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Abstract:

Introduction/purpose: The purpose of this paper is to establish existence
theorems for fixed circles and fixed discs in metric spaces using different
types of contractive conditions. By considering self-mappings on met-
ric spaces, classical fixed point results are extended to these geometric
fixed structures. Several examples are provided to illustrate and validate
the theoretical results.

Methods: Self-mappings defined on metric spaces are considered and
various types of contractive conditions introduced. Analytical techniques
from fixed point theory are used to derive sufficient conditions for the ex-
istence of ¢-fixed circles and ¢-fixed discs. The theoretical results are
supported by carefully constructed examples that satisfy the proposed
contractions and demonstrate the applicability of the obtained theorems.
Results: The study successfully establishes ¢-fixed circles and ¢-fixed
disc results for Caristi-type contractions and another class of contrac-
tions within the framework of metric spaces. Additionally, supportive ex-
amples are provided.

Conclusion: This paper establishes new existence theorems for ¢-fixed
circles and ¢-fixed discs in metric spaces using Caristi-type and related
contractive conditions. These results extend classical fixed point the-
ory beyond single fixed points to broader geometric fixed structures,
thereby enriching the theory of metric fixed points. The provided ex-
amples demonstrate the applicability and effectiveness of the proposed
results and indicate their potential for further generalizations.
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Introduction

The study of fixed point theory has been a fundamental area in math-
ematical analysis, with applications spanning across various branches of
mathematics. In metric spaces, the investigation of fixed points has led to
numerous significant results, beginning with Banach’s contraction princi-
ple in 1922. "While traditional fixed point theory focuses on single points,
recent developments have expanded to include the study of fixed sets, par-
ticularly fixed circles and fixed discs. A fixed circle of a self-mapping T on
a metric space X is a circle C such that T7(C) = C. Similarly, a fixed disc
is a disc D where T(D) = D.” Several researchers have contributed to this
area. Ozglr, & Tas (2019) established the first results on fixed circles us-
ing Caristi-type contractions in metric spaces. Later, Ozgiir, & Tag (2021)
extended these results to more general spaces. Recent work by [Mlaiki et
al. (2023), Tas (2018)] has introduced new techniques for studying fixed
disc properties. However, the existence of fixed circles and fixed discs un-
der certain types of contractive conditions remains unexplored. Moreover,
the relationship between different contractive conditions and their impact
on the existence of fixed sets needs further investigation. The fixed-circle
problem was also studied in the setting of S-metric spaces in [Ozgir et al.
(2017), Ozgdr et al. (2018)]. In recent years, the fixed-disc problem have
been studied with this perspective on metric and some generalized met-
ric spaces (see [Ozglr (2019), Tas et al. (2021)] for more details). This
paper presents new existence theorems for fixed circles and fixed discs
using various contractive conditions. The obtained results extend previous
work by considering [Ozgir, & Tas (2021), Tas (2018)]. Examples are also
provided demonstrating that the conditions given here are optimal. This
paper is organized as follows: Section 1 presents preliminary and defini-
tions. Section 2 establishes the main results on fixed circles, which contain
theorems related to fixed discs, and provides illustrative examples. The
definition of the fixed circle has been generalized by replacing the radius r
of the circle with the function ¢(r) where ¢ : R* — R*. The results have
been also generalized by using a Caristi-type contraction in metric spaces,
and Section 3 concludes the paper with some remarks and future direc-
tions.




DerINITION 1. Ozgiir, & Tas (2019) Let (X, d) be a metric space and Cy, , =
{x € X : d(x9,x) = r} be a circle, for a self-mapping T : X — X, if Tx = x for
every x € Cy, ., then the circle is a fixed circle of T.

THEOREM 1. Ozgiir, & Tas (2019) Let (X, d) be a metric space and C,, ., be
any circle on X. Let us define the mapping v : X — [0, o)

W (x) = d(x,x0) (1)

for all x € X. If there exists a self-mapping T : X — X satisfying
1. d(x,Tx) <y (x) —y(Tx)
2. d(Tx,xqg) > r

for each x € Cy, , then the circle Cy, , is a fixed circle of T.

THEOREM 2. Ozgiir, & Tas (2019) Let (X, d) be a metric space and C,, , be
any circle on X. Let the mapping  be defined as equation (1) for all x € X.
If there exists a self-mapping T : X — X satisfying

(1%) d(x,Tx) <y (x)+y(Tx) —2r

(2%) d(Tx,xqg) <r
for each x € Cy, , then the circle Cy, , is a fixed circle of T.

THEOREM 3. Ozgiir, & Tas (2019) Let (X, d) be a metric space and C,, , be
any circle on X. Let the mapping  be defined as equation (1) for all x € X.
If there exists a self-mapping T : X — X satisfying:

(1%%) d(x,Tx) < ¢(x) —¢(Tx)

(2**) hd(x,Tx) +d(Tx,xg) <r

for each x € Cy, , then the circle Cy, , is a fixed circle of T.

In 2019, Ozgiir (2019) defined a new contractive type mapping on metric
spaces, and that includes fixed disc results via a simulation function on
metric spaces.

DEFINITION 2. Tas et al. (2021) Let (X, d) be a metric space, Dy, , = {x €
X : d(xg,x) <r} (r e Rt U{0}) adisc and a self-mapping T : X — X, if
Tx = x for every x € Dy, , then the disc is called a fixed disc of T.

DerINITION 3. Ozgiir (2019) Let ¢ € Z be any simulation function. T is said
to be a Z.-contraction with respect to ¢ if there exists an xy € X such that
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the following condition holds for all x € X:
d(Tx,x) > 0= ¢(d(Tx,x),d(Tx,xq)) = 0.
IfT is a Z.-contraction with respect to £, then there exists
d(Tx,x) < d(Tx,xg), (2)

for all x € X with Tx = x. Indeed, if Tx = x then inequality (2) is satisfied
. If Tx # x then d(Tx,x) > 0. By the definition of a Z.-contraction and the
condition of ¢, we get

0> ?(d(Tx,x),d(Tx,x0)) < d(Tx,x0) —d(Tx,x)

and so equation (2) is satisfied. In all fixed disc results, they use the number
r € R* U {0} defined by

r = inf {d(x,Tx)|Tx # x}.
xeX

THEOREM 4. Ozgiir (2019) If T is a Z.-contraction with respect to ¢ with
Xo € X and the condition 0 < d(Tx,x¢) < r holds for all x € Dy, , — {xo} then
the D, , is a fixed disc of T.

DEFINITION 4. Ozgiir (2019) Let (X, d) be a metric space andT : X — X be
a self-mapping and ¢ € Z. T is said to be a Cirié-type Z.-contraction with
respect to { if there exists an xy € X such that the following condition holds
forall x € X;

d(x,Tx) > 0= ¢(d(Tx,x),m"(x,x0)) =0

where m*(x, xg) = max{d(x, xg), d(x,Tx), d(xg, Txq), d(x’TXO);d(XO’Tx) 1.

THEOREM 5. Ozgiir (2019) Let (X, d) be a metric space and T : X — X
a C‘irié-type Z.-contraction with respect to ¢ with xq € X, If the condition
0 < d(Tx,xo) <r holds forall x € Dy, , — {xo} then D, , is a fixed disc of T.

Main results

In this section, we have generalized the definition of the fixed circle by
replacing the radius r of the circle with the function ¢(r) where ¢ : R* — R*.
We have also generalized theorem (1) by using the Caristi-type contraction

in metric spaces.
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DEFINITION 5. Let (X, d) be a metric space and Cy, 4() = {x € X : d(xg,x) =
¢(r)} where ¢ : R* — R* be a circle, for a self-mappingT : X — X, ifTx = x
for every x € Cy, 4(r) then the circle is a ¢-fixed circle of T.

THEOREM 6. Let (X, d) be a metric space and Cy, () be any circle on X.
Let us define the mapping ¢ : X — [0, +o0)

¥(x) = d(x,xo) )

and ¢ : Rt — R* for all x € X. If there exists a self-mapping T : X — X
satisfying

1. d(x,Tx) <y (x) — ¢ (Tx)

2. d(Tx,xq) = ¢(r)
for each x € Cy,¢(r) then the circle Cy, 4 () is a ¢-fixed circle of T.

Proof. Let us assume that the mapping y is defined by ¢ : X — [0, +)
and ¢ (x) = d(x,x0). Letx € Cy, 4(-) be any arbitrary point. We show that
Tx = x, whenever x € Cy,_4(r) using condition (1)

d(x,Tx) < ¢y(x) —y(Tx)
= d(x,x0) —d(Tx,xp) (4)
=¢(r) — d(Tx,xo)

because of condition(2), the point Tx should be lying on the exterior of the
circle Cy, 4(r)- Then there are two cases. If d(Tx,xq) > ¢(r) then using (4)
is a contradiction. Now therefore it should be d(T'x, xg) = ¢(r). In this case,
by using (4) we get

d(x,Tx) < ¢(r) — ¢(r)
=0.

Hence, we obtain Tx = x for all x € Cy, 4(-). Consequently, Cy, 4(-) is a
¢-fixed circle of T. O

EXAMPLE 1. Let X = [%, =], (X, d) be a metric space and let us consider a
circle Cy,,4(r) and define the mapping 7 : X — X

T(X) — X3 X € ng,(f)(r)
2x; otherwise
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and ¢ : R* — R* is defined by
1
¢(r) = —.

r

Solution: If x € Cy, ¢(r) then Tx = x.
1. d(x,Tx) <y (x) -y (Tx),
d(x,Tx) <y (x) —y(Tx)
d(x,Tx) =d(x,x) =0
¥ (x) =y (Tx) = d(x,x0) — d(Tx,x0)
= d(X,XO) - d(.x,JCQ)
=0.
2. d(Tx,xg) = d(x,xg) = ¢(r).
holds for each x € X and for all r > 1.

Then it can be easily seen that conditions (1) and (2) are satisfied. Clearly
Cy,.6(r) 18 @ ¢-fixed circle of T

EXAMPLE 2. Let X = R* and (X, d) be a metric space and let us consider a
circle Cy,,4(r) and let ¢ : R* — R* define as

%; if r >2
$(r) =147 .
5;  otherwise

and define the mapping 7 : X — X as

Tx = %; if x € CX0,¢(F)
5;  otherwise

if x € Cyy () then Tx = L and if r > 2 and x¢ = 0 then
1. d(x,Tx) < (x) =y (Tx)

d(x,Tx) <y(x) —y(Tx)
d(x, %) <d(x,0)—d(Tx,0)

2. d(Tx,x0) =d(3,0) =3 > 1.




for xo = 0 and for each x € C, 1, hence T satisfies conditions (1) and (2).
Clearly C, 1 is a ¢-fixed circle of 7. But it does not satisfy condition (2) in
theorem (1).

EXAMPLE 3. Let X = [0, 2] and (X, d) be a metric space and let us consider
acircle Cy,,¢(-) and let ¢ : R* — R* defined as

- ifr>1
-
33 Ise

and define the mapping 7T : X — X as

Tx = %; if x € ng,q’)(r)
%; otherwise.
lfxeC, 1 thenTx = lio,
*2r—-1
1. d(x,Tx) <y (x) —y(Tx)
X X
— 1) —d(—,1
d(x, 75) < d(x.1) = d(75.1)
10 10
2. d(Tx,xo) =d(35,1) = 55 -1 # 7.
Hence, T satisfies condition (1) but does not satisfy condition (2). Clearly,
T does not have a ¢-fixed circle.

ExAMPLE 4. Let X = R* and (X, d) be a metric space and let us consider a
circle Cy, 4(r) and let ¢ : R* — R* defined as

Loifr>1
() =17

5; otherwise

and define the self-mapping 7 : X — X as

Tx = {2; if x € Cx0,¢(r)

%; otherwise.

If x € Cxo,6(r) thenTx =2,r > 1.
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1. d(x,Tx) <y (x) — ¢ (Tx)
1. d(x,Tx) <y(x) —y(Tx)

1

d(x,2) < - —d(Tx,xp)
1

x&—-, Vr>1
r

2. d(Tx,x0) =d(2,0) =2> 1 = ¢(r)
d(Tx,xp) 2 ¢(r), Y r= 1.
Hence, the self-mapping T satisfies condition (2) but does not satisfy con-
dition (1). Then, clearly T does not have a ¢-fixed circle.

THEOREM 7. Let (X, d) be a metric space and Cy, 4(-) be any circle on X.
Let the mapping v be defined as equation (3) and ¢ : Rt — R*forall x € X.
If there exists a self-mapping T : X — X satisfying

(17) d(x.Tx) <y (x) + ¢ (Tx) - 2¢(r)

(2%) d(Tx,xo) < ¢(r)
for each x € Cy, 4(r) then the circle Cy, 4 () is a ¢-fixed circle of T.

Proof. Let us assume that the mapping ¢ is defined as ¢ : X — [0, o) and
let x € Cy, 4(-) be any arbitrary point.
Now, using condition (1*), we get

d(x,Tx) < (x) +¢(Tx) = 2¢(r)
=d(x,x0) + d(Tx,xqg) — 2¢(r)
= ¢(r) +d(Tx,x0) — 2¢(r) (5)
= d(Tx,x0) — ¢(r)
Because of condition (2*), the point T'x should be lying on or be interior of the
circle Cy, 4(r)- Then there are two cases. If d(T'x,xo) < ¢(r) then by using

(5) we get a contradiction. It should be d(Tx,xq) = ¢(r). If d(Tx,x0) = ¢(r)
then by using (5), we get

d(x,Tx) < d(Tx,xq) — ¢(r)

<¢(r)—¢(r)
=0 (6)
Hence, Tx = x. Consequently, C,, 4, is a ¢-fixed circle of T.. O

1272



EXAMPLE 5. Let (X, d) be a metric space. Let us consider a circle Cy, 4(,)
where ¢(r) is defined as

s re{1,2,3}
¢(r) - 1. .
3; otherwise

and define the self-mapping 7 : X — X as

x;ifxeC ,
TX — ) )'CO’¢( )
5; otherwise

forall x € X.

“
/

Figure 1

Figure 1 represents the circle Cy () where r € {1,2,3}. Ifx € Cy ¢
then Tx = x. Then itis easily seen that conditions (1*) and (2*) are satisfied.
Hence, clearly Cy,, () is a ¢-fixed circle of T

EXAMPLE 6. LetX = R* and (X, d) be a metric space. Let us consider a
circle Cy,,4(r) Where ¢(r) is defined as

L re{1,2,3}
$(r) = ?i‘lth )
33 otherwise

and define the self-mapping 7 : X — X as

Tx = %; if x € CX0,¢(F)
5; otherwise
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forall x € X. If x € Cy, () then Tx = { and xo = 0.
1.d(x,Tx) <y (x) +y(Tx) = 2¢(r)

d(x,Tx) < ¢ (x) + ¢ (Tx) = 2¢(r)
¥ (x) +¢(Tx) - 2¢(r) = d(x,x0) + d(Tx,x0) — 2¢(r)

= () + d(,0) - 29(0)

11
6 2r-1
$ dx, 5

X, )

2. d(Tx,x0) = d(5,0) = § < 57 = ¢(r).
Then the self-mapping T satisfies condition (2*) but does not satisfy condi-
tion (1*). Clearly, T does not ¢-fix the circle Cy ).

ExAMPLE 7. Let X = |0, %] and (X,d) be the usual metric space with

d(x,y) = |x — y| and define the self-mapping 7 : X — X as

2: ifx € C
T(X) = 5 * O’(b(r)
3; otherwise

where ¢ : R* — R* is defined as

_1 .
5(r) = {%r_l’ ifr>1

3; otherwise .

If x € Co,¢(r) thenT(x) =2 forr > 1
1. d(x,Tx) <y (x) + ¥ (Tx) = 2¢(r)

d(x,Tx) <y (x) + ¢ (Tx) - 2¢(r)
d(x,2) <d(x,x0) +d(Tx,xqg) — 2¢(r)
|x = 2] < ¢(r) +d(2,0) — 2¢(r)
1

2r—1
4r — 3

<
2r—1

<2-

for r>1.

2. d(Tx,x9) =d(2,0) =2 ¢ T1—1 =¢(r), for r=1.
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Hence, the self-mapping T satisfies condition (1*) but does not satisfy con-
dition (2*). Then, clearly T does not ¢-fix the circle Cy 4,).

THEOREM 8. Let (X, d) be a metric space and Cy, 4(-) be any circle on X.
Let the mapping y be defined as equation (3) and ¢ : Rt — R* forall x € X.
If there exists a self-mapping T : X — X satisfying

(1) d(x,Tx) < y(x) — (Tx)

(2**) hd(x,Tx) +d(Tx,xq) = ¢(r)

for each x € Cy, 4(r) and some h € [0, 1), then Cy, 4(r) Is a ¢-fixed circle of
T.

Proof. We consider the mapping ¢ : X — [0,+o0) and ¢ (x) = d(x,xo).
Assume that x € Cy, 4(-) and Tx = x then using conditions (1**) and (2**).
Now we obtain

d(x,Tx) <y (x) —y(Tx)
=d(x,x0) — d(Tx, xp)
= ¢(r) — d(Tx,xo)
< hd(x,Tx) + d(Tx,xo) — d(Tx, xp)
= hd(x,Tx),

which is a contradiction with our assumption since 4 € [0, 1). Therefore we
getTx = x and Cy, 4() is a ¢-fixed circle of T. o

ExamPLE 8. Let X = [0,1] and (X, d) be the usual metric space. Let us
consider the circle C 1= {0,1} where ¢(r) = % Xo = % and define the
self-mapping 7T : X — X as

{%; ifxeCi1
Tx = 272

>

[N

1; otherwise

forallx e X. Ifx € Ci1 then Tx = 1.
1. d(x,Tx) <y(x) —y¢(Tx)

d(x,Tx) < ¢(x) —¢(Tx)
lﬁ(x) - l,b(T)C) = d(X,XO) - d(-x’ TX())

1 11
=d(x, 5) - d(i’ 5)

1275

Chandra, Vineeta and Patel, Uma Devi, Fixed-circle and fixed-disc problems in metric spaces, pp.1265-1281



@ VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2025, Vol. 73, Issue 4

= d(x, %) > d(x, %).
2. hd(x,Tx) + d(Tx,xq) = ¢(r)
1 11
h-d(x,Tx) +d(Tx,xq) = h-d(x, 5) + d(§, 5)
1

Hence, the self-mapping T satisfies condition (1**) where i € [0,1), but
does not satisfy condition (2**). Clearly T does not ¢-fix the circle C%,%.

Now, we generalize the definition of fixed discs and the results of fixed
disc.

DEFINITION 6. Let (X, d) be a metric space, Dy, 4y = {x € X : d(x9,x) <
¢(r)} where ¢ : R* — R* be adisc and T be a self-mapping on X, if Tx = x
for every x € Dy, 4(r) then the disc is called a ¢-fixed disc of T.

THEOREM 9. If T is a Z.-contraction with respect to ¢ with xo € X and
the condition 0 < d(Tx,xq) < ¢(r) where ¢ : R* — R* holds for all x €
D, ¢(r) — {x0} then the disc D, 4, iS a ¢-fixed disc of T.

Proof. Let ¢(r) = 0. In this case x € Dy 4) = {x0}. | fTxg # xo then
d(Txg,x0) > 0 and using the definition of Z. -contraction we get

£(d(Txg,x0), d(Txp,x0)) = 0.

This is a contradiction by the condition of ¢, (£(z,s) < s —¢) for all s,¢ > 0.
Hence, Txg = xg.

Now, assume ¢(r) # 0. Letx € D, 4(,) be such that Tx # x. By the
definition of ¢(r) we have 0 < ¢(r) < d(x,Tx) and using the condition of ¢,
we obtain

J(d(Tx,x),d(Tx,x9)) < d(Tx,x9) — d(Tx,x)
< @(r) —d(Tx,x)
<¢(r)—¢(r)
=0

which is a contradiction with the property of T. It should be Tx = x, so T
¢-fixes the disc D, ¢(r)- |




ExamMPLE 9. Let X = R and (X, d) be the usual metric space with d(x, y) =
|x — y|. Let us define the self-mapping 7 : X — X as

x; x€[-1,1]
Tx =
x2+1 otherwise

for all x € R and define the mapping ¢ : R* — R* as ¢(r) = \/L; where ¢(r)

is a disc radius. The function ¢ : [0, )? — R defined as /(¢,s) = %s —t.
Indeed, it is clear that

0 < d(Tx.x0) = d(x,0) = |x] < % = 6(r)

hence 0 < d(Tx,x9) < ¢(r), holds for all x € Dy, [-1,11 — {0} and r € [%, 1],
we have

£(d(Tx,x),d(Tx,xg)) = £(d(x* + 1,x),d(x?* + 1,0))
= (% + 1 —x], |x? +1-0])

2
= S+ 1 - + 1 - x|
3
1
< <[3x—x%-1].
gl3x -+~ 1

for all x € R such that d(Tx,x) > 0. Hence T is a Z.-contraction with the
radius ¢(r) = \/l; and the center is 0. Consequently, T is a ¢-fixed disc
Dy, 6y = [-1,1], but does not hold theorem (4) in the condition (0 <
d(Tx,xo) <r).

THEOREM 10. Let (X, d) be a metric space and T : X — X a Ciri¢-type Z.-
contraction with respect to ¢ with xo € X, Ifthe condition 0 < d(Tx, xg) < ¢(r)
holds for all x € D, 4(») — {xo} then Dy, 4 is a ¢-fixed disc of T.

Proof. Let ¢(r) = 0. In this case, x € D, 4(-) = {xo} and the Cirié-type
Z.-contraction theory produces Txg = x. Indeed, If Txy # x then we have
d(xo, Txo) > 0. By the definition of the Ciri¢-type Z.-contraction, we get

£(d(x0,Txg), m*(xo,x0) = 0 (7)

Since

d(XQ, TX()) + d(XQ, TX())
2

}

m*(xg,x0) = max{d(xo,xo), d(xo,Tx0), d(x0,Tx0),
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= max{d(x, xo), d(xo,Txo), d(xo, Txp), d(x0, Tx0)}
= d(xo,Txo).

Now, we find

£(d(xo, Txp), m"(xo,x0)) = {(d(x0,Tx0), d(x0,Txp))
<0

by the condition of / such that /(z,s) < s — . This is a contradiction to
equation (7). Hence, it should be Txy = xg. Assume that ¢(r) # 0. Let
x € Dy, 4(r) be such that Tx # x. Then we have

d(x,Txg) + d(xg,Tx)
2

}

m*(x,x0) = max{d(x,xq),d(x,Tx), d(xo, Txo),

d(x,Txg) + d(x9,Tx)
2

}

= max{d(x, xg),d(x,Tx),

By the assumption, we have
¢(d(Tx,x),m"*(x,x0)) = 0

and

d(x,xg) + d(xg,Tx)

£(d(Tx,x),max{d(x,xp), d(x,Tx), 5

120 (8)

Now, we have the following three cases:
Case 1. Let max{d(x, xo), d(x, Tx), {2210y — 4(y x;) from equation
(8) we get

Z(d(Tx,x),d(x,xg)) > 0.

Using the condition ¢ s.t. (£(¢,s) < s—t) and consider the definition of ¢(r),
we find

£(d(Tx,x),d(x,x0)) < d(x,x0) —d(Tx,x)
<¢(r)—¢(r)=0

which is a contradiction.
Case 2. Let max{d(x,xo), d(x, Tx), {2X)tdT0y — g(x Tx) from equa-
tion (8) we get

l(d(Tx,x),d(x,Tx)) = 0.




Using the condition ¢ s.t. (£(¢,s) < s —t), again we obtain a contradiction.
Case 3. Let max{d(x,xq),d(x,Tx), d(x’x°)+2d(x0’Tx)} = d("’x‘))*;(xo’“) from
equation (8) we get

d(x,xo) + d(xo,Tx)
2

£(d(Tx,x), ) > 0.

Using the condition ¢ s.t. (£(¢,s) < s —1t), we obtain
d(x,xq) + d(xo, Tx)) - d(x,xq) + d(xg, Tx)
2 2
< ¢(r) —d(Tx,x) < ¢(r) — ¢(r) = 0.

év(d(TX,)C), - d(T.X,X)

Again this is a contradiction with the Cirié-type Z.-contractive property of
T. In all the above cases, we have a contradiction. Hence, it should be
Tx = x and consequently, T' ¢-fixes the disc Dy, 4(,)- o

Conclusion and future work

This study contributes to the field by broadening the scope of fixed point
theory to include fixed circles and discs, incorporating a more flexible def-
inition via the function ¢(r). The use of Caristi-type contractions further
enhances the applicability of the results within metric spaces. These ad-
vancements provide a robust framework for exploring geometric properties
in fixed point theory. Future work may focus on extending these ideas to
fuzzy metric spaces and probabilistic metric spaces, as well as investigat-
ing applications in dynamic systems and optimization problems.
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MpoGnemn ukcHe Tauke U PUKCHOT AMCKa Y METPUYKUM
npocTopuMa

BuHeeTa YaHapa“®, Yma Oesu MNaten®,

ayTop 3a KOpecrnoHOeHUujy

@ l'ypy MNacupac Buweasugjanaja, Ogerbere 3a MatemaTuky,
Bunacnyp, Yarucrapx, Hawvja,

b rypy Macupac Buwsaswajanaja, Onersere 3a MaTemMaTuky,
Bunacnyp, Yatucrapx, Unguja,

OBJIACT: matemaTuka
KATEFOPUJA YNAHKA (TWMM): opurHanHu Hay4YHu pag
CaxerTak:

Yeod/uurb: Lurb ooz pada jecme 0a ce ycmaHoge meopeme
rnocmojarba 3a HEMOKPEMHE Kpy2o8e U HernokpemHe OucKose
y Mempuy4kuM rpocmopuma Kopulwherem pasnudumux epcma
ycrioea 3a KoHmpakyujy. [lpumeHoM rpecriukagara y camoa
cebe Ha MeEMPUYKUM npocmopuma, pesysimamu KriacudHe He-
MOKpemHe maudke npowupyjy ce Ha ose (OUKCHE eeoMempujcke
cmpykmype. HageleHo je HEKONUKO npuMmepa 3a unycmpauujy
u nomepdy meopujckux pesynmama.

Memode: Pasmampajy ce npecrnukasama y camoea cebe Ha me-
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mpuYKUM ripocmopuma u y8ode pasfudume epcme ycriosa 3a
KOHmpakyujy. AHanumuyke mexHUKe U3 meopuje HeroKpemHe
mayke Kkopucme ce 3a u3eohjere 0080s/bHUX yCri08a 3a Mocmo-
Jjare ¢-HeroKpemHux Kpyaoea u ¢-HerokpemHux ouckosa. Te-
OpUjcKU pesysimamu Ccy MOMKpernsbeHU rnaxrbueo KOHcmpyuca-
HUM ripumepuma Koju 3ado8osbasajy npedrnoxeHe KoOHmMpakyuje
u nomephyjy npumeHrbugocm 0obujeHUX meopema.
Pesynmamu: YcriewHo cy yg0eHuU pesynmau ¢-HernoKpemHux
Kpyeoea u ¢-HerokpemHux Ouckoea 3a Kapucmujeee koHmpak-
yuje, Kao u Opyea Krnacya KOHmMpakyuja y oKeupy Mempuyqkux
npocmopa. Haeode ce u odzosapajyhu npumepu.

Bakmpyyak: Oeaj pad ysodu Hoge meopeme rnocmojara 3a ¢-
HEeroKpemHe Kpyaoee U ¢-HeroKpemHe OUCKO8e y MempuyKum
npocmopuma romohy Kapucmujesux u odzoeapajyhux ycroea
3a KOHmMpakuyujy. Hbezosu pesyrimamu rnpowupyjfy KnacudHy me-
opujy HernokpemHe madke ca nojeduHa4YHUX HErnoOKPemHux ma-
Yyaka Ha wupe 2eoMempujcKe HeNoKpemHe cmpykmype U Ha maj
Ha4uH oboezahyjy meopujy Mempu4ykux HeroKPemHUX madvaka.
HasedeHu npumepu ykasyjy Ha NPUMeH/bUBOCM U ehuKkacHoCm
rpednoxeHux pesynmama, Kao U Ha BUxo8 rnomeHuyujar 3a by-
Odyha yonwmasarba.

KrbyyHe peyu: HernokpemHu Kpya, HermokpemHu OUcK, Mempuy-
KU nipocmop, Kapucmujesa KoHmpakuuja
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