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Abstract:
Introduction/purpose: The purpose of this paper is to establish existence
theorems for fixed circles and fixed discs in metric spaces using different
types of contractive conditions. By considering self-mappings on met-
ric spaces, classical fixed point results are extended to these geometric
fixed structures. Several examples are provided to illustrate and validate
the theoretical results.
Methods: Self-mappings defined on metric spaces are considered and
various types of contractive conditions introduced. Analytical techniques
from fixed point theory are used to derive sufficient conditions for the ex-
istence of 𝜙-fixed circles and 𝜙-fixed discs. The theoretical results are
supported by carefully constructed examples that satisfy the proposed
contractions and demonstrate the applicability of the obtained theorems.
Results: The study successfully establishes 𝜙-fixed circles and 𝜙-fixed
disc results for Caristi-type contractions and another class of contrac-
tions within the framework of metric spaces. Additionally, supportive ex-
amples are provided.
Conclusion: This paper establishes new existence theorems for 𝜙-fixed
circles and 𝜙-fixed discs in metric spaces using Caristi-type and related
contractive conditions. These results extend classical fixed point the-
ory beyond single fixed points to broader geometric fixed structures,
thereby enriching the theory of metric fixed points. The provided ex-
amples demonstrate the applicability and effectiveness of the proposed
results and indicate their potential for further generalizations.
Key words: Fixed circle, fixed disc, metric space, Caristi contraction
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Introduction
The study of fixed point theory has been a fundamental area in math-

ematical analysis, with applications spanning across various branches of
mathematics. In metric spaces, the investigation of fixed points has led to
numerous significant results, beginning with Banach’s contraction princi-
ple in 1922. ”While traditional fixed point theory focuses on single points,
recent developments have expanded to include the study of fixed sets, par-
ticularly fixed circles and fixed discs. A fixed circle of a self-mapping 𝑇 on
a metric space 𝑋 is a circle 𝐶 such that 𝑇 (𝐶) = 𝐶. Similarly, a fixed disc
is a disc 𝐷 where 𝑇 (𝐷) = 𝐷.” Several researchers have contributed to this
area. Özgür, & Taş (2019) established the first results on fixed circles us-
ing Caristi-type contractions in metric spaces. Later, Özgür, & Taş (2021)
extended these results to more general spaces. Recent work by [Mlaiki et
al. (2023), Taş (2018)] has introduced new techniques for studying fixed
disc properties. However, the existence of fixed circles and fixed discs un-
der certain types of contractive conditions remains unexplored. Moreover,
the relationship between different contractive conditions and their impact
on the existence of fixed sets needs further investigation. The fixed-circle
problem was also studied in the setting of S-metric spaces in [Özgür et al.
(2017), Özgür et al. (2018)]. In recent years, the fixed-disc problem have
been studied with this perspective on metric and some generalized met-
ric spaces (see  [Özgür (2019), Taş et al. (2021)] for more details). This
paper presents new existence theorems for fixed circles and fixed discs
using various contractive conditions. The obtained results extend previous
work by considering [Özgür, & Taş (2021), Taş (2018)]. Examples are also
provided demonstrating that the conditions given here are optimal. This
paper is organized as follows: Section 1 presents preliminary and defini-
tions. Section 2 establishes the main results on fixed circles, which contain
theorems related to fixed discs, and provides illustrative examples. The
definition of the fixed circle has been generalized by replacing the radius 𝑟
of the circle with the function 𝜙(𝑟) where 𝜙 : R+ → R+. The results have
been also generalized by using a Caristi-type contraction in metric spaces,
and Section 3 concludes the paper with some remarks and future direc-
tions.
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DEFINITION 1. Özgür, & Taş (2019) Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝑟 =
{𝑥 ∈ 𝑋 : 𝑑 (𝑥0, 𝑥) = 𝑟} be a circle, for a self-mapping 𝑇 : 𝑋 → 𝑋, if 𝑇𝑥 = 𝑥 for
every 𝑥 ∈ 𝐶𝑥0,𝑟 then the circle is a fixed circle of 𝑇 .

THEOREM 1. Özgür, & Taş (2019) Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝑟 be
any circle on 𝑋. Let us define the mapping 𝜓 : 𝑋 → [0,∞)

𝜓(𝑥) = 𝑑 (𝑥, 𝑥0) (1)

for all 𝑥 ∈ 𝑋. If there exists a self-mapping 𝑇 : 𝑋 → 𝑋 satisfying
1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
2. 𝑑 (𝑇𝑥, 𝑥0) ≥ 𝑟

for each 𝑥 ∈ 𝐶𝑥0,𝑟 then the circle 𝐶𝑥0,𝑟 is a fixed circle of 𝑇 .

THEOREM 2. Özgür, & Taş (2019) Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝑟 be
any circle on 𝑋. Let the mapping 𝜓 be defined as equation (1) for all 𝑥 ∈ 𝑋.
If there exists a self-mapping 𝑇 : 𝑋 → 𝑋 satisfying
(1*) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝑟

(2*) 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝑟

for each 𝑥 ∈ 𝐶𝑥0,𝑟 then the circle 𝐶𝑥0,𝑟 is a fixed circle of 𝑇 .

THEOREM 3. Özgür, & Taş (2019) Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝑟 be
any circle on 𝑋. Let the mapping 𝜓 be defined as equation (1) for all 𝑥 ∈ 𝑋.
If there exists a self-mapping 𝑇 : 𝑋 → 𝑋 satisfying:
(1**) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
(2**) ℎ𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝑟

for each 𝑥 ∈ 𝐶𝑥0,𝑟 then the circle 𝐶𝑥0,𝑟 is a fixed circle of 𝑇 .

In 2019, Özgür (2019) defined a new contractive typemapping onmetric
spaces, and that includes fixed disc results via a simulation function on
metric spaces.

DEFINITION 2. Taş et al. (2021) Let (𝑋, 𝑑) be a metric space, 𝐷𝑥0,𝑟 = {𝑥 ∈
𝑋 : 𝑑 (𝑥0, 𝑥) ≤ 𝑟} (𝑟 ∈ R+ ∪ {0}) a disc and a self-mapping 𝑇 : 𝑋 → 𝑋, if
𝑇𝑥 = 𝑥 for every 𝑥 ∈ 𝐷𝑥0,𝑟 then the disc is called a fixed disc of 𝑇 .

DEFINITION 3. Özgür (2019) Let 𝜁 ∈ Z be any simulation function. 𝑇 is said
to be a Z𝑐-contraction with respect to 𝜁 if there exists an 𝑥0 ∈ 𝑋 such that
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the following condition holds for all 𝑥 ∈ 𝑋:

𝑑 (𝑇𝑥, 𝑥) > 0 ⇒ 𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑇𝑥, 𝑥0)) ≥ 0.

If 𝑇 is a Z𝑐-contraction with respect to 𝜁 , then there exists

𝑑 (𝑇𝑥, 𝑥) < 𝑑 (𝑇𝑥, 𝑥0), (2)

for all 𝑥 ∈ 𝑋 with 𝑇𝑥 = 𝑥. Indeed, if 𝑇𝑥 = 𝑥 then inequality (2) is satisfied
. If 𝑇𝑥 ≠ 𝑥 then 𝑑 (𝑇𝑥, 𝑥) > 0. By the definition of a Z𝑐-contraction and the
condition of 𝜁 , we get

0 ≥ 𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑇𝑥, 𝑥0)) < 𝑑 (𝑇𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥)

and so equation (2) is satisfied. In all fixed disc results, they use the number
𝑟 ∈ R+ ∪ {0} defined by

𝑟 = inf
𝑥∈𝑋

{𝑑 (𝑥, 𝑇𝑥) |𝑇𝑥 ≠ 𝑥}.

THEOREM 4. Özgür (2019) If 𝑇 is a Z𝑐-contraction with respect to 𝜁 with
𝑥0 ∈ 𝑋 and the condition 0 < 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝑟 holds for all 𝑥 ∈ 𝐷𝑥0,𝑟 − {𝑥0} then
the 𝐷𝑥0,𝑟 is a fixed disc of 𝑇 .

DEFINITION 4. Özgür (2019) Let (𝑋, 𝑑) be a metric space and 𝑇 : 𝑋 → 𝑋 be
a self-mapping and 𝜁 ∈ Z. 𝑇 is said to be a 𝐶𝑖𝑟𝑖𝑐-type Z𝑐-contraction with
respect to 𝜁 if there exists an 𝑥0 ∈ 𝑋 such that the following condition holds
for all 𝑥 ∈ 𝑋;

𝑑 (𝑥, 𝑇𝑥) > 0 ⇒ 𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑚∗(𝑥, 𝑥0)) ≥ 0

where 𝑚∗(𝑥, 𝑥0) = 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥), 𝑑 (𝑥0, 𝑇𝑥0), 𝑑 (𝑥,𝑇𝑥0 )+𝑑 (𝑥0,𝑇𝑥 )
2 }.

THEOREM 5. Özgür (2019) Let (𝑋, 𝑑) be a metric space and 𝑇 : 𝑋 → 𝑋

a 𝐶𝑖𝑟𝑖𝑐-type Z𝑐-contraction with respect to 𝜁 with 𝑥0 ∈ 𝑋, If the condition
0 < 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝑟 holds for all 𝑥 ∈ 𝐷𝑥0,𝑟 − {𝑥0} then 𝐷𝑥0,𝑟 is a fixed disc of 𝑇 .

Main results
In this section, we have generalized the definition of the fixed circle by

replacing the radius 𝑟 of the circle with the function 𝜙(𝑟) where 𝜙 : R+ → R+.
We have also generalized theorem (1) by using the Caristi-type contraction
in metric spaces.
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DEFINITION 5. Let (𝑋, 𝑑) be ametric space and𝐶𝑥0,𝜙 (𝑟 ) = {𝑥 ∈ 𝑋 : 𝑑 (𝑥0, 𝑥) =
𝜙(𝑟)} where 𝜙 : R+ → R+ be a circle, for a self-mapping 𝑇 : 𝑋 → 𝑋, if 𝑇𝑥 = 𝑥

for every 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then the circle is a 𝜙-fixed circle of 𝑇 .

THEOREM 6. Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝜙 (𝑟 ) be any circle on 𝑋.
Let us define the mapping 𝜓 : 𝑋 → [0,+∞)

𝜓(𝑥) = 𝑑 (𝑥, 𝑥0) (3)

and 𝜙 : R+ → R+ for all 𝑥 ∈ 𝑋. If there exists a self-mapping 𝑇 : 𝑋 → 𝑋

satisfying
1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
2. 𝑑 (𝑇𝑥, 𝑥0) ≥ 𝜙(𝑟)

for each 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then the circle 𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of 𝑇 .

Proof. Let us assume that the mapping 𝜓 is defined by 𝜓 : 𝑋 → [0,+∞)
and 𝜓(𝑥) = 𝑑 (𝑥, 𝑥0). Let 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) be any arbitrary point. We show that
𝑇𝑥 = 𝑥, whenever 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) using condition (1)

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
= 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥0) (4)
=𝜙(𝑟) − 𝑑 (𝑇𝑥, 𝑥0)

because of condition(2), the point 𝑇𝑥 should be lying on the exterior of the
circle 𝐶𝑥0,𝜙 (𝑟 ) . Then there are two cases. If 𝑑 (𝑇𝑥, 𝑥0) > 𝜙(𝑟) then using (4)
is a contradiction. Now therefore it should be 𝑑 (𝑇𝑥, 𝑥0) = 𝜙(𝑟). In this case,
by using (4) we get

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜙(𝑟) − 𝜙(𝑟)
= 0.

Hence, we obtain 𝑇𝑥 = 𝑥 for all 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) . Consequently, 𝐶𝑥0,𝜙 (𝑟 ) is a
𝜙-fixed circle of 𝑇 . □

EXAMPLE 1. Let 𝑋 = [ 12 ,∞], (𝑋, 𝑑) be a metric space and let us consider a
circle 𝐶𝑥0,𝜙 (𝑟 ) and define the mapping 𝑇 : 𝑋 → 𝑋

𝑇 (𝑥) =
{
𝑥; 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )

2𝑥; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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and 𝜙 : R+ → R+ is defined by

𝜙(𝑟) = 1

𝑟
.

Solution: If 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then 𝑇𝑥 = 𝑥.
1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥),

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝑥, 𝑥) = 0

𝜓(𝑥) − 𝜓(𝑇𝑥) = 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥0)
= 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑥, 𝑥0)
= 0.

2. 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 (𝑥, 𝑥0) = 𝜙(𝑟).
holds for each 𝑥 ∈ 𝑋 and for all 𝑟 ≥ 1.
Then it can be easily seen that conditions (1) and (2) are satisfied. Clearly
𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of 𝑇 .

EXAMPLE 2. Let 𝑋 = R+ and (𝑋, 𝑑) be a metric space and let us consider a
circle 𝐶𝑥0,𝜙 (𝑟 ) and let 𝜙 : R+ → R+ define as

𝜙(𝑟) =
{
1
𝑟 ; if 𝑟 ≥ 2
1
5 ; otherwise

and define the mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
1
2 ; if 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )

5; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

if 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then 𝑇𝑥 = 1
2 and if 𝑟 ≥ 2 and 𝑥0 = 0 then

1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)

𝑑 (𝑥, 1
2
) ≤ 𝑑 (𝑥, 0) − 𝑑 (𝑇𝑥, 0)

= 𝑥 − 1

2

2. 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 ( 12 , 0) =
1
2 ≥ 1

𝑟 .
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for 𝑥0 = 0 and for each 𝑥 ∈ 𝐶𝑥0,
1
𝑟
, hence 𝑇 satisfies conditions (1) and (2).

Clearly 𝐶𝑥0,
1
𝑟
is a 𝜙-fixed circle of 𝑇 . But it does not satisfy condition (2) in

theorem (1).

EXAMPLE 3. Let 𝑋 = [0, 2] and (𝑋, 𝑑) be a metric space and let us consider
a circle 𝐶𝑥0,𝜙 (𝑟 ) and let 𝜙 : R+ → R+ defined as

𝜙(𝑟) =
{

1
2𝑟−1 ; if 𝑟 ≥ 1
1
3 ; otherwise

and define the mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
𝑥
10 ; if 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )
1
2 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

If 𝑥 ∈ 𝐶1, 1
2𝑟−1

then 𝑇𝑥 = 𝑥
10 ,

1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)

𝑑 (𝑥, 𝑥

10
) ≤ 𝑑 (𝑥, 1) − 𝑑 ( 𝑥

10
, 1)

9𝑥

10
=

9𝑥

10
.

2. 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 ( 𝑥
10 , 1) =

𝑥
10 − 1 ≱ 1

2𝑟−1 .
Hence, 𝑇 satisfies condition (1) but does not satisfy condition (2). Clearly,
𝑇 does not have a 𝜙-fixed circle.

EXAMPLE 4. Let 𝑋 = R+ and (𝑋, 𝑑) be a metric space and let us consider a
circle 𝐶𝑥0,𝜙 (𝑟 ) and let 𝜙 : R+ → R+ defined as

𝜙(𝑟) =
{
1
𝑟 ; if 𝑟 ≥ 1
2
3 ; otherwise

and define the self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
2; if 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )
12
5 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

If 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then 𝑇𝑥 = 2, 𝑟 ≥ 1.

1271

C
ha
nd
ra
,V

in
ee
ta
an
d
Pa

te
l,
U
m
a
D
ev
i,
Fi
xe
d-
ci
rc
le
an
d
fix
ed
-d
is
c
pr
ob
le
m
s
in
m
et
ric

sp
ac
es
,p
p.
12
65
–1
28
1



1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)

1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)

𝑑 (𝑥, 2) ≤ 1

𝑟
− 𝑑 (𝑇𝑥, 𝑥0)

𝑥 ≰
1

𝑟
, ∀ 𝑟 > 1

2. 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 (2, 0) = 2 ≥ 1
𝑟 = 𝜙(𝑟)

𝑑 (𝑇𝑥, 𝑥0) ≥ 𝜙(𝑟), ∀ 𝑟 ≥ 1.
Hence, the self-mapping 𝑇 satisfies condition (2) but does not satisfy con-
dition (1). Then, clearly 𝑇 does not have a 𝜙-fixed circle.

THEOREM 7. Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝜙 (𝑟 ) be any circle on 𝑋.
Let the mapping 𝜓 be defined as equation (3) and 𝜙 : R+ → R+for all 𝑥 ∈ 𝑋.
If there exists a self-mapping 𝑇 : 𝑋 → 𝑋 satisfying
(1*) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟)
(2*) 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝜙(𝑟)

for each 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then the circle 𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of 𝑇 .

Proof. Let us assume that the mapping 𝜓 is defined as 𝜓 : 𝑋 → [0,∞) and
let 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) be any arbitrary point.
Now, using condition (1∗), we get

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟)
= 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑇𝑥, 𝑥0) − 2𝜙(𝑟)
= 𝜙(𝑟) + 𝑑 (𝑇𝑥, 𝑥0) − 2𝜙(𝑟) (5)
= 𝑑 (𝑇𝑥, 𝑥0) − 𝜙(𝑟)

Because of condition (2*), the point𝑇𝑥 should be lying on or be interior of the
circle 𝐶𝑥0,𝜙 (𝑟 ) . Then there are two cases. If 𝑑 (𝑇𝑥, 𝑥0) < 𝜙(𝑟) then by using
(5) we get a contradiction. It should be 𝑑 (𝑇𝑥, 𝑥0) = 𝜙(𝑟). If 𝑑 (𝑇𝑥, 𝑥0) = 𝜙(𝑟)
then by using (5), we get

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑇𝑥, 𝑥0) − 𝜙(𝑟)
≤ 𝜙(𝑟) − 𝜙(𝑟)
= 0 (6)

Hence, 𝑇𝑥 = 𝑥. Consequently, 𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of 𝑇 . □
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EXAMPLE 5. Let (𝑋, 𝑑) be a metric space. Let us consider a circle 𝐶𝑥0,𝜙 (𝑟 )
where 𝜙(𝑟) is defined as

𝜙(𝑟) =
{

1
2𝑟−1 ; 𝑟 ∈ {1, 2, 3}
1
3 ; otherwise

and define the self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
𝑥; if 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )
1
5 ; otherwise

for all 𝑥 ∈ 𝑋.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1

Figure 1 represents the circle 𝐶0,𝜙 (𝑟 ) where 𝑟 ∈ {1, 2, 3}. If 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )
then 𝑇𝑥 = 𝑥. Then it is easily seen that conditions (1*) and (2*) are satisfied.
Hence, clearly 𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of 𝑇 .

EXAMPLE 6. Let𝑋 = R+ and (𝑋, 𝑑) be a metric space. Let us consider a
circle 𝐶𝑥0,𝜙 (𝑟 ) where 𝜙(𝑟) is defined as

𝜙(𝑟) =
{

1
2𝑟−1 ; 𝑟 ∈ {1, 2, 3}
1
3 ; otherwise

and define the self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
1
6 ; if 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 )

5; otherwise
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for all 𝑥 ∈ 𝑋. If 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) then 𝑇𝑥 = 1
6 and 𝑥0 = 0.

1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟)

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟)
𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟) = 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑇𝑥, 𝑥0) − 2𝜙(𝑟)

= 𝜙(𝑟) + 𝑑 (1
6
, 0) − 2𝜙(𝑟)

=
1

6
− 1

2𝑟 − 1

≱ 𝑑 (𝑥, 1
6
).

2. 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 ( 16 , 0) =
1
6 ≤ 1

2𝑟−1 = 𝜙(𝑟).
Then the self-mapping 𝑇 satisfies condition (2*) but does not satisfy condi-
tion (1*). Clearly, 𝑇 does not 𝜙-fix the circle 𝐶0,𝜙 (𝑟 ) .

EXAMPLE 7. Let 𝑋 = [0, 32 ] and (𝑋, 𝑑) be the usual metric space with
𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦 | and define the self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇 (𝑥) =
{
2; if 𝑥 ∈ 𝐶0,𝜙 (𝑟 )
5
2 ; otherwise

where 𝜙 : R+ → R+ is defined as

𝜙(𝑟) =
{

1
2𝑟−1 ; if 𝑟 ≥ 1
1
3 ; otherwise .

If 𝑥 ∈ 𝐶0,𝜙 (𝑟 ) then 𝑇 (𝑥) = 2 for 𝑟 ≥ 1

1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟)

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) + 𝜓(𝑇𝑥) − 2𝜙(𝑟)
𝑑 (𝑥, 2) ≤ 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑇𝑥, 𝑥0) − 2𝜙(𝑟)
|𝑥 − 2| ≤ 𝜙(𝑟) + 𝑑 (2, 0) − 2𝜙(𝑟)

≤ 2 − 1

2𝑟 − 1

≤ 4𝑟 − 3

2𝑟 − 1
𝑓 𝑜𝑟 𝑟 ≥ 1.

2. 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 (2, 0) = 2 ≰ 1
2𝑟−1 = 𝜙(𝑟), 𝑓 𝑜𝑟 𝑟 ≥ 1.
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Hence, the self-mapping 𝑇 satisfies condition (1*) but does not satisfy con-
dition (2*). Then, clearly 𝑇 does not 𝜙-fix the circle 𝐶0,𝜙 (𝑟 ) .

THEOREM 8. Let (𝑋, 𝑑) be a metric space and 𝐶𝑥0,𝜙 (𝑟 ) be any circle on 𝑋.
Let the mapping 𝜓 be defined as equation (3) and 𝜙 : R+ → R+ for all 𝑥 ∈ 𝑋.
If there exists a self-mapping 𝑇 : 𝑋 → 𝑋 satisfying
(1**) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
(2**) ℎ𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑥0) ≥ 𝜙(𝑟)
for each 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) and some ℎ ∈ [0, 1), then 𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of
𝑇 .

Proof. We consider the mapping 𝜓 : 𝑋 → [0,+∞) and 𝜓(𝑥) = 𝑑 (𝑥, 𝑥0).
Assume that 𝑥 ∈ 𝐶𝑥0,𝜙 (𝑟 ) and 𝑇𝑥 = 𝑥 then using conditions (1**) and (2**).
Now we obtain

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
= 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥0)
= 𝜙(𝑟) − 𝑑 (𝑇𝑥, 𝑥0)
≤ ℎ𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥0)
= ℎ𝑑 (𝑥, 𝑇𝑥),

which is a contradiction with our assumption since ℎ ∈ [0, 1). Therefore we
get 𝑇𝑥 = 𝑥 and 𝐶𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed circle of 𝑇 . □

EXAMPLE 8. Let 𝑋 = [0, 1] and (𝑋, 𝑑) be the usual metric space. Let us
consider the circle 𝐶 1

2 ,
1
2
= {0, 1} where 𝜙(𝑟) = 1

2 , 𝑥0 = 1
2 and define the

self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
1
2 ; if 𝑥 ∈ 𝐶 1

2 ,
1
2

1; otherwise

for all 𝑥 ∈ 𝑋. If 𝑥 ∈ 𝐶 1
2 ,

1
2
then 𝑇𝑥 = 1

2 .
1. 𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜓(𝑥) − 𝜓(𝑇𝑥)
𝜓(𝑥) − 𝜓(𝑇𝑥) = 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑥, 𝑇𝑥0)

= 𝑑 (𝑥, 1
2
) − 𝑑 (1

2
,
1

2
)
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⇒ 𝑑 (𝑥, 1
2
) ≥ 𝑑 (𝑥, 1

2
).

2. ℎ𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑥0) ≥ 𝜙(𝑟)

ℎ · 𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑥0) = ℎ · 𝑑 (𝑥, 1
2
) + 𝑑 (1

2
,
1

2
)

≱
1

2
.

Hence, the self-mapping 𝑇 satisfies condition (1**) where ℎ ∈ [0, 1), but
does not satisfy condition (2**). Clearly 𝑇 does not 𝜙-fix the circle 𝐶 1

2 ,
1
2
.

Now, we generalize the definition of fixed discs and the results of fixed
disc.

DEFINITION 6. Let (𝑋, 𝑑) be a metric space, 𝐷𝑥0,𝜙 (𝑟 ) = {𝑥 ∈ 𝑋 : 𝑑 (𝑥0, 𝑥) ≤
𝜙(𝑟)} where 𝜙 : R+ → R+ be a disc and 𝑇 be a self-mapping on 𝑋, if 𝑇𝑥 = 𝑥

for every 𝑥 ∈ 𝐷𝑥0,𝜙 (𝑟 ) then the disc is called a 𝜙-fixed disc of 𝑇 .

THEOREM 9. If 𝑇 is a Z𝑐-contraction with respect to 𝜁 with 𝑥0 ∈ 𝑋 and
the condition 0 < 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝜙(𝑟) where 𝜙 : R+ → R+ holds for all 𝑥 ∈
𝐷𝑥0,𝜙 (𝑟 ) − {𝑥0} then the disc 𝐷𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed disc of 𝑇 .

Proof. Let 𝜙(𝑟) = 0. In this case 𝑥 ∈ 𝐷𝑥0,𝜙 (𝑟 ) = {𝑥0}. I f 𝑇𝑥0 ≠ 𝑥0 then
𝑑 (𝑇𝑥0, 𝑥0) > 0 and using the definition of Z𝑐 -contraction we get

𝜁 (𝑑 (𝑇𝑥0, 𝑥0), 𝑑 (𝑇𝑥0, 𝑥0)) ≥ 0.

This is a contradiction by the condition of 𝜁, (𝜁 (𝑡, 𝑠) < 𝑠 − 𝑡) for all 𝑠, 𝑡 > 0.
Hence, 𝑇𝑥0 = 𝑥0.
Now, assume 𝜙(𝑟) ≠ 0. Let 𝑥 ∈ 𝐷𝑥0,𝜙 (𝑟 ) be such that 𝑇𝑥 ≠ 𝑥. By the
definition of 𝜙(𝑟) we have 0 < 𝜙(𝑟) ≤ 𝑑 (𝑥, 𝑇𝑥) and using the condition of 𝜁 ,
we obtain

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑇𝑥, 𝑥0)) < 𝑑 (𝑇𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥)
≤ 𝜙(𝑟) − 𝑑 (𝑇𝑥, 𝑥)
≤ 𝜙(𝑟) − 𝜙(𝑟)
= 0

which is a contradiction with the property of 𝑇 . It should be 𝑇𝑥 = 𝑥, so 𝑇

𝜙-fixes the disc 𝐷𝑥0,𝜙 (𝑟 ) . □
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EXAMPLE 9. Let 𝑋 = R and (𝑋, 𝑑) be the usual metric space with 𝑑 (𝑥, 𝑦) =
|𝑥 − 𝑦 |. Let us define the self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 =

{
𝑥; 𝑥 ∈ [−1, 1]
𝑥2 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

for all 𝑥 ∈ R and define the mapping 𝜙 : R+ → R+ as 𝜙(𝑟) = 1√
𝑟
where 𝜙(𝑟)

is a disc radius. The function 𝜁 : [0,∞)2 → R defined as 𝜁 (𝑡, 𝑠) = 2
3 𝑠 − 𝑡.

Indeed, it is clear that

0 < 𝑑 (𝑇𝑥, 𝑥0) = 𝑑 (𝑥, 0) = |𝑥 | ≤ 1
√
𝑟
= 𝜙(𝑟)

hence 0 < 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝜙(𝑟), holds for all 𝑥 ∈ 𝐷𝑥0, [−1,1] − {0} and 𝑟 ∈ [ 19 , 1],
we have

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑇𝑥, 𝑥0)) = 𝜁 (𝑑 (𝑥2 + 1, 𝑥), 𝑑 (𝑥2 + 1, 0))
= 𝜁 ( |𝑥2 + 1 − 𝑥 |, |𝑥2 + 1 − 0|)

=
2

3
|𝑥2 + 1| − |𝑥2 + 1 − 𝑥 |

≤ 1

3
|3𝑥 − 𝑥2 − 1|.

for all 𝑥 ∈ R such that 𝑑 (𝑇𝑥, 𝑥) > 0. Hence 𝑇 is a Z𝑐-contraction with the
radius 𝜙(𝑟) = 1√

𝑟
and the center is 0. Consequently, 𝑇 is a 𝜙-fixed disc

𝐷𝑥0,𝜙 (𝑟 ) = [−1, 1], but does not hold theorem (4) in the condition (0 <

𝑑 (𝑇𝑥, 𝑥0) ≤ 𝑟).

THEOREM 10. Let (𝑋, 𝑑) be a metric space and 𝑇 : 𝑋 → 𝑋 a 𝐶𝑖𝑟𝑖𝑐-typeZ𝑐-
contraction with respect to 𝜁 with 𝑥0 ∈ 𝑋, If the condition 0 < 𝑑 (𝑇𝑥, 𝑥0) ≤ 𝜙(𝑟)
holds for all 𝑥 ∈ 𝐷𝑥0,𝜙 (𝑟 ) − {𝑥0} then 𝐷𝑥0,𝜙 (𝑟 ) is a 𝜙-fixed disc of 𝑇 .

Proof. Let 𝜙(𝑟) = 0. In this case, 𝑥 ∈ 𝐷𝑥0,𝜙 (𝑟 ) = {𝑥0} and the 𝐶𝑖𝑟𝑖𝑐-type
Z𝑐-contraction theory produces 𝑇𝑥0 = 𝑥. Indeed, If 𝑇𝑥0 ≠ 𝑥 then we have
𝑑 (𝑥0, 𝑇𝑥0) > 0. By the definition of the 𝐶𝑖𝑟𝑖𝑐-type Z𝑐-contraction, we get

𝜁 (𝑑 (𝑥0, 𝑇𝑥0), 𝑚∗(𝑥0, 𝑥0) ≥ 0 (7)

Since

𝑚∗(𝑥0, 𝑥0) = 𝑚𝑎𝑥{𝑑 (𝑥0, 𝑥0), 𝑑 (𝑥0, 𝑇𝑥0), 𝑑 (𝑥0, 𝑇𝑥0),
𝑑 (𝑥0, 𝑇𝑥0) + 𝑑 (𝑥0, 𝑇𝑥0)

2
}
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= 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥0, 𝑇𝑥0), 𝑑 (𝑥0, 𝑇𝑥0), 𝑑 (𝑥0, 𝑇𝑥0)}
= 𝑑 (𝑥0, 𝑇𝑥0).

Now, we find

𝜁 (𝑑 (𝑥0, 𝑇𝑥0), 𝑚∗(𝑥0, 𝑥0)) = 𝜁 (𝑑 (𝑥0, 𝑇𝑥0), 𝑑 (𝑥0, 𝑇𝑥0))
< 0

by the condition of 𝜁 such that 𝜁 (𝑡, 𝑠) < 𝑠 − 𝑡. This is a contradiction to
equation (7). Hence, it should be 𝑇𝑥0 = 𝑥0. Assume that 𝜙(𝑟) ≠ 0. Let
𝑥 ∈ 𝐷𝑥0,𝜙 (𝑟 ) be such that 𝑇𝑥 ≠ 𝑥. Then we have

𝑚∗(𝑥, 𝑥0) = 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥), 𝑑 (𝑥0, 𝑇𝑥0),
𝑑 (𝑥, 𝑇𝑥0) + 𝑑 (𝑥0, 𝑇𝑥)

2
}

= 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥),
𝑑 (𝑥, 𝑇𝑥0) + 𝑑 (𝑥0, 𝑇𝑥)

2
}

By the assumption, we have

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑚∗(𝑥, 𝑥0)) ≥ 0

and

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥),
𝑑 (𝑥, 𝑥0) + 𝑑 (𝑥0, 𝑇𝑥)

2
} ≥ 0 (8)

Now, we have the following three cases:
Case 1. Let 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥), 𝑑 (𝑥,𝑥0 )+𝑑 (𝑥0,𝑇𝑥 )

2 } = 𝑑 (𝑥, 𝑥0) from equation
(8) we get

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑥, 𝑥0)) ≥ 0.

Using the condition 𝜁 s.t. (𝜁 (𝑡, 𝑠) < 𝑠− 𝑡) and consider the definition of 𝜙(𝑟),
we find

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑥, 𝑥0)) < 𝑑 (𝑥, 𝑥0) − 𝑑 (𝑇𝑥, 𝑥)
< 𝜙(𝑟) − 𝜙(𝑟) = 0

which is a contradiction.
Case 2. Let 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥), 𝑑 (𝑥,𝑥0 )+𝑑 (𝑥0,𝑇𝑥 )

2 } = 𝑑 (𝑥, 𝑇𝑥) from equa-
tion (8) we get

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑥, 𝑇𝑥)) ≥ 0.
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Using the condition 𝜁 s.t. (𝜁 (𝑡, 𝑠) < 𝑠 − 𝑡), again we obtain a contradiction.
Case 3. Let 𝑚𝑎𝑥{𝑑 (𝑥, 𝑥0), 𝑑 (𝑥, 𝑇𝑥), 𝑑 (𝑥,𝑥0 )+𝑑 (𝑥0,𝑇𝑥 )

2 } = 𝑑 (𝑥,𝑥0 )+𝑑 (𝑥0,𝑇𝑥 )
2 from

equation (8) we get

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑥0, 𝑇𝑥)
2

) ≥ 0.

Using the condition 𝜁 s.t. (𝜁 (𝑡, 𝑠) < 𝑠 − 𝑡), we obtain

𝜁 (𝑑 (𝑇𝑥, 𝑥), 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑥0, 𝑇𝑥)
2

) < 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑥0, 𝑇𝑥)
2

− 𝑑 (𝑇𝑥, 𝑥)

≤ 𝜙(𝑟) − 𝑑 (𝑇𝑥, 𝑥) ≤ 𝜙(𝑟) − 𝜙(𝑟) = 0.

Again this is a contradiction with the 𝐶𝑖𝑟𝑖𝑐-type Z𝑐-contractive property of
𝑇 . In all the above cases, we have a contradiction. Hence, it should be
𝑇𝑥 = 𝑥 and consequently, 𝑇 𝜙-fixes the disc 𝐷𝑥0,𝜙 (𝑟 ) . □

Conclusion and future work
This study contributes to the field by broadening the scope of fixed point

theory to include fixed circles and discs, incorporating a more flexible def-
inition via the function 𝜙(𝑟). The use of Caristi-type contractions further
enhances the applicability of the results within metric spaces. These ad-
vancements provide a robust framework for exploring geometric properties
in fixed point theory. Future work may focus on extending these ideas to
fuzzy metric spaces and probabilistic metric spaces, as well as investigat-
ing applications in dynamic systems and optimization problems.
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Проблеми фиксне тачке и фиксног диска у метричким
просторима

Винеета Чандра𝑎, Ума Деви Пател𝑏,
аутор за кореспонденцију
a Гуру Гасидас Вишвавидјалаја, Одељење за математику,
Биласпур, Чатисгарх, Индија,

b Гуру Гасидас Вишвавидјалаја, Одељење за математику,
Биласпур, Чатисгарх, Индија,

ОБЛАСТ: математика
КАТЕГОРИЈА ЧЛАНКА (ТИП): оригинални научни рад
Сажетак:

Увод/циљ: Циљ овог рада јесте да се установе теореме
постојања за непокретне кругове и непокретне дискове
у метричким просторима коришћењем различитих врста
услова за контракцију. Применом пресликавања у самог
себе на метричким просторима, резултати класичне не-
покретне тачке проширују се на ове фиксне геометријске
структуре. Наведено је неколико примера за илустрацију
и потврду теоријских резултата.
Методе: Разматрају се пресликавања у самог себе на ме-
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тричким просторима и уводе различите врсте услова за
контракцију. Аналитичке технике из теорије непокретне
тачке користе се за извођење довољних услова за посто-
јање 𝜙-непокретних кругова и 𝜙-непокретних дискова. Те-
оријски резултати су поткрепљени пажљиво конструиса-
ним примерима који задовољавају предложене контракције
и потврђују применљивост добијених теорема.
Резултати: Успешно су увдени резултаи 𝜙-непокретних
кругова и 𝜙-непокретних дискова за Каристијеве контрак-
ције, као и друга класуа контракција у оквиру метричких
простора. Наводе се и одговарајући примери.
Закључак: Овај рад уводи нове теореме постојања за 𝜙-
непокретне кругове и 𝜙-непокретне дискове у метричким
просторима помоћу Каристијевих и одговарајућих услова
за контракцију. Његови резултати проширују класичну те-
орију непокретне тачке са појединачних непокретних та-
чака на шире геометријске непокретне структуре и на тај
начин обогаћују теорију метричких непокретних тачака.
Наведени примери указују на применљивост и ефикасност
предложених резултата, као и на њихов потенцијал за бу-
дућа уопштавања.
Кључне речи: непокретни круг, непокретни диск, метрич-
ки простор, Каристијева контракција
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