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Abstract:

Introduction/purpose: This research introduces a novel approach for
designing a dataset of multilayer rectangular planar coils by the integration
of a complementary software tools. MATLAB works as a high-level design
environment, facilitating the creation of complex geometries and FastHenry
acts as a computational engine to solve Maxwell's equations and extract
inductance values. Two diverse synthetic datasets are generated using
advanced sampling techniques, including Latin hypercube sampling, for
different configurations. These datasets are then processed and trained
using machine learning algorithms to predict inductance values based on
the derived geometric parameters.

Methods: Initially, MATLAB is used to generate extensive synthetic
datasets, comprising 20000 rows for 2-layer coil configurations and 15000
rows for 3-layer configurations. After the generation process, the datasets
are checked for the readiness for training. Six machine learning models (
Gaussian Process Regressor (GPR), KNeighborsRegressor (KNN),
BayesianRidge, ElasticNetCV, = GammaRegressor, and Bagging
Regressor) are trained and evaluated using metrics such as R? and RMSE.
The models are further tested on unseen test data and validated using the
cross-validation technique to check how much the models can generalize.
Results: The datasets were generated successfully, and the models
KNeighborsRegressor, Gaussian Process Regressor (GPR), and Bagging
Regressor performed the best and showed a high accuracy and low error.
Conclusion: The results show that machine learning is a practical and
effective method for predicting inductance in multilayer rectangular planar
coils based on the geometry.
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Introduction

Multilayer planar coils combine superior inductance and energy
efficiency properties with efficient space utilization making them ideal for
compact electronic applications using a parallel architecture alignment of
layers. They offer an enhanced efficiency and performance in such
systems, which makes them vital for advanced applications in power
transmission and high-precision energy management in modern
applications  (Alghrairi et al., 2022). Flexible  multilayer
microelectromechanical systems (MEMS) coils further improve energy
efficiency and space utilization and demonstrate high integration capability
in arbitrary spaces, significantly enhancing the utilization of the space
magnetic field and output performance in energy harvesters; their vibration
energy harvesters achieve up to a 43% increase in open-circuit voltage
and compact dimensions suitable for small electronics in constrained
environments (Zhang et al.,, 2024). Furthermore, planar on-silicon
multilayer inductors have proven highly beneficial in clinical applications,
particularly in electromagnetic tracking (EMT) systems. These inductors
achieve a stringent requirement for precise tracking in medical
environments (Sidun et al., 2023). These technologies also enable the
development of wireless intracranial pressure (ICP) monitoring systems,
where carefully designed spiral planar coils improve the coupling factor
and detection range of miniature implanted sensors, enhancing wireless
power transfer efficiency and sensor performance (Wang et al., 2018).
Recent designs of wireless resistive analog passive sensors have
demonstrated the feasibility of bio-signal monitoring using optimized
planar spiral coil pairs which are critical for long-term body signal
monitoring. By employing inductive coupling and coil design optimization
with genetic algorithms, these sensors achieve high sensitivity and reliable
performance (Noroozi & Morshed, 2024).

Higher inductance can be achieved by increasing the number of
parallel layers. However, estimating inductance remains a challenge, as
directly solving Maxwell's equations for complex shapes is impractical. To
address this, a versatile analytical tool has been developed for calculating
the self-inductance of planar coils with general geometries. Based on
Grover’'s equations, this method aims to combine speed, precision,
intuitive use, and geometric flexibility (Faria et al., 2021). Additionally,
inductance behavior in printed-circuit rectangular spiral coils, especially in
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eddy-current testing applications, can be effectively modeled using
analytical methods that simplify multi-turn geometries and account for
practical PCB constraints, aiding in accurate mutual inductance prediction
and design optimization without relying on coil thickness (Wu et al., 2023).
In superconducting circuits, mutual coupling decreases exponentially with
distance between striplines, while microstrips exhibit long-range coupling,
limiting scalability for large-scale integration. In addition, analytical
expressions provide inductance estimations (Tolpygo et al., 2022).
Another method for calculating mutual inductance between planar spiral
coils with arbitrary geometries has been proposed, using a partial
inductance approach that simplifies the coils into polygonal segments,
allowing accurate and generalizable analysis validated by simulations and
measurements (Tavakkoli et al., 2019). All these techniques are based on
equation estimation and require a precise coupling factor to determine
inductance.

The integration of supervised learning has demonstrated great
promise in planar coil applications. Deep learning has been applied to
model complex polyphase inductive coils in wireless power transfer
systems, significantly reducing computational effort while maintaining high
accuracy in predicting mutual inductance, with a normalized root mean
square error (NRMSE) of 3.3% and a coefficient of determination of 0.985
(Gastineau et al., 2024). In magnetic resonance imaging (MRI), deep
learning has shown promise for quickly predicting RF-induced heating of
conductive implants based on their geometry and position, offering a faster
alternative to traditional phantom experiments (Chen et al., 2023). In
single-layer planar coils, a machine learning-based method has been
proposed for calculating self- and mutual inductance and multiple linear
regression with polynomial features achieved near-reference precision
while being orders of magnitude faster(Stillig et al., 2023). Additionally,
machine learning techniques have been applied to accelerate the design
of magnetic couplers for wireless power transfer systems; by training on
synthetic datasets from ANSYS Maxwell, these models can efficiently
predict optimal coil parameters such as inner radius and number of turns
while accounting for constraints like inductance and core materials (Ding
et al.,, 2025). After recognizing the potential of machine learning in
predicting the planar coil behavior and addressing the challenges of
deriving precise empirical equations, we propose a machine learning-
based methodology for multilayer rectangular spiral micro-coil inductance
estimation.




Diving into specific algorithms, GPR proven effective for inductance

estimation under magnetic saturation, significantly reduces prediction
errors from 9.6% to 4.7% by improving training datasets. Its ability to
minimize computational costs while maintaining accuracy highlights its
potential in inductance prediction tasks (Bayazit et al., 2023). Furthermore,
inductance modeling for planar meander structures using the Restricted
Boltzmann Machine (RBM) and KNN demonstrated good performance
with analytical and simulation datasets and showcase the potential of
these algorithms for compact inductor designs (Ansari & Agarwal, 2024).
Among those using ML, none have specifically addressed the inductance
of multilayer rectangular planar coils using supervised data-driven models.
The  primary  contributions of this work are  twofold:
1- The development of a systematic methodology for designing multilayer
rectangular planar coils and generating a comprehensive synthetic dataset
through simulations, capturing diverse coil geometries and inductance
behaviors.
2- The implementation of supervised machine learning models to predict
inductance values, bypassing the computational complexity of traditional
coupling factor calculations and empirical formulations. This approach
offers a scalable framework for rapid and accurate inductance estimation
in multilayer configurations.

Methodology flowchart

The following flowchart, shown in Figure 1, illustrates the proposed
methodology for the design and inductance prediction of multilayer
rectangular planar coils. This structured approach integrates all key
stages, including coil conception, simulation, dataset generation, and
machine learning model deployment. The process begins with geometry
modeling in MATLAB, where user-defined coil specifications (e.g., turns,
layer alignment, trace dimensions) are translated into precise
configurations. The geometries are then discretized into nodes and
segments compatible with FastHenry, an open-source field solver software
used to compute inductance values through electromagnetic simulations.
The resulting data combining geometric parameters and simulated
inductance is preprocessed to normalize features and split into training
and validation sets. Supervised machine learning models are
subsequently trained to map geometric inputs to inductance outputs, with
performance rigorously evaluated using metrics like RMSE and MAE. The
finalized model is tested on unseen configurations to validate
generalizability before deployment and that enable an accurate inductance
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prediction for new designs. This structured approach bridges physical
simulations with data driven modeling, which eliminates reliance on
complex analytical derivations.
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Figure 1 — Methodology flowchart for designing and predicting inductance of multilayer
rectangular planar coils

Single-layer design framework for planar coils as a
foundation

Before delving into the complexity of multilayer rectangular planar
coils, it is essential to first understand the characteristics and behavior of
a single-layer design, as it forms the basis of the multilayer coil. In the
conception of planar coils for inductance estimation, a lot of estimation
formulas are available such as Wheeler Expression, Modified Wheeler
Expression, and Current Sheet Expression, shown in Equations 1, 2, and
3 (Wheeler, 1928) (Mohan et al., 1999), respectively. However, by
analyzing these formulas, it shows that the geometry of the planar coil
plays an important role in determining the inductance.

NZTZ
Lyn = 8r+114 (1)
2d
meh = klNOﬁ (2)
ﬂﬂ”zdavgcl
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In these equations, N represents the number of turns of the coil, and
r is the radius of the planar coil. The parameter 4 is defined as half the

difference between the outer and inner diameters, i.e., 4 = M, while

dqvg denotes the average diameter, given by d,,,g = w. The term p

. . Ao —ds
is the fill factor, expressed as p = %. The constants k4 ,k,, C;,C,, C; and
out in

C,are empirical coefficients that depend on the specific geometry of the
coil and u, represents the permeability of free space.

By consequence, our design approach for the planar coil layer focuses
on deconstructing the concept into multiple geometric variations to
generate a substantial and diverse dataset for analysis, as Figure 2 shows.

doutZ

dﬂutl

Figure 2 —2D representation of a single layer rectangular planar coil geometry with the
labeled parameters

Geometric variables such as s the spacing between traces, w the
trace width , n the number of turns and the inner and outer diameters d;,,4,
dinz » doyt1 and d,y,:» are commonly used and can be derived from
established equations like the Wheeler's formula but these equations
assume symmetrical shapes using only two diameters d;, and d,,;
instead of four and that reflect the symmetrical nature of the geometry. We
introduced additional geometric parameters such as distances 4, B, C and
D in our approach of design and geometric data. Collecting these
distances represents the bone diameters of the spiral shape excluding the
trace width. We added hypothenuses EF and GH which are also variable
distances incorporated into the design data to provide a broader range of
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input parameters and to enable exploring a wider variety of geometric
patterns and maximizing design versatility.,specifically EF? = doutl2 +
doutzz and GHZ = dinlz + dl‘nzz.

Extending the single layer concept to a multilayer concept

The advantage of multilayer planar coils is their ability to increase
inductance while minimizing space, making them ideal for miniaturized
electronic applications. The modeling of a single layer is extended into
multilayer configurations, connected in parallel through via connections
that ensure seamless current flow between layers. To achieve real-world
applicability, a height of 1 oz (28.35 grams) of copper material is
incorporated, transforming the design into a 3D structure. Then, a
FastHenry compatible input file is generated, encompassing node
definitions and segment connections with material properties. This enables
precise simulation of the coil's inductance and resistance, facilitating the
systematic design and optimization of compact, high-inductance planar
coils for advanced electronic systems. Figure 3 illustrates 3D
representations of multilayer rectangular planar coils with spiral segments
and via connections plotted.

3D Coil Configuration

Three-Layer Square Spiral (3 turns)

BN
xm NS,
Y (m) Via L2(out)-L3(in)

(a) 2-layer rectangular planar coil (b) 3-layer rectangular planar coil
Figure 3 —3D representation of a 2-layer and 3-layer rectangular planar coil with spiral
segments and via connections

For multilayer planar coils, the total inductance L; can be
approximated by the sum of the self-inductances L,, L, of each layer and
the mutual inductance M between them (Zhao, J .2010), which is given by

LT:L1+L2iM (4)
le

M=2,/L,L
172 9 64[(0.18423-0.52522+1.0382+1.001)(1.67n%—5.84n+65)]

®)




where n is the number of coil’s turns, and z the distance between the
layers.However, these formulas are typically valid for coils with 5 to 20
turns, and layer distances between 0.75 mm and 2 mm, are not suitable
for rectangular shapes. Additionally, as the number of turns increases, the
formula changes so our model will use a range of 3 to 30 turns, with wire
widths varying from 40 ym to 180 um. Unlike these analytical methods, we
propose using ML to predict inductance values, which will allow us to
bypass the need for these analytical formulas.

Dataset generation

After establishing the logical concept of creating multilayer planar
coils, we delve into generating a dataset for training machine learning
models. The dataset focuses on two configurations: two-layer and three-
layer planar coils, containing 20000 rows and 15000 rows, respectively.
Each row in the dataset represents a single data entry which includes
multiple geometric input variables, with the output being the inductance
value for each configuration.

The geometric variables include those mentioned earlier, such as the
A,B,C and D segment lengths, the inner diameters and the outer
diameters d;,1, dins » dourr @nd d,y 0, the spacing s, the trace width w,
and the diagonals (EF, GH). In addition, the loop creation variables (i, )
are used, representing the incremental steps of the spiral design along the
vertical and horizontal directions, respectively. These are defined as i =
first segment distance/Ax and j = second segment distance/Ax where
Ax is a fixed step size as shown in Figure 4.

Second segment

First segment

Figure 4 — Initial segments and design steps in the spiral creation

The vertical spacing between the layers, Z, represents the via
distance, and that completes the foundational geometry. To enhance the
dataset, feature engineering variables are introduced, such as d;, , and
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doue » defined as d;;, » = \/din1dinz and doye » =/ dour1dout2 respectively,
These equations are adapted from the formulas used for elliptical shapes
(Farooq et al. 2023) and modified for rectangular geometries by applying

the area equality method, the average diameter d,,,, = M , the fill

ratio p - dout_r_din_r

dout_r+din r

These features engineered variables are commonly used in
inductance estimation equations (Asadi Et all. 2023) (Wheeler, 1928). It
will significantly enhance the robustness of our models and the predictive
power of the dataset. This comprehensive approach ensures that the
dataset captures all critical factors influencing the inductance of multilayer
planar coils, making it suitable for supervised machine learning models,
after defining all input parameters. A structured parameter sampling
approach was implemented to generate two datasets for two and three
layers planar coils. The physical and geometric parameters of the coils,
along with their respective ranges, are summarized in Table 1. These
ranges were chosen to cover a broad spectrum of coil designs that balance
the manufacturability and performance requirements.

Table 1 — Design parameters and ranges

Minimum Value | Maximum Value
n| 3 30
i1 15
jl1 15
w| 20 ym 200 ym
s| 30 ym 250 ym
z| 40 ym 180 um

To ensure a diverse and representative dataset, we combine three
techniques, i.e., Latin Hypercube Sampling (LHS), parameter mapping,
and physical validation and that leads us to explore a wide design space
while ensuring practical manufacturability constraints were met. The main
idea of LHS is dividing the range of each parameter into equally spaced
intervals and it guarantees that one sample is drawn from each interval to
minimize redundance in variables and clustering in the sample space. In
addition, small perturbations with a value of 2% were introduced to each
sampled value to simulate real word variability. Parameterization involves
mapping normalized values generated through Latin Hypercube Sampling
(LHS) to real-world ranges relevant to the coil design; for example, the




number of turns was mapped to [3—-30], wire width to [20—200um], and
spacing to [30-250um], while physical validation ensures that the
generated coil configurations are physically feasible and adhere to
manufacturability constraints with a minimum wire spacing of 30 uym to
prevent electrical shorts. A layer separations [40—-180um] is compatible
with standard fabrication processes.
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Figure 5 — Distribution of the geometric parameters in the 2-layer planar coil design

Figure 5 shows the density distributions of the key geometric
parameters for the two-layer planar coil design and it demonstrates the
effectiveness of our Latin hypercube sampling approach for multiple
dimensional parameters. The inner and outer d;;1, din2 , dourr AN dyyer
diameters of the two layers show uniform distributions within their
respective ranges and that indicates complete coverage of possible coil
configurations. Feature engineering variables such as d;, , and dgy; ,
show slightly asymmetrical distributions and the average diameter
d g follows a bell-shaped distribution, suggesting a natural convergence
towards optimal intermediate values. The rotation parameters n,i and
j show uniform distributions in their discrete ranges, validating the
efficiency of the LHS in sampling the design space. The distribution of the
separation distance z guarantees adequate spacing between the layers
while respecting manufacturing constraints. These distributions
collectively confirm that our sampling strategy successfully explores the
design space while maintaining physical feasibility, as shown by the
smooth, well-defined boundaries of each parameter distribution.
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Figure 6 — Correlation matrix of the geometric variables and the inductance (L) for the
two layers planar coil dataset

To gain deeper insights into the relationships among geometric
variables and their influence on inductance prediction, a correlation
analysis was conducted, as shown in Figure 6. The purpose of this
analysis is to assess the interdependencies between the design
parameters and to identify the key predictors of inductance prior to training
machine learning models. The correlation matrix reveals several notable
trends and positive correlations were observed between the inductance L
and the parameters such as n number of turns, d,,, average diameter
and the engineered features d;, , and d,,; , showing a direct impact on
inductance. The geometric A,B,C and D also demonstrate high
correlations with L and that reflects their role in defining the overall
dimensions of the coil. On the other hand, the parameters such as the (w)
trace width, the spacing s, and the z vertical separation show less




correlation with L . However, even variables with weak linear correlation
may contribute through non-linear interactions, especially when using
models like the GPR and BaggingRegressor that can capture such
complex relationships.The motivation for including both directly measured
and engineered geometric variables d g,  , 0 din » and d,y. » is based on
their relevance in well-established inductance calculation equations,
including those proposed in (Wheeler, 1928) (Mohan et al., 1999) and
more recently in (Farooq et al. 2023). This correlation analysis serves as
a foundational step to the dataset to ensure the inclusion of critical features
like dg,g and p fill ratio, which give an enhancement and a predictive
power of the data driven models. Furthermore, retaining a broad set of
features allows machine learning models with internal feature selection
mechanisms to determine their usefulness automatically.

Machine learning models selection

The data generated for inductance estimation was evaluated using
various machine learning models which can be classified according to their
methodologies. All models were implemented using Scikit-learn, a widely
used open-source Python library that provides a consistent interface and
efficient implementations for a wide range of machine learning algorithms.
Unless otherwise stated, all models were used with their default
parameters as defined in Scikit-learn version 1.5.2. Probabilistic models
include the GaussianProcessRegressor (GPR), which assumes that the
data follows a Gaussian process. As described by Rasmussen and
Williams (Williams & Rasmussen, 2006), GPR predictions at a new point
x* are given by

fr&x)=kTK+o2Dly (6)

where k* represents the vector of covariances between x* and the
training points, K is the covariance matrix between the training points, o2
denotes the noise variance, I is the identity matrix and y is the vector of
the training outputs.

In the category of instance-based learning, KNeighborsRegressor
(KNN) was employed, a non-parametric model that predicts on the basis
of nearest neighbors, thus capturing local relationships in the dataset
(Altman, 1992). KNN uses the Euclidean, Manhattan and Minkowski
distance metrics presented respectively:
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d
d(x,X;) = \/zizl(xj - Xij)z (7)
d(x,y) = Xizq |xi — yil (8)

d(x,y) = (X, (x; — y)P)MP 9

Only one distance metric is used during model training. KNN does not
use multiple distance functions simultaneously, while Euclidean measures
straight-line distance in a d-dimensional space, Manhattan sums absolute
differences for total travel distance, and Minkowski generalizes both,
adapting to diverse data structures with the parameterp (e.g, p =2 for
Euclidean, p =1 for Manhattan).

We also used linear and regularized models, such as BayesianRidge
and ElasticNetCV. BayesianRidge applies Bayesian inference to linear
regression, balancing bias and variance (MacKay, 1992). The model
assumes

f(x) = Bo+ Pixi + Box2+...+ Boxl + ¢ (10)

where p; represents the coefficient and ¢ is the measurement error.

ElasticNetCV combines Lasso and Ridge penalties to manage
multicollinearity and perform feature selection. We applied 5-fold cross-
validation to automatically select the optimal values for the regularization
parameters, including the overall penalty strength and the mixing ratio
between the two techniques.

The BaggingRegressor model is used to combine the predictions of
several instances of KNeighborsRegressor, with a total of 10 estimators in
the set, each trained on different bootstrap samples of the dataset as
indicated by setting (bootstrap = True).

Finally, a distribution-specific model, the GammaRegressor, has been
included, designed for target variables with a Gamma distribution. The
model was implemented using the default settings: alpha = 1.0 which
controls regularization to balance bias and variance; link = 'log', ensuring
that the predicted values remain strictly positive, suitable for Gamma-
distributed targets; and solver = 'lIbfgs', a quasi-Newton optimization
algorithm known for efficient convergence.




To assess the performance of the machine learning models
developed to estimate the inductance of multilayer planar coil designs, we
employed multiple evaluation metrics. They were chosen for their ability to
provide insights into the prediction capabilities of the models from different
perspectives like accuracy, robustness and generalization to unseen data.
By comparing these models based on these criteria, we can evaluate their
suitability for inductance estimation. The metrics used for model evaluation
includes the coefficient of determination R? and the root mean square error
RMSE, which are defined by Equations (11) and (12), respectively:

N

Z, (YObs,i_Ypre,i)Z
1=1

R?=1-Zi
Zizl(YObS,i_m)z

(11)

1

N
1
RMSE = \/ﬁz__l(YObs,i - Ypre,i)2 (12)
where y,,s; is the observed inductance value, y,.; is the
corresponding predicted value, and y,,5) is the mean of the observed

inductance values. The variable n represents the total number of samples
in the dataset.

Dataset splitting and models training results

All geometric variables were considered for experiment training of the
selected models. The data was split into training and testing datasets with
80% used for training and 20% for testing. For the 2-layer dataset, there
were 16000 samples for training and 4000 samples for testing. For the 3-
layer dataset, it resulted in 12000 samples for training and 3000 samples
for testing. All data was thoroughly checked for missing values, and the
health of the data was verified before training to ensure that everything is
perfect and all rows value are in a healthy condition.

The performance of the selected machine learning models was
assessed on both training and testing datasets and through cross-
validation. By this evaluation, we ensure the model's ability to generalize
unseen data and avoid overfitted and underfitted models and to identify
the most suitable methods for inductance prediction. Table 2 summarizes
the results.
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Table. 2 — Performance on train and test sets for the 2-layer planar coil

Train set Test set
R? RMSE R? RMSE
GPR 0.999 4.4.10°° 0.993 7.910°7
BaggingRegressor 0.999 31077 0.997 4.7107
KNN 0.998 3.2.1077 0.997 5.2.1077
BayesianRidge 0.945 2.3-10°% 0.943 2.3-10°
ElasticNetCV 0.922 2.710°6 0.922 2.7-10°8
GammaRegressor 0.760 47108 0.736 5.1.10°8

As shown in Table 2, the Gaussian Process Regressor (GPR)
demonstrated exceptional performance, achieving an R? of 0.999 on the
training set and 0.993 on the testing set with a low RMSE, making it the
top performing model. Bagging Regressor and KNN also performed well,
maintaining high R* values on both training and testing sets and that
indicates a strong predictive capability too. Linear models like Bayesian
Ridge and ElasticNetCV showed moderate performance, achieving values
around 0.94. The Gamma Regressor, however, displayed significantly
lower R? square and higher RMSE values.

Table. 3 — Performance on the train and test sets for the 3-layer planar coil

Train set Test set

R? RMSE R? RMSE
GPR 0.999 4.10°° 0.998 3.2.107
BaggingRegressor 0.998 3.3.10°7 0.998 4.107
KNN 0.998 3.6-10°7 0.997 4.5.1077
BayesianRidge 0.943 2.3.10°° 0.946 2.2.10°6
ElasticNetCV 0.922 2.710°° 0.926 2.6:10°8

GammaRegre 0. 4.9 0.7 4.71

ssor 747 108 65 0*

A similar pattern was observed for the 3-layer dataset as shown in
Table 3. The GPR model again demonstrated the best performance,
achieving an R of 0.999 on the training set and 0.998 on the testing set.
Bagging Regressor and KNN closely followed, with minimal discrepancies
between training and testing metrics. Linear models, including Bayesian
Ridge and ElasticNetCV, performed consistently achieving a moderate
accuracy, while the Gamma Regressor once again showed low results.




The cross-validation was applied to validate the models. This
technique evaluates model performance by splitting the dataset into
multiple folds and then compute the existed metrics for each fold. Table 4
summarizes the results of the cross-validation

Table. 4 — Cross-validation results using the k-fold method (k=>5)

2layers 3layers
R? RMSE R? RMSE
GPR 0.998 3.3107 0.998 3.7-10°°
BaggingRegressor 0.998 3.810°7 0.998 411077
KNN 0.998 4.2107 0.997 4.5107
BayesianRidge 0.945 2.3-10°° 0.944 2.2.10°%
ElasticNetCV 0.922 2.710°° 0.923 2.710°%
GammaRegressor 0.760 4.710° 0.754 4.810°8

The cross-validation results for both datasets confirmed the trends
from experiment training and testing. In this context, the cross-validation
(k=5) was applied on the training data only, in order to assess the model’'s
robustness and consistency without involving the held-out test set. For the
two-layer dataset, the GPR achieved the best performance with an
R* of 0.998 and the lowest RMSE of 3.3-107, followed by Bagging
Regressor and KNN. the linear models, such as Bayesian Ridge and
ElasticNetCV, showed moderate performance R around 0.94, while the
Gamma Regressor struggled with the highest RMSE. Similar results were
observed for the three-layer dataset, with the GPR again leading R? of
0.998, followed by Bagging Regressor and KNN, while the linear models
performed moderately and the Gamma Regressor lagged.

Table. 6 — Monte Carlo cross-validation through 50 iterations

2layers 3layers
R? RMSE R? RMSE
GPR 0.998 3.9-107 0.998 3.8-10°°
BaggingRegressor 0.998 3.810°7 0.998 4.2.10°7
KNN 0.998 2.241077 0.997 4.6-107
BayesianRidge 0.945 2.27-107° 0.943 2.3-10°6
ElasticNetCV 0.922 2.7-10°8 0.922 2.6-10°
GammaRegressor 0.760 4.710° 0.753 4.810°8
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To further validate model performance and assess robustness against
data splits, Monte Carlo cross-validation through 50 iterations of
randomized subsampling was applied on both 2-layer and 3-layer
datasets. This method randomly splits the dataset into training (80%) and
testing (20%) subsets across multiple iterations. The procedure yields
distributions of performance metrics across all splits. Table 5 summarizes
the performance of the models using this approach.

The Monte Carlo cross-validation results presented in Table 6 are
consistent with the findings from the k-fold cross-validation presented
inTable 4 and that reenforces the reliability of the models. In both the 2-
layer and 3-layer datasets, the GPR consistently delivered the highest R?
values of 0.998 and the lowest RMSE and that confirms its superior
performance and robustness to data splits. Bagging Regressor and KNN
also maintained strong and stable performance across all iterations. The
linear models such as Bayesian Ridge and ElasticNetCV demonstrated
moderate accuracy, while the Gamma Regressor exhibited the weakest
results, with the highest RMSE and lowest R? values.
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Figure 8 — Scatter plot of predicted vs. actual values for 3-layer configurations

Figures 7 and 8 present the scatter plots of predicted versus actual
values for all models across both two-layer and three-layer configurations
and they provide a visual confirmation of the quantitative metrics
previously discussed. The diagonal dashed line represents a perfect
prediction (y=x), allowing for a direct assessment of the model
performance through deviation patterns.

The GPR model exhibits remarkably tight clustering along the
diagonal line in both configurations, with minimal scatter and virtually no
systematic deviation, corroborating its superior R? value. The plot
demonstrates exceptional predictive accuracy across the entire range of
inductance values, with only occasional minor deviations at higher values
in the three-layer configuration. The KNN and Bagging Regressor plots
display similarly strong adherence to the diagonal, though with slightly
more visible scatter than that of the GPR, particularly at higher inductance
values. The consistency of the scatter patterns between the two-layer and
three-layer configurations supports their robust generalization capabilities.
In contrast, the Bayesian Ridge and ElasticNetCV models exhibit
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noteworthy systematic deviations from the diagonal, particularly evident in
their curvilinear patterns. These models occasionally produce negative
inductance values due to their linear nature and lack of constraint
mechanisms, which makes them inadequate for capturing the highly non-
linear and strictly positive behavior of inductance. This behavior suggests
these linear models struggle to capture the inherent non-linearities in the
inductance relationships and it is manifested as a systematic
underprediction at higher inductance values.

The Gamma Regressor demonstrates the most significant departure
from the ideal behavior, with a distinct non-linear pattern and substantial
scatter. The graph shape reveals systematic overprediction pronounced at
higher inductance values and that explains the lower R? value. This visual
evidence reinforces its inferior performance metrics and suggests
fundamental limitations in capturing the underlying physical relationships.
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Figure 9 - Residual plot for various models of 2-layer planar coils
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Testing 20 micro-planar coils with known actual inductance values,
chosen randomly to ensure unbiased analysis, was visualized in Figures
9 and 10 for two-layer and three-layer configurations, respectively, and it
provides evidence of model performance stability. These plots are zoomed
to focus on 20 samples, allowing better visualization of variations, which is
why this sample size was chosen. The plots reveal distinct error
distribution patterns across different models, with the GPR, KNeighbors,
and Bagging Regressor demonstrating superior prediction stability as
evidenced by their tight clustering around the zero-error line, with residuals
predominantly contained within a small range. This contrasts markedly
with the more erratic behavior observed in the ElasticNet and Bayesian
Ridge linear models, and the systematic deviations displayed by the
Gamma Regressor, particularly at higher inductance values. The three-
layer configuration exhibits similar patterns, though with a slight increase
in residual spread, reflecting the enhanced complexity of the prediction
task. Based on the comprehensive evaluation of quantitative metrics,
scatter plots, and residual analyses, the GPR emerges as the optimal
model for inductance prediction, followed in a close way by Bagging
Regressor and KNeighbors, all demonstrating robust generalization
capabilities and reliable performance on unseen data across both
geometric configurations.

Conclusion

The study demonstrates a new approach based on supervised
learning models to achieve high accuracy in estimating the inductance of
multilayer rectangular planar coils. The methodology utilized geometric
parameters to train machine learning models, with the Gaussian Process
Regressor achieving superior performance, demonstrating R? values
exceeding 0.99 for both configurations. This approach eliminates the need
for complex empirical equations compared to traditional analytical
methods. The proposed data-driven framework provides higher precision
and adaptability to diverse rectangular multilayer coil configurations. The
simulation results validated the accuracy of the machine learning models,
highlighting the significant role of the parameters such as the number of
turns, the average diameter, and the fill ratio in predicting inductance. As
future work, the methodology can be extended to include more complex
coil configurations and explore alternative shapes using other machine
learning models or even using deep learning techniques to further
enhance its accuracy and versatility.
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KoHuenT n npnMeHa MallNHCKOr y4eHa y I'Ipe,D,BI/IF]aI-by MHOYKTUBHOCTU
y BI/IIJJeCJ'IOjHI/IM npaBoyraoHMM cnupanHum MMKpO3aBOjHMLI,aMa

JyHec beHasys, ayTop 3a npenucky, Llunanuja lengys

YHuepautet y OpaHy 2 Moxamen beH Axmen, IHCTUTYT 3a MHOYCTPUjCKO
onpxaane n 6e3degHoct (IMSI), Operbene 3a ogpxaBake MHCTPYMEHaTa,
JlTabopaTopuja 3a NPON3BOAHO MHXEHEPCTBO N MHAYCTPUCKO OapXKaBahe
(LGPMI), OpaH, HapogHa Oemokpatcka Peny6nuka Amxup

OBJIACT: padyHapcke Hayke, enekTpoHuKa
KATEFOPUJA (TWUM) YITAHKA: opurinHanHu Hay4Hu paj

Caxemak:

Yeod/uurb: O8um ucmpaxusar-em y8odu ce Ho8 rpucmyil rpojekmosarsy
CKyrna noOamaka [paeoy2aoHUX [laHapHUX 3asojHuya romohy
KomrinemeHmapHux cogpmeepckux anama. MATIIAE ¢yHKUUOHUWE Kao
OKPYXXeH-e 3a rpojeKmosar-e 8UCOKO2 Hugoa, a FastHenry dernyje kao
payvyHapcKu oKeup 3a pewasare Makceesnogux jeOHayuHa u dobujarb-e
epedHocmu  uHOykmueHocmu. [eHepuwy ce 0esa  pasfnuduma
cuHmemuyka cKyrna rnodamaka rnomohy HarpedHUX MexHUKa y30pKoear-a
3a pasnudume KoHgpuzypauuje, ykrbydyjyhu memoldy y30pkoeara
namuHcke xunepkouke. Osu ckyrosu rnodamaka ce 3amum obpalyjy u
obyuyaeajy rnomMoRy anzopumama MallUHCKO2 y4yersa 3a npedsufjare
gpedHocmu UHOYKMUBHOCMU Ha OCHO8Y OO0bUjeHUX 2e0MempujCKuX
napamemapa.

Memode: 3a eeHepucarbe €KCMEeH3UBHUX CUHMEeMmUYKUX CKyrnoea
rnodamaka koju cadpxe 20 000 pedosa 3a O80cCriOjHE KOHGU2ypayuje
3aeojHuUya u 15 000 pedosa 3a mpocriojHe KOHgbuzaypauyuje rpeo ce
kopucmu MATJIAB. HakoH nipoueca eeHepucarba, rnposepasa ce da fu cy
CKyrosu rnoGamaka cripeMHu 3a 0byKy. LLlecm modena malwiuHCKo2 yqersa:
Gaussian Process Regressor (GPR), KNeighborsRegressor (KNN),
BayesianRidge, ElasticNetCV, GammaRegressor, kao u Bagging
Regressor oby4eHo je u npoueH-eHo rnoMohy mempuka Kao wmo cy R? u
RMSE. Modenu ce 3amum ucrumyjy Ha HerosHamum rnodauuma 3a
ucriumuearbe U oueryjy noMohy mexHuke yHakpcHe eanudauuje kako 6u
ce ymepousio KOMUKO Moay 0a eeHepanusyjy.

Pesynmamu: Ckyriosu rnodamaka Cy yCriewHoO 2eHepucaHu, a moodenu
KNeighborsRegressor, Gaussian Process Regressor (GPR) u Bagging
Regressor ocmeapunu cy Hajborbe pesynmame, uckasanu cy 6esluKy
mayHocm U Marly epeuwKy.

Sakrbyyak: Pesynmamu nokasyjy 0a je MalWUHCKO y4YeH-e rpakmu4yaH u
echukacaH mMemod 3a npedsufjarbe UHOYKMUBHOCMU Yy BULUECIIOJHUM
rpasoy2aoHUM fiaHapHUM 3a80jHUlaMa Ha OCHOB8Y eeomempuje.
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niaHapHa 3asojHuya, UHOYKMUBHOCM, MaWUHCKO y4yeHse, CUHMEMUYKU
CKyn nodamaka
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