polysulfone matrix (PSU)

Polysulfone (PSU) has one of the highest service temperatures of all
high-performance melt-processable polymers. The high temperature
nature of PSUs allows them to be used in demanding applications that
other polymer materials cannot satisfy. PSU is highly resistant to acids,
alkalis and electrolytes, oxidizing agents, surfactants and hydrocarbon
oils. PSU is one of the so-called thermostable technical thermoplastic
polymers. Indeed, the systematic presence, on the main chain, of aromatic
nuclei, explains in particular the high thermal resistance of this polymer.
Mechanical properties are retained by PSU over a wide range of
temperatures. In addition, PSU is resistant to temperature, UV, gamma
and X-ray radiation (De Leon et al., 2016; Mujika et al., 2002; Chukov et
al., 2019; Solodilov et al., 2015; Yao et al., 2018; Anne, 2019).

Fibres
Carbon fiber (CF)

A number of carbon fiber reinforced composites based on
thermoplastic have been developed and studied. Among thermoplastics,
high-performance polymers are of particular interest due to their thermal
stability and high mechanical properties. Carbon fiber composite materials
are very popular for their lightness and strength, especially compared to
steel, aluminum and even titanium. Aeronautics, for example, uses them
extensively: in fact, the main cost of operating an aircraft is fuel and we
reduce fuel consumption by reducing the weight of the plane. Carbon fiber
is obtained by spinning a precursor prepolymer, generally polyacrylonitrile
(or PAN). It is an unhardened plastic material that is made into a very fine
wire. The latter is treated at high temperature in order to eliminate anything
that is not pure carbon. This is carbonization: a process close to pyrolysis
and similar to that which transforms wood into charcoal. The use of carbon
rather than metals reduces weight without compromising the mechanical
strength of the device. Motor racing, luxury cars, or manual devices also




use it, mainly for its lightness coupled with its resistance. Carbon is also
used in luxury areas, for its beautiful appearance despite its high cost
(Chukov et al., 2018). Figure 1 presents the structure of the composites
reinforced with carbon fibers (a) initial and (b) oxidized at 500 °C (Chukov
et al., 2018).

Figure 1— Structure of the composites reinforced with carbon fibers: (a) initial and (b)
oxidized at 500 °C (Chukov et al., 2018).

Alfa fiber

Alfa plant fibers, also called lignocellulosic fibers, are rigid micro-
fibrillar structures mainly composed of cellulose, hemicelluloses and lignin
and in relatively small proportions of extractables and mineral materials.
These natural fibers are low cost and low density fibers; they have specific
properties, biodegradable and non-abrasive fibers (Saad, 2013). It has
been studied from the point of view of chemical composition, evolution of
the structure with the biological cycle, possibility of developing composites,
surface modification by physico-chemical treatments, grafting, bleaching
and production of paper with a study of the impact of various actions
undergone by this fiber.

Glass fiber

As opposed to glass in massive forms, fiber glass with a diameter not
exceeding a few microns loses its fragility and its sensitivity to cracking.
Glass fibers show good mechanical characteristics. Depending on their
composition, there are five types of glass fibers: E glasses which are for
general use and which have good electrical properties, D glasses which
have high dielectric properties, A glasses which have a high alkali content,
C glasses which have good chemical resistance, and R and S glasses
which have good mechanical resistance. Glass fibers are made up of
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silica, alumina, lime, magnesia, boron oxide, fluorine, iron oxide, titanium
oxide, sodium oxide, and oxide of potassium. The composition in
percentage by mass of each chemical component varies from one type of
fiber glass to another. (Hamlaoui, 2022).

Different physical properties of the constituents of the composite and
biocomposite materials used in the genetic program have been mentioned
in Table 1.

Table 1 — Physical properties of the constituents of the composite and biocomposite
materials used in the genetic program.(Anne, 2019 ; Hamlaoui, 2022 ; Bourahli &
Osmani, 2013 ; Biagiotti et al., 2004 ; Rowell, 2008; Moghaddam et al., 2016 ; Rao et al.,
2007 ; Monteiro, 2011 ; Berthelot, 2005

Materials ;2::?&33 Deformation at Density Stress to
(GPa) break (%) (g/cm3) break (MPa)
Carbon 230 4 1.7 4000
Alfa 21.5 24 1.4 247
Glass 73 4.4 2.6 3400
Polysulfone 3.1 4 1.24 80

Analytical models and genetic simulation

Thermal stress

Equation (1) is used to represent the thermal stresses that arise from
the differential expansion of fibers and matrices. This occurs during the
cooling process after the composite has been prepared at elevated
temperatures (Weibull, 1939).

o} = (M3 — M) (1)

E -
fa+1
with:

T,
My (T) =J (am — ap)dT

Ty
T
M,(T) = fT (am — ap)dT

- To: room temperature;
- Te: temperature during the development process;
- T :test temperature; and




- of and an, :expansion coefficients of the fiber and matrix, respectively. (O
carbon=1.2¥10"%/°C, Qt.cass= 1.2*10%/°C, and am=82*10% /°C)

Weibull approach

Weibull's statistical method has been utilized in the analysis of
composite materials, assuming a uniform distribution of applied stress.
The expressions for matrix and fiber damage are denoted by equations (2)
and (3), respectively, and are elaborated upon in detail in reference
(Lebrun, 1996). This approach involves using Weibull statistics to model
stress distribution in composite materials, with equations (2) and (3)
offering a quantitative representation of the damage to the matrix and
fibers, guided by this statistical framework.

|4 o
D,=1-exp {—VLZI(G—Z)"’} (2)

with :

- oy applied stress;

- Vess: matrix volume;

- mando, : Weibull parameters; and
- Vy:initial volume of the matrix.

f
Df=1—exp {—Af * Lequi * (Gmax)mf} (1)
Oof
with:
- a,’:lax.' maximum stress applied to the fiber;
- 0oy initial stress applied to the fiber;

- my! Weibull parameters;
- Af =Tr*a? and

L, .:length of the fiber at equilibrium.

equi

Genetic model

In this study, we will investigate the effect of temperature on the
resistance and behavior of the fiber-matrix interface of composite materials
(carbon/polysulfone and glass/polysulfone) and Alfa-polysulfone
biocomposite material. The final performance of a composite material
strongly depends on the quality of the fiber-matrix interface. This interfacial
bond is quite difficult to model using deterministic models; in our case, we
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chose genetic modeling based on the two Weibull equations (2 and 3)
determining the damage of the fiber and that of the matrix. Our objective
is to calculate the damage of the interface using the two aforementioned
damage cases by the crossing operator (see the flowchart presented in
Figure 2) (Lebrun, 1996; Belhadj et al., 2022; Belkheir et al., 2023;
Mokaddem et al., 2012; Mokaddem et al., 2014; Benyamina et al., 2021).

Fandom gzneration of initial population
Mumber of individual Npop=13300

Choosa E: for three materials:
Carbon, Glass and

_..
alfa/Polysulfone -
Initial walua:
¥ Mpop : 13500
Assessment of individuals: Objactive Function Genemax 5750
. —
(0 .GuEraEnE. R, 6,7T,,, Ay} equation 1and table 1 Auim*at

L

Salection of Individuals

¥
Crossing Dm and D
Eguation 2 and 3

'

hiutation (P=0.2)

.

Construction of the new generation

Cenemax : maximum szneration (6730

Yes

End

Figure 2— Genetic program flowchart




Results and discussion

In this work, the effect of temperature on damage to the fiber-matrix
interface of carbon/polysulfone and glass/polysulfone composite
materials, and alfa/polysulfone biocomposite material was investigated
using a genetic approach based on the probabilistic formalism of Weibull
(equations 2 and 3) (Belkheir et al., 2022; Belkheir et al., 2023). The
damage at the interface was calculated by the genetic operator (crossover)
using the two damage cases, one of the matrix and the other of the fiber
given by equations (2) and (3), respectively. The random variables of the
population consist of chromosomal genes representing the following
variables: tensile stress (0=600, 750, 900, 1050 and 1200MPa), Young's
modulus, shear modulus of the matrix, fiber diameter, length of each fiber,
and the half-distance R. This initial generated population is composed of
13500 individuals, which will be improved each time by the genetic
operator mutation with a mutation probability of 0.2 (Mokaddem et al.,
2020; Mokaddem et al., 2014). In each case, we used different values of
the Young's modulus of each fiber and the Polysulfone matrix (Table1).The
temperature variation for the five values of the mechanical stress and its
influence on the damage of the interface was calculated and verified by
equation (1). The results presented in Figures 3 to 5 refer to the level of
interfacial damage as a function of temperature to the three composite and
biocomposite materials studied (see the program flowchart in Figure 2).

Figures (3-5) show that the interface damage is strongly linked to the
damage of the matrix which has the weakest constituent compared to the
reinforcements (fibers), and show that the different temperature values
applied to the three composite and biocomposite materials caused fiber-
matrix interface damage which was lower for carbon/PSU, medium for
Alfa/PSU and higher for glass/PSU. The fiber-matrix interface of the
carbon/PSU composite was not influenced by temperature compared to
the other interfaces of Alfa/PSU biocomposite material and glass/PSU
composite material. The effect of temperature on the interface damage of
the three studied composite and biocomposite materials shows almost the
same results as those found by Dilyus Chukov et al.(Chukov et al., 2019).
It should be noted that the alfa/polysulfone biocomposite material remains
an interesting alternative given its very low environmental impact, a very
low cost compared to other composite materials and that its fiber-matrix
interface has a value that is close to the carbon/polysulfone interface. In
this theoretical study, the fiber-matrix interface of the carbon/PSU
composite was not influenced by the temperature compared to other
interfaces of the Alfa/PSU and glass/PSU composite and biocomposite
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materials. The results found, in particular those relating to the
carbon/polysulfone interface, are in good agreement with the results found
by Dilyus Chukov et al.(Chukov et al., 2019).
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In various studies carried out on composite materials, the fiber has a direct
influence on the behavior of the fiber-matrix interface in relation to the
matrix because fibers transmit their mechanical properties to the matrix




and this in terms of rigidity, resistance to breakage, hardness, etc. The
reinforcements also confer their physical properties to the resin. Among
these properties, we can cite Young's modulus, mechanical behavior, fire
resistance, and abrasion resistance (Prakash et al., 2021; Pan, 2022;
Ramesh et al., 2021).

Conclusions

The present study focuses on the influence wielded by three distinct
fiber types (carbon fiber, glass fiber, and alfa fibers) on the properties and
performance of polysulfone. The overarching objective is to attain a
comprehensive understanding of how these reinforcing materials exert
their influence on the polymer matrix, based on a genetic approach. In the
theoretical exploration conducted, it was observed that the fiber-matrix
interface of the carbon/PSU composite exhibited a notable resistance to
temperature effects in contrast to the interfaces of the Alfa/PSU and
glass/PSU composite and biocomposite materials. This finding
emphasizes the distinct thermal behavior exhibited by these composite
interfaces, highlighting the relative stability of the carbon/PSU composite's
fiber-matrix interface under varying temperature conditions. This insight
contributes to refining the understanding of how different composite
materials respond to temperature-induced stress on their fiber-matrix
interfaces.
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MoborbllaBawe TEpMOMEXaHNYKMNX CBOjcTaBa nHTepdejca koa
KOMMO3NTHUX MaTepujana Ha 6a3un nonmcyndgoHcKke nonnMmepHe
mMaTpuue

Kaned BeHpaxaHe?, ayTop 3a npenucky, Moxamea Anamn?, Anenn Mokagem?@,

Moxamed Benkeunp?, Medu Poyucar?, GeHdyma dymu®

a JlabopaTtopuja 3a MHCTPYMEHTauujy u HanpeaHe matepujane, MHCTUTYT 3a
HayKy, YHuBep3nTeTcku ueHTap bajag, Armxup

6 MpupoaHo-maTemaTnyku dakyntet. Yausepautet ap Taxap Mynej. Canaa,

Armxup

OBJIACT: matepujanu
KATEITOPUJA (TWUM) YITAHKA: opurnHanHu Hay4Hu paj

Caxemak:

Yeod/yurb:  YHueep3anHo  yrnompebrbagaHu  HaHOKOMAO3UMHU U
6UOKOMIMO3UMHU MOAUMEPU Oja4YaHu MpUpPOOHUM 8/1aKHUMa Kao ryHUnuma
umajy criocobHocm He camo Oa robosbLasajy ceojcmea Mamepujania He2o
U aKmueHo pewasajy u3a3oge y 3ereHUM ekocucmemuma. O8om
pasHospcHowhy yrnompebe Haznawaea ce 080cmpyka Kopucm —
rnobosbwaHe nepgopmaHce Mamepujana, Kao U [POaKmueHa
rnoceeheHocm ekonowkoj odpxueocmu. Llurb ose cmyduje buo je
ucniumuear-e owmehera pPoy3poKo8aHO2 memriepamypoM  Ha
uHmepghejcy  enakHo-mMampuya y  pasiudumuM  KOMMAO3UMHUM
Mamepujanuma.

Memode: UcnumueaHu cy  KapOOH-MOAUCYNIGHOHCKU,  CMakIio-
ronucyngboHcKU u arnga-rnonucynoHcKu 6UOKOMMO3UMHU
Mamepujanu. F'eHemuyku npucmyrn 3acHo8aH Ha npobabunucmuykom
¢opmanusmy Bejbyna npumerseH je 3a moderiogare U aHanusy
owmehera uHmepghejca ycned memnepamypHUX 8apujauuja.

Pesynmamu: Angba-rnonucyrngoH 6UOKOMNIo3um rioka3ao ce Kao o0rnuyHa
anmepHamusea 3axearsbyjyhu ucrnnamusocmu u MUHUMaIHOM ymuuajy Ha
JKueomHy cpeduHy. lNoHaware He20802 UHmMepgejca enakHo-mampuua
geoma je CMUYHO roHawary UHmepgejca KapbOH-MoAUCyighoH.
Pesynmamu cy nokasasnu u3y3emHy omropHocm uHmepgbejca enakHo-
Mampuya Kol KapbOH-MonucynnghoHCKo2 Komro3uma Ha  ymuuaj
memnepamype, Wmo 2a u3deaja 00 ocmarsux.

Sakrbyyak: lNpedcmaesrbeHu cy dpazoueHu ysudu y pasnudume o0208ope
KOMMO3UMHUX Mamepujana Ha memnepamypHe eapujayuje. Takohe,
HaznauweHe cy Kapakmepucmuke arngha-rnosnucyrghoHckoe bUokomnosuma
Koje My, Kao 00pXKUBOM U eghUKacHOM peluersy, dajy npedHocm y obnacmu
oja4aHux ronumepa 3a MoOepHe rnpuUMeHe.

KrbyyHe pewyu: nonucyngoH, kapboH, anga, cmakno, uHmepgejc,
mewmrnepamypa
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