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Abstract: 
Introduction/purpose: This research introduces a novel approach for 
designing a dataset of multilayer rectangular planar coils by the integration 
of a complementary software tools. MATLAB works as a high-level design 
environment, facilitating the creation of complex geometries and FastHenry 
acts as a computational engine to solve Maxwell's equations and extract 
inductance values. Two diverse synthetic datasets are generated using 
advanced sampling techniques, including Latin hypercube sampling, for 
different configurations. These datasets are then processed and trained 
using machine learning algorithms to predict inductance values based on 
the derived geometric parameters. 
Methods: Initially, MATLAB is used to generate extensive synthetic 
datasets, comprising 20000 rows for 2-layer coil configurations and 15000 
rows for 3-layer configurations. After the generation process, the datasets 
are checked for the readiness for training. Six machine learning models ( 
Gaussian Process Regressor (GPR), KNeighborsRegressor (KNN), 
BayesianRidge, ElasticNetCV, GammaRegressor, and Bagging 
Regressor) are trained and evaluated using metrics such as R² and RMSE. 
The models are further tested on unseen test data and validated using the 
cross-validation technique to check how much the models can generalize. 
Results: The datasets were generated successfully, and the models 
KNeighborsRegressor, Gaussian Process Regressor (GPR), and Bagging 
Regressor performed the best and showed a high accuracy and low error. 
Conclusion: The results show that machine learning is a practical and 
effective method for predicting inductance in multilayer rectangular planar 
coils based on the geometry. 
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Key words: rectangular planar micro-coil, multilayer planar coil, 
inductance, machine learning, synthetic dataset  

Introduction  
Multilayer planar coils combine superior inductance and energy 

efficiency properties with efficient space utilization making them ideal for 
compact electronic applications using a parallel architecture alignment of 
layers. They offer an enhanced efficiency and performance in such 
systems, which makes them vital for advanced applications in power 
transmission and high-precision energy management in modern 
applications (Alghrairi et al., 2022). Flexible multilayer 
microelectromechanical systems (MEMS) coils further improve energy 
efficiency and space utilization and demonstrate high integration capability 
in arbitrary spaces, significantly enhancing the utilization of the space 
magnetic field and output performance in energy harvesters; their vibration 
energy harvesters achieve up to a 43% increase in open-circuit voltage 
and compact dimensions suitable for small electronics in constrained 
environments (Zhang et al., 2024). Furthermore, planar on-silicon 
multilayer inductors have proven highly beneficial in clinical applications, 
particularly in electromagnetic tracking (EMT) systems. These inductors 
achieve a stringent requirement for precise tracking in medical 
environments (Sidun et al., 2023). These technologies also enable the 
development of wireless intracranial pressure (ICP) monitoring systems, 
where carefully designed spiral planar coils improve the coupling factor 
and detection range of miniature implanted sensors, enhancing wireless 
power transfer efficiency and sensor performance (Wang et al., 2018). 
Recent designs of wireless resistive analog passive sensors have 
demonstrated the feasibility of bio-signal monitoring using optimized 
planar spiral coil pairs which are critical for long-term body signal 
monitoring. By employing inductive coupling and coil design optimization 
with genetic algorithms, these sensors achieve high sensitivity and reliable 
performance (Noroozi & Morshed, 2024). 

Higher inductance can be achieved by increasing the number of 
parallel layers. However, estimating inductance remains a challenge, as 
directly solving Maxwell's equations for complex shapes is impractical. To 
address this, a versatile analytical tool has been developed for calculating 
the self-inductance of planar coils with general geometries. Based on 
Grover’s equations, this method aims to combine speed, precision, 
intuitive use, and geometric flexibility (Faria et al., 2021). Additionally, 
inductance behavior in printed-circuit rectangular spiral coils, especially in 
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1 eddy-current testing applications, can be effectively modeled using 

analytical methods that simplify multi-turn geometries and account for 
practical PCB constraints, aiding in accurate mutual inductance prediction 
and design optimization without relying on coil thickness (Wu et al., 2023). 
In superconducting circuits, mutual coupling decreases exponentially with 
distance between striplines, while microstrips exhibit long-range coupling, 
limiting scalability for large-scale integration. In addition, analytical 
expressions provide inductance estimations (Tolpygo et al., 2022). 
Another method for calculating mutual inductance between planar spiral 
coils with arbitrary geometries has been proposed, using a partial 
inductance approach that simplifies the coils into polygonal segments, 
allowing accurate and generalizable analysis validated by simulations and 
measurements (Tavakkoli et al., 2019). All these techniques are based on 
equation estimation and require a precise coupling factor to determine 
inductance. 

The integration of supervised learning has demonstrated great 
promise in planar coil applications. Deep learning has been applied to 
model complex polyphase inductive coils in wireless power transfer 
systems, significantly reducing computational effort while maintaining high 
accuracy in predicting mutual inductance, with a normalized root mean 
square error (NRMSE) of 3.3% and a coefficient of determination of 0.985 
(Gastineau et al., 2024). In magnetic resonance imaging (MRI), deep 
learning has shown promise for quickly predicting RF-induced heating of 
conductive implants based on their geometry and position, offering a faster 
alternative to traditional phantom experiments (Chen et al., 2023). In 
single-layer planar coils, a machine learning-based method has been 
proposed for calculating self- and mutual inductance and multiple linear 
regression with polynomial features achieved near-reference precision 
while being orders of magnitude faster(Stillig et al., 2023). Additionally, 
machine learning techniques have been applied to accelerate the design 
of magnetic couplers for wireless power transfer systems; by training on 
synthetic datasets from ANSYS Maxwell, these models can efficiently 
predict optimal coil parameters such as inner radius and number of turns 
while accounting for constraints like inductance and core materials (Ding 
et al., 2025). After recognizing the potential of machine learning in 
predicting the planar coil behavior and addressing the challenges of 
deriving precise empirical equations, we propose a machine learning-
based methodology for multilayer rectangular spiral micro-coil inductance 
estimation. 
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Diving into specific algorithms, GPR proven effective for inductance 
estimation under magnetic saturation, significantly reduces prediction 
errors from 9.6% to 4.7% by improving training datasets. Its ability to 
minimize computational costs while maintaining accuracy highlights its 
potential in inductance prediction tasks (Bayazıt et al., 2023). Furthermore, 
inductance modeling for planar meander structures using the Restricted 
Boltzmann Machine (RBM) and KNN demonstrated good performance 
with analytical and simulation datasets and showcase the potential of 
these algorithms for compact inductor designs (Ansari & Agarwal, 2024). 
Among those using ML, none have specifically addressed the inductance 
of multilayer rectangular planar coils using supervised data-driven models. 
The primary contributions of this work are twofold: 
1- The development of a systematic methodology for designing multilayer 
rectangular planar coils and generating a comprehensive synthetic dataset 
through simulations, capturing diverse coil geometries and inductance 
behaviors. 
2- The implementation of supervised machine learning models to predict 
inductance values, bypassing the computational complexity of traditional 
coupling factor calculations and empirical formulations. This approach 
offers a scalable framework for rapid and accurate inductance estimation 
in multilayer configurations. 

Methodology flowchart 
The following flowchart, shown in Figure 1, illustrates the proposed 

methodology for the design and inductance prediction of multilayer 
rectangular planar coils. This structured approach integrates all key 
stages, including coil conception, simulation, dataset generation, and 
machine learning model deployment. The process begins with geometry 
modeling in MATLAB, where user-defined coil specifications (e.g., turns, 
layer alignment, trace dimensions) are translated into precise 
configurations. The geometries are then discretized into nodes and 
segments compatible with FastHenry, an open-source field solver software 
used to compute inductance values through electromagnetic simulations. 
The resulting data combining geometric parameters and simulated 
inductance is preprocessed to normalize features and split into training 
and validation sets. Supervised machine learning models are 
subsequently trained to map geometric inputs to inductance outputs, with 
performance rigorously evaluated using metrics like RMSE and MAE. The 
finalized model is tested on unseen configurations to validate 
generalizability before deployment and that enable an accurate inductance 
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1 prediction for new designs. This structured approach bridges physical 

simulations with data driven modeling, which eliminates reliance on 
complex analytical derivations. 

 

 
 

Figure 1 – Methodology flowchart for designing and predicting inductance of multilayer 
rectangular planar coils 

Single-layer design framework for planar coils as a 
foundation 

Before delving into the complexity of multilayer rectangular planar 
coils, it is essential to first understand the characteristics and behavior of 
a single-layer design, as it forms the basis of the multilayer coil. In the 
conception of planar coils for inductance estimation, a lot of estimation 
formulas are available such as Wheeler Expression, Modified Wheeler 
Expression, and Current Sheet Expression, shown in Equations 1, 2, and 
3 (Wheeler, 1928) (Mohan et al., 1999), respectively. However, by 
analyzing these formulas, it shows that the geometry of the planar coil 
plays an important role in determining the inductance. 

 
𝐿𝐿𝑤𝑤ℎ = 𝑁𝑁2𝑟𝑟2

8𝑟𝑟+11𝛥𝛥
             (1) 

 
𝐿𝐿𝑚𝑚𝑤𝑤ℎ = 𝑘𝑘1𝑁𝑁0

µ2 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
1+𝜌𝜌𝑘𝑘2

                   (2) 
 
L= μ0n2davg 𝐶𝐶1

2
(ln(𝐶𝐶2/ρ)+𝐶𝐶3ρ+𝐶𝐶4ρ2)                  (3) 
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In these equations, 𝑁𝑁 represents the number of turns of the coil, and 
𝑟𝑟 is the radius of the planar coil. The parameter 𝛥𝛥 is defined as half the 
difference between the outer and inner diameters, i.e., 𝛥𝛥 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜−𝑑𝑑𝑖𝑖𝑖𝑖

2
, while  

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 denotes the average diameter, given by 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜+𝑑𝑑𝑖𝑖𝑖𝑖
2

. The term ρ 

is the fill factor, expressed as ρ = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜−𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜+𝑑𝑑𝑖𝑖𝑖𝑖

. The constants 𝑘𝑘1,𝑘𝑘2,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3 and  
𝐶𝐶4 are empirical coefficients that depend on the specific geometry of the 
coil and μ0  represents the permeability of free space.  

By consequence, our design approach for the planar coil layer focuses 
on deconstructing the concept into multiple geometric variations to 
generate a substantial and diverse dataset for analysis, as Figure 2 shows. 

 
 

Figure 2 –2D representation of a single layer rectangular planar coil geometry with the 
labeled parameters 

 
Geometric variables such as 𝑠𝑠 the spacing between traces, 𝑤𝑤 the 

trace width , 𝑛𝑛 the number of turns and the inner and outer diameters 𝑑𝑑𝑖𝑖𝑖𝑖1, 
𝑑𝑑𝑖𝑖𝑖𝑖2 , 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 are commonly used and can be derived from 
established equations like the Wheeler's formula but these equations 
assume symmetrical shapes using only two diameters  𝑑𝑑𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 
instead of four and that reflect the symmetrical nature of the geometry. We 
introduced additional geometric parameters such as distances 𝐴𝐴 ,𝐵𝐵 ,𝐶𝐶 and 
𝐷𝐷  in our approach of design and geometric data. Collecting these 
distances represents the bone diameters of the spiral shape excluding the 
trace width. We added hypothenuses 𝐸𝐸𝐸𝐸 and 𝐺𝐺𝐺𝐺 which are also variable 
distances incorporated into the design data to provide a broader range of 
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1 input parameters and to enable exploring a wider variety of geometric 

patterns and maximizing design versatility.,specifically 𝐸𝐸𝐸𝐸2 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜1
2 +

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2
2 and 𝐺𝐺𝐺𝐺2 = 𝑑𝑑𝑖𝑖𝑖𝑖1

2 + 𝑑𝑑𝑖𝑖𝑖𝑖2
2. 

Extending the single layer concept to a multilayer concept 
The advantage of multilayer planar coils is their ability to increase 

inductance while minimizing space, making them ideal for miniaturized 
electronic applications. The modeling of a single layer is extended into 
multilayer configurations, connected in parallel through via connections 
that ensure seamless current flow between layers. To achieve real-world 
applicability, a height of 1 oz (28.35 grams) of copper material is 
incorporated, transforming the design into a 3D structure. Then, a 
FastHenry compatible input file is generated, encompassing node 
definitions and segment connections with material properties. This enables 
precise simulation of the coil's inductance and resistance, facilitating the 
systematic design and optimization of compact, high-inductance planar 
coils for advanced electronic systems. Figure 3 illustrates 3D 
representations of multilayer rectangular planar coils with spiral segments 
and via connections plotted. 

 

 
(a) 2-layer rectangular planar coil  (b) 3-layer rectangular planar coil 

Figure 3 –3D representation of a 2-layer and 3-layer rectangular planar coil with spiral 
segments and via connections 

 
For multilayer planar coils, the total inductance 𝐿𝐿𝑇𝑇 can be 

approximated by the sum of the self-inductances 𝐿𝐿1, 𝐿𝐿2 of each layer and 
the mutual inductance 𝑀𝑀 between them (Zhao, J .2010), which is given by 

 
𝐿𝐿𝑇𝑇 = 𝐿𝐿1 + 𝐿𝐿2 ± 𝑀𝑀       (4) 
 
𝑀𝑀 = 2�𝐿𝐿1𝐿𝐿2

𝑛𝑛2

0.64[(0.184𝑧𝑧3−0.525𝑧𝑧2+1.038𝑧𝑧+1.001)(1.67𝑛𝑛2−5.84𝑛𝑛+65)]
  (5) 
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where 𝑛𝑛 is the number of coil’s turns, and 𝑧𝑧 the distance between the 
layers.However, these formulas are typically valid for coils with 5 to 20 
turns, and layer distances between 0.75 mm and 2 mm, are not suitable 
for rectangular shapes. Additionally, as the number of turns increases, the 
formula changes so our model will use a range of 3 to 30 turns, with wire 
widths varying from 40 µm to 180 µm. Unlike these analytical methods, we 
propose using ML to predict inductance values, which will allow us to 
bypass the need for these analytical formulas. 

Dataset generation 
After establishing the logical concept of creating multilayer planar 

coils, we delve into generating a dataset for training machine learning 
models. The dataset focuses on two configurations: two-layer and three-
layer planar coils, containing 20000 rows and 15000 rows, respectively. 
Each row in the dataset represents a single data entry which includes 
multiple geometric input variables, with the output being the inductance 
value for each configuration. 

The geometric variables include those mentioned earlier, such as the 
𝐴𝐴 ,𝐵𝐵 ,𝐶𝐶 and 𝐷𝐷 segment lengths, the inner diameters and the outer 
diameters 𝑑𝑑𝑖𝑖𝑖𝑖1, 𝑑𝑑𝑖𝑖𝑖𝑖2 , 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2, the spacing 𝑠𝑠,  the trace width 𝑤𝑤, 
and the diagonals (𝐸𝐸𝐹𝐹, 𝐺𝐺𝐻𝐻). In addition, the loop creation variables (𝑖𝑖, 𝑗𝑗) 
are used, representing the incremental steps of the spiral design along the 
vertical and horizontal directions, respectively. These are defined as 𝑖𝑖 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝛥𝛥𝛥𝛥 and 𝑗𝑗 = 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝛥𝛥𝛥𝛥 where 
𝛥𝛥𝛥𝛥 is a fixed step size as shown in Figure 4. 

 

 
 

Figure 4 – Initial segments and design steps in the spiral creation 
 
The vertical spacing between the layers, 𝑍𝑍, represents the via 

distance, and that completes the foundational geometry. To enhance the 
dataset, feature engineering variables are introduced, such as 𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟 and 
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1 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟 defined as 𝑑𝑑𝑖𝑖𝑛𝑛_𝑟𝑟 = �𝑑𝑑𝑖𝑖𝑛𝑛1𝑑𝑑𝑖𝑖𝑛𝑛2 and 𝑑𝑑𝑜𝑜𝑢𝑢𝑢𝑢_𝑟𝑟 = �𝑑𝑑𝑜𝑜𝑢𝑢𝑢𝑢1𝑑𝑑𝑜𝑜𝑢𝑢𝑢𝑢2 respectively, 

These equations are adapted from the formulas used for elliptical shapes 
(Farooq et al. 2023) and modified for rectangular geometries by applying 
the area equality method, the average diameter  𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟+𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟

2
 , the fill 

ratio ρ = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟−𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟+𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟

. 
These features engineered variables are commonly used in 

inductance estimation equations (Asadi Et all. 2023) (Wheeler, 1928). It 
will significantly enhance the robustness of our models and the predictive 
power of the dataset. This comprehensive approach ensures that the 
dataset captures all critical factors influencing the inductance of multilayer 
planar coils, making it suitable for supervised machine learning models, 
after defining all input parameters. A structured parameter sampling 
approach was implemented to generate two datasets for two and three 
layers planar coils. The physical and geometric parameters of the coils, 
along with their respective ranges, are summarized in Table 1. These 
ranges were chosen to cover a broad spectrum of coil designs that balance 
the manufacturability and performance requirements. 

 
Table 1 – Design parameters and ranges 

 
  Minimum Value Maximum Value 
𝑛𝑛 3 30 
𝑖𝑖 1 15 
𝑗𝑗 1 15 
𝑤𝑤 20 µm 200 µm 
𝑠𝑠 30 µm 250 µm 
𝑧𝑧 40 µm 180 µm 

 
To ensure a diverse and representative dataset, we combine three 

techniques, i.e., Latin Hypercube Sampling (LHS), parameter mapping, 
and physical validation and that leads us to explore a wide design space 
while ensuring practical manufacturability constraints were met. The main 
idea of LHS is dividing the range of each parameter into equally spaced 
intervals and it guarantees that one sample is drawn from each interval to 
minimize redundance in variables and clustering in the sample space. In 
addition, small perturbations with a value of 2% were introduced to each 
sampled value to simulate real word variability. Parameterization involves 
mapping normalized values generated through Latin Hypercube Sampling 
(LHS) to real-world ranges relevant to the coil design; for example, the 
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number of turns was mapped to [3–30], wire width to [20–200µm], and 
spacing to [30–250µm], while physical validation ensures that the 
generated coil configurations are physically feasible and adhere to 
manufacturability constraints with a minimum wire spacing of 30 µm to 
prevent electrical shorts. A layer separations [40–180µm] is compatible 
with standard fabrication processes. 

 

 
               (a) Destitution of 𝑑𝑑𝑖𝑖𝑛𝑛1             (b) Destitution of 𝑑𝑑𝑖𝑖𝑛𝑛2 

 
 

 
               (c) Destitution of 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜1             (d) Destitution of 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 
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               (e) Destitution of 𝑑𝑑𝑖𝑖𝑛𝑛_𝑟𝑟             (f) Destitution of 𝑑𝑑𝑖𝑖𝑛𝑛_𝑟𝑟 

 

 
               (g) Destitution of 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎             (h) Destitution of 𝑑𝑑𝑛𝑛 

 

 
                    (i) Destitution of i                            (j) Destitution of 𝑗𝑗 
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                      (k) Destitution of z 

Figure 5 – Distribution of the geometric parameters in the 2-layer planar coil design 
 
Figure 5 shows the density distributions of the key geometric 

parameters for the two-layer planar coil design and it demonstrates the 
effectiveness of our Latin hypercube sampling approach for multiple 
dimensional parameters. The inner and outer 𝑑𝑑𝑖𝑖𝑖𝑖1, 𝑑𝑑𝑖𝑖𝑖𝑖2 , 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 
diameters of the two layers show uniform distributions within their 
respective ranges and that indicates complete coverage of possible coil 
configurations. Feature engineering variables such as 𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟 
show slightly asymmetrical distributions and the average diameter 
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 follows a bell-shaped distribution, suggesting a natural convergence 
towards optimal intermediate values. The  rotation parameters 𝑛𝑛 , 𝑖𝑖  and 
𝑗𝑗 show uniform distributions in their discrete ranges, validating the 
efficiency of the LHS in sampling the design space. The distribution of the 
separation distance 𝑧𝑧 guarantees adequate spacing between the layers 
while respecting manufacturing constraints. These distributions 
collectively confirm that our sampling strategy successfully explores the 
design space while maintaining physical feasibility, as shown by the 
smooth, well-defined boundaries of each parameter distribution. 
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Figure 6 – Correlation matrix of the geometric variables and the  inductance (L) for the 

two layers planar coil dataset 
 
To gain deeper insights into the relationships among geometric 

variables and their influence on inductance prediction, a correlation 
analysis was conducted, as shown in Figure 6. The purpose of this 
analysis is to assess the interdependencies between the design 
parameters and to identify the key predictors of inductance prior to training 
machine learning models. The correlation matrix reveals several notable 
trends and positive correlations were observed between the inductance 𝐿𝐿 
and the parameters such as 𝑛𝑛 number of turns, 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎  average diameter 
and the engineered features 𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟  showing a direct impact on 
inductance. The geometric 𝐴𝐴 ,𝐵𝐵 ,𝐶𝐶 and 𝐷𝐷 also demonstrate high 
correlations with 𝐿𝐿 and that reflects their role in defining the overall 
dimensions of the coil. On the other hand, the parameters such as the (w) 
trace width, the spacing 𝑠𝑠, and the 𝑧𝑧 vertical separation show less 
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correlation with 𝐿𝐿 . However, even variables with weak linear correlation 
may contribute through non-linear interactions, especially when using 
models like the GPR and BaggingRegressor that can capture such 
complex relationships.The motivation for including both directly measured 
and engineered geometric variables 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 , ρ 𝑑𝑑𝑖𝑖𝑖𝑖_𝑟𝑟 and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟   is based on 
their relevance in well-established inductance calculation equations, 
including those proposed in (Wheeler, 1928) (Mohan et al., 1999) and 
more recently in (Farooq et al. 2023). This correlation analysis serves as 
a foundational step to the dataset to ensure the inclusion of critical features 
like 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎  and ρ fill ratio, which give an enhancement and a predictive 
power of the data driven models. Furthermore, retaining a broad set of 
features allows machine learning models with internal feature selection 
mechanisms to determine their usefulness automatically. 

Machine learning models selection 
The data generated for inductance estimation was evaluated using 

various machine learning models which can be classified according to their 
methodologies. All models were implemented using Scikit-learn, a widely 
used open-source Python library that provides a consistent interface and 
efficient implementations for a wide range of machine learning algorithms. 
Unless otherwise stated, all models were used with their default 
parameters as defined in Scikit-learn version 1.5.2. Probabilistic models 
include the GaussianProcessRegressor (GPR), which assumes that the 
data follows a Gaussian process. As described by Rasmussen and 
Williams (Williams & Rasmussen, 2006), GPR predictions at a new point 
𝑥𝑥∗ are given by 

 
𝑓𝑓∗(𝑥𝑥∗) = 𝑘𝑘∗𝑇𝑇(𝐾𝐾 + 𝜎𝜎2𝐼𝐼)−1𝑦𝑦       (6) 
 
where 𝑘𝑘∗ represents the vector of covariances between 𝑥𝑥∗ and the 

training points, 𝐾𝐾 is the covariance matrix between the training points, 𝜎𝜎2 
denotes the noise variance, 𝐼𝐼 is the identity matrix and 𝑦𝑦 is the vector of 
the training outputs. 

In the category of instance-based learning, KNeighborsRegressor 
(KNN) was employed, a non-parametric model that predicts on the basis 
of nearest neighbors, thus capturing local relationships in the dataset 
(Altman, 1992). KNN uses the Euclidean, Manhattan and Minkowski 
distance metrics presented respectively: 
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𝑑𝑑(𝑥𝑥,𝑋𝑋𝑖𝑖) = �� �𝑥𝑥𝑗𝑗 − 𝑋𝑋𝑖𝑖𝑖𝑖�
2𝑑𝑑

𝑖𝑖=1
                   (7) 

 
𝑑𝑑(𝑥𝑥,𝑦𝑦) = ∑ |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛

𝑖𝑖=1                    (8) 
  
𝑑𝑑(𝑥𝑥,𝑦𝑦) = (� (𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑝𝑝)1/𝑝𝑝                   (9) 
 
Only one distance metric is used during model training. KNN does not 

use multiple distance functions simultaneously, while Euclidean measures 
straight-line distance in a d-dimensional space, Manhattan sums absolute 
differences for total travel distance, and Minkowski generalizes both, 
adapting to diverse data structures with the parameter 𝑝𝑝 (e.g, 𝑝𝑝 =2 for 
Euclidean, 𝑝𝑝 =1 for Manhattan). 

We also used linear and regularized models, such as BayesianRidge 
and ElasticNetCV. BayesianRidge applies Bayesian inference to linear 
regression, balancing bias and variance (MacKay, 1992). The model 
assumes 

 
𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥11 + 𝛽𝛽2𝑥𝑥22+. …+ 𝛽𝛽2𝑥𝑥𝑛𝑛𝑛𝑛 + 𝜀𝜀      (10) 
 
where  𝛽𝛽𝑖𝑖 represents the coefficient and 𝜀𝜀 is the measurement error. 
ElasticNetCV combines Lasso and Ridge penalties to manage 

multicollinearity and perform feature selection. We applied 5-fold cross-
validation to automatically select the optimal values for the regularization 
parameters, including the overall penalty strength and the mixing ratio 
between the two techniques. 

The BaggingRegressor model is used to combine the predictions of 
several instances of KNeighborsRegressor, with a total of 10 estimators in 
the set, each trained on different bootstrap samples of the dataset as 
indicated by setting (bootstrap = True). 

Finally, a distribution-specific model, the GammaRegressor, has been 
included, designed for target variables with a Gamma distribution. The 
model was implemented using the default settings: alpha = 1.0 which 
controls regularization to balance bias and variance; link = 'log', ensuring 
that the predicted values remain strictly positive, suitable for Gamma-
distributed targets; and solver = 'lbfgs', a quasi-Newton optimization 
algorithm known for efficient convergence. 
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To assess the performance of the machine learning models 
developed to estimate the inductance of multilayer planar coil designs, we 
employed multiple evaluation metrics. They were chosen for their ability to 
provide insights into the prediction capabilities of the models from different 
perspectives like accuracy, robustness and generalization to unseen data. 
By comparing these models based on these criteria, we can evaluate their 
suitability for inductance estimation. The metrics used for model evaluation 
includes the coefficient of determination R² and the root mean square error 
RMSE, which are defined by Equations (11) and (12), respectively: 

 

R² = 1 −
� (yobs,i−ypre,i)2

N

i=1

� (yobs,i−𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜�������)2N
i=1

    (11) 

 

RMSE = �1
N
� (yobs,i − ypre,i)2

N

i=1
  (12) 

 
where yobs,i  is the observed inductance value, ypre,i  is the 

corresponding predicted value, and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜������) is the mean of the observed 
inductance values. The variable 𝑛𝑛 represents the total number of samples 
in the dataset. 

Dataset splitting and models training results 
All geometric variables were considered for experiment training of the 

selected models. The data was split into training and testing datasets with 
80% used for training and 20% for testing. For the 2-layer dataset, there 
were 16000 samples for training and 4000 samples for testing. For the 3-
layer dataset, it resulted in 12000 samples for training and 3000 samples 
for testing. All data was thoroughly checked for missing values, and the 
health of the data was verified before training to ensure that everything is 
perfect and all rows value are in a healthy condition. 

The performance of the selected machine learning models was 
assessed on both training and testing datasets and through cross-
validation. By this evaluation, we ensure the model's ability to generalize 
unseen data and avoid overfitted and underfitted models and to identify 
the most suitable methods for inductance prediction. Table 2 summarizes 
the results. 
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1 Table. 2 – Performance on train and test sets for the 2-layer planar coil 

 
 Train set Test set 

R² RMSE R² RMSE 
GPR 0.999 4.4⋅10–9 0.993 7.9⋅10–7 
BaggingRegressor 0.999 3⋅10–7 0.997 4.7⋅10–7 
KNN 0.998 3.2⋅10–7 0.997 5.2⋅10–7 
BayesianRidge 0.945 2.3⋅10–6 0.943 2.3⋅10–6 
ElasticNetCV 0.922 2.7⋅10–6 0.922 2.7⋅10–6 
GammaRegressor 0.760 4.7⋅10–6 0.736 5.1⋅10–6 
 
As shown in Table 2, the Gaussian Process Regressor (GPR) 

demonstrated exceptional performance, achieving an R² of 0.999 on the 
training set and 0.993 on the testing set with a low RMSE, making it the 
top performing model. Bagging Regressor and KNN also performed well, 
maintaining high R² values on both training and testing sets and that 
indicates a strong predictive capability too. Linear models like Bayesian 
Ridge and ElasticNetCV showed moderate performance, achieving values 
around 0.94. The Gamma Regressor, however, displayed significantly 
lower R² square and higher RMSE values.  

 
Table. 3 – Performance on the train and test sets for the 3-layer planar coil 

 
 Train set Test set 

R² RMSE R² RMSE 
GPR 0.999 4⋅10–9 0.998 3.2⋅10–7 
BaggingRegressor 0.998 3.3⋅10–7 0.998 4⋅10–7 
KNN 0.998 3.6⋅10–7 0.997 4.5⋅10–7 
BayesianRidge 0.943 2.3⋅10–6 0.946 2.2⋅10–6 
ElasticNetCV 0.922 2.7⋅10–6 0.926 2.6⋅10–6 

GammaRegre
ssor 

0.
747 

4.9
⋅10–6 

0.7
65 

4.7⋅1
0–6 

 
A similar pattern was observed for the 3-layer dataset as shown in 

Table 3. The GPR model again demonstrated the best performance, 
achieving an R of 0.999 on the training set and 0.998 on the testing set. 
Bagging Regressor and KNN closely followed, with minimal discrepancies 
between training and testing metrics. Linear models, including Bayesian 
Ridge and ElasticNetCV, performed consistently achieving a moderate 
accuracy, while the Gamma Regressor once again showed low results. 
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The cross-validation was applied to validate the models. This 
technique evaluates model performance by splitting the dataset into 
multiple folds and then compute the existed metrics for each fold. Table 4 
summarizes the results of the cross-validation 

 
Table. 4 – Cross-validation results using the k-fold method (k=5) 

 
 2layers 3layers 
 R² RMSE R² RMSE 
GPR 0.998 3.3⋅10–7 0.998 3.7⋅10–9 
BaggingRegressor 0.998 3.8⋅10–7 0.998 4.1⋅10–7 
KNN 0.998 4.2⋅10–7 0.997 4.5⋅10–7 
BayesianRidge 0.945 2.3⋅10–6 0.944 2.2⋅10–6 
ElasticNetCV 0.922 2.7⋅10–6 0.923 2.7⋅10–6 
GammaRegressor 0.760 4.7⋅10–6 0.754 4.8⋅10–6 
 
The cross-validation results for both datasets confirmed the trends 

from experiment training and testing. In this context, the cross-validation 
(k=5) was applied on the training data only, in order to assess the model’s 
robustness and consistency without involving the held-out test set. For the 
two-layer dataset, the GPR achieved the best performance with an  
R² of 0.998 and the lowest RMSE of 3.3⋅10–7, followed by Bagging 
Regressor and KNN. the linear models, such as Bayesian Ridge and 
ElasticNetCV, showed moderate performance R around 0.94, while the 
Gamma Regressor struggled with the highest RMSE. Similar results were 
observed for the three-layer dataset, with the GPR again leading R² of 
0.998, followed by Bagging Regressor and KNN, while the linear models 
performed moderately and the Gamma Regressor lagged. 

 
Table. 6 – Monte Carlo cross-validation through 50 iterations 

 
 2layers 3layers 
 R² RMSE R² RMSE 
GPR 0.998 3.9⋅10–7 0.998 3.8⋅10–9 
BaggingRegressor 0.998 3.8⋅10–7 0.998 4.2⋅10–7 
KNN 0.998 2.24⋅10–7 0.997 4.6⋅10–7 
BayesianRidge 0.945 2.27⋅10–6 0.943 2.3⋅10–6 
ElasticNetCV 0.922 2.7⋅10–6 0.922 2.6⋅10–6 
GammaRegressor 0.760 4.7⋅10–6 0.753 4.8⋅10–6 
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data splits, Monte Carlo cross-validation through 50 iterations of 
randomized subsampling was applied on both 2-layer and 3-layer 
datasets. This method randomly splits the dataset into training (80%) and 
testing (20%) subsets across multiple iterations. The procedure yields 
distributions of performance metrics across all splits. Table 5 summarizes 
the performance of the models using this approach. 

The Monte Carlo cross-validation results presented in Table 6 are 
consistent with the findings from the k-fold cross-validation presented 
inTable 4 and that reenforces the reliability of the models. In both the 2-
layer and 3-layer datasets, the GPR consistently delivered the highest R² 
values of 0.998 and the lowest RMSE and that confirms its superior 
performance and robustness to data splits. Bagging Regressor and KNN 
also maintained strong and stable performance across all iterations. The 
linear models such as Bayesian Ridge and ElasticNetCV demonstrated 
moderate accuracy, while the Gamma Regressor exhibited the weakest 
results, with the highest RMSE and lowest R² values. 

 

 
(a) Gaussian Process Regressor (GPR) – predicted vs actual values 
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(b) Bagging Regressor – predicted vs actual values 

 
 

(c) K-Nearest Neighbors (KNN) – predicted vs actual values 
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(f) Gamma Regressor – predicted vs actual values 
 

 
(d) Bayesian Ridge – predicted vs actual values 
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(e) ElasticNetCV – predicted vs actual values 
 

 
 

(f) Gamma Regressor – predicted vs actual values 
Figure 7 – Scatter plot of predicted vs. actual values for 2-layer configurations 
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(a) Gaussian Process Regressor (GPR) – predicted vs actual values 
 

 
 

(b) Bagging Regressor – predicted vs actual values 



 
 

1367 
 

Y.
 B

en
az

zo
uz

 e
t a

l, 
C

on
ce

pt
io

n 
an

d 
ap

pl
ic

at
io

n 
of

 m
ac

hi
ne

 le
ar

ni
ng

 fo
r i

nd
uc

ta
nc

e 
pr

ed
ic

tio
n 

in
 m

ul
til

ay
er

 re
ct

an
gu

la
r s

pi
ra

l 
m

ic
ro

 c
oi

ls
 , 

pp
.1

34
4-

13
75

 

 
 

(c) K-Nearest Neighbors (KNN) – predicted vs actual values 
 

 
 

(f) Gamma Regressor – predicted vs actual values 
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(d) Bayesian Ridge – predicted vs actual values 

 

 
(e) ElasticNetCV – predicted vs actual values 
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(f) Gamma Regressor – predicted vs actual values 

Figure 8 – Scatter plot of predicted vs. actual values for 3-layer configurations 
 
Figures 7 and 8 present the scatter plots of predicted versus actual 

values for all models across both two-layer and three-layer configurations 
and they provide a visual confirmation of the quantitative metrics 
previously discussed. The diagonal dashed line represents a  perfect 
prediction (y=x), allowing for a direct assessment of the model 
performance through deviation patterns. 

The GPR model exhibits remarkably tight clustering along the 
diagonal line in both configurations, with minimal scatter and virtually no 
systematic deviation, corroborating its superior R² value. The plot 
demonstrates exceptional predictive accuracy across the entire range of 
inductance values, with only occasional minor deviations at higher values 
in the three-layer configuration. The KNN and Bagging Regressor plots 
display similarly strong adherence to the diagonal, though with slightly 
more visible scatter than that of the GPR, particularly at higher inductance 
values. The consistency of the scatter patterns between the two-layer and 
three-layer configurations supports their robust generalization capabilities. 
In contrast, the Bayesian Ridge and ElasticNetCV models exhibit 
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1 noteworthy systematic deviations from the diagonal, particularly evident in 

their curvilinear patterns. These models occasionally produce negative 
inductance values due to their linear nature and lack of constraint 
mechanisms, which makes them inadequate for capturing the highly non-
linear and strictly positive behavior of inductance. This behavior suggests 
these linear models struggle to capture the inherent non-linearities in the 
inductance relationships and it is manifested as a systematic 
underprediction at higher inductance values.  

The Gamma Regressor demonstrates the most significant departure 
from the ideal behavior, with a distinct non-linear pattern and substantial 
scatter. The graph shape reveals systematic overprediction pronounced at 
higher inductance values and that explains the lower R² value. This visual 
evidence reinforces its inferior performance metrics and suggests 
fundamental limitations in capturing the underlying physical relationships. 

 

 
 

Figure 9 - Residual plot for various models of 2-layer planar coils 
 

 
 

Figure 10 - Residual plot for various models of 3-layer planar coils 
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Testing 20 micro-planar coils with known actual inductance values, 
chosen randomly to ensure unbiased analysis, was visualized in Figures 
9 and 10 for two-layer and three-layer configurations, respectively, and it 
provides evidence of model performance stability. These plots are zoomed 
to focus on 20 samples, allowing better visualization of variations, which is 
why this sample size was chosen. The plots reveal distinct error 
distribution patterns across different models, with the GPR, KNeighbors, 
and Bagging Regressor demonstrating superior prediction stability as 
evidenced by their tight clustering around the zero-error line, with residuals 
predominantly contained within a small range. This contrasts markedly 
with the more erratic behavior observed in the ElasticNet and Bayesian 
Ridge linear models, and the systematic deviations displayed by the 
Gamma Regressor, particularly at higher inductance values. The three-
layer configuration exhibits similar patterns, though with a slight increase 
in residual spread, reflecting the enhanced complexity of the prediction 
task. Based on the comprehensive evaluation of quantitative metrics, 
scatter plots, and residual analyses, the GPR emerges as the optimal 
model for inductance prediction, followed in a close way by Bagging 
Regressor and KNeighbors, all demonstrating robust generalization 
capabilities and reliable performance on unseen data across both 
geometric configurations. 

Conclusion 
The study demonstrates a new approach based on supervised 

learning models to achieve high accuracy in estimating the inductance of 
multilayer rectangular planar coils. The methodology utilized geometric 
parameters to train machine learning models, with the Gaussian Process 
Regressor achieving superior performance, demonstrating R² values 
exceeding 0.99 for both configurations. This approach eliminates the need 
for complex empirical equations compared to traditional analytical 
methods. The proposed data-driven framework provides higher precision 
and adaptability to diverse rectangular multilayer coil configurations. The 
simulation results validated the accuracy of the machine learning models, 
highlighting the significant role of the parameters such as the number of 
turns, the average diameter, and the fill ratio in predicting inductance. As 
future work, the methodology can be extended to include more complex 
coil configurations and explore alternative shapes using other machine 
learning models or even using deep learning techniques to further 
enhance its accuracy and versatility. 



  
 

1372 
 

 V
O

JN
O

TE
H

N
IČ

KI
 G

LA
SN

IK
 / 

M
IL

IT
AR

Y 
TE

C
H

N
IC

AL
 C

O
U

R
IE

R
, 2

02
5,

 V
ol

. 7
3,

 Is
su

e 
1 References  

Alghrairi, M., Sulaiman, N., Mutashar, S., Wan Hasan, W. Z., Jaafar, H., 
& Algriree, W. (2022). Designing and analyzing multi-coil multi-layers for 
wireless power transmission in stent restenosis coronary artery. AIP Advances, 
12(12). Available at: https://doi.org/10.1063/5.0121532 

Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor 
Nonparametric Regression. The American Statistician, 46(3), 175–185. 
Available at: https://doi.org/10.1080/00031305.1992.10475879 

Ansari, M.A., & Agarwal, P. (2024). Inductance Modelling of Planar 
Meander Structure Using RBM and kNN. SN Computational Sciences, 5, 1169. 
Available at: https://doi.org/10.1007/s42979-024-03516-7 

Asadi, M., Rezaei, A., & Abazari, A. M. (2023, December). Calculation of 
Mutual Inductance between Two Planar Coils with Custom Specifications and 
Positions Using a Machine Learning Approach. In Proceedings of the 
International Conference on New Trends in Applied Sciences (Vol. 1, pp. 20-
30). Available at: https://doi.org/10.58190/icontas.2023.50 

Bayazıt, G. H., Caarls, E. I., & Lomonova, E. A. (2023). Inductance Map 
Regression of Doubly Excited Electrical Machines Considering Cross-
Saturation. IEEE Transactions on Magnetics, 59(11), 1-5. Available at: 
https://doi.org/10.1109/TMAG.2023.3292500 

Chen, X., Zheng, C., & Golestanirad, L. (2023). Application of Machine 
learning to predict RF heating of cardiac leads during magnetic resonance 
imaging at 1.5 T and 3 T: A simulation study. Journal of Magnetic 
Resonance, 349, 107384.  Available at: 
https://doi.org/10.1016/j.jmr.2023.107384 

Ding, W., Wang, Y., Chen, T., Lu, Z., You, Y., Wang, J., & Huang, Z. 
(2025). A stacking machine‐learning based method for accelerating magnetic 
coupler design with ferrite cores in inductive power transfer applications. 
International Journal of Circuit Theory and Applications, 53(1), 67-80. Available 
at:  https://doi.org/10.1002/cta.4096  

Farooq, M., Amin, B., Elahi, A., Wijns, W., & Shahzad, A. (2023). Planar 
Elliptical Inductor Design for Wireless Implantable Medical Devices. 
Bioengineering, 10(2), 151. Available at: 
https://doi.org/10.3390/bioengineering10020151 

Faria, A. R. S., Marques, L. S., Gaspar, J., Alves, F. S., & Cabral, J. M. N. 
(2021, March). High precision, geometry independent analytical method for 
self-inductance calculation in planar coils. In 2021 22nd IEEE International 
Conference on Industrial Technology (ICIT) (Vol. 1, pp. 1234-1239). IEEE. 
Available at:  http://doi.org/10.1109/ICIT46573.2021.9453559 

Gastineau, L. A., Lewis, D. D., & Ionel, D. M. (2024, November). 
Combined 3D FEA and Machine Learning Design of Inductive Polyphase Coils 
for Wireless EV Charging. In 2024 13th International Conference on 

 

https://doi.org/10.1063/5.0121532
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1007/s42979-024-03516-7
https://doi.org/10.58190/icontas.2023.50
https://doi.org/10.1109/TMAG.2023.3292500
https://doi.org/10.1016/j.jmr.2023.107384
https://doi.org/10.1002/cta.4096
https://doi.org/10.3390/bioengineering10020151
http://doi.org/10.1109/ICIT46573.2021.9453559


 
 

1373 
 

Y.
 B

en
az

zo
uz

 e
t a

l, 
C

on
ce

pt
io

n 
an

d 
ap

pl
ic

at
io

n 
of

 m
ac

hi
ne

 le
ar

ni
ng

 fo
r i

nd
uc

ta
nc

e 
pr

ed
ic

tio
n 

in
 m

ul
til

ay
er

 re
ct

an
gu

la
r s

pi
ra

l 
m

ic
ro

 c
oi

ls
 , 

pp
.1

34
4-

13
75

 

Renewable Energy Research and Applications (ICRERA) (pp. 1811-1816). 
IEEE. Available at: https://doi.org/10.1109/ICRERA62673.2024.10815533 

MacKay, D. J. (1992). Bayesian interpolation. Neural Computation, 4(3), 
415-447. Available at: https://doi.org/10.1162/neco.1992.4.3.415 

Noroozi, B., & Morshed, B. I. (2021). Design and optimization of printed 
spiral coils for wireless passive sensors. IET Wireless Sensor Systems, 11(4), 
169-178. Available at: https://doi.org/10.1049/wss2.12019 

Sidun, Aleksandr, SRIVASTAVA, Manish, O’DONOGHUE, Kilian, et al. 
Planar On-Silicon Inductor Design for Electromagnetic Tracking. IEEE Sensors 
Journal, 2023. Available at: https://doi.org/10.1109/JSEN.2023.3296471 

Stillig, J., Parspour, N., Ewert, D., & Jung, T. J. (2022, July). Feasibility 
Study on Machine Learning-based Method for Determining Self-and Mutual 
Inductance. In 2022 International Seminar on Intelligent Technology and Its 
Applications (ISITIA) (pp. 193-198). IEEE. Available at: 
https://doi.org/10.1109/ISITIA56226.2022.9855321 

Tolpygo, S. K., Golden, E. B., Weir, T. J., & Bolkhovsky, V. (2022). Mutual 
and self-inductance in planarized multilayered superconductor integrated 
circuits: Microstrips, striplines, bends, meanders, ground plane perforations. 
IEEE Transactions on Applied Superconductivity, 32(5), 1-31. Available at: 
https://doi.org/10.1109/TASC.2022.3162758 

Wang, F., Zhang, X., Shokoueinejad, M., Iskandar, B. J., Webster, J. G., 
& Medow, J. E. (2018). Spiral planar coil design for the intracranial pressure 
sensor. Medical Devices & Sensors, 1(3), e10012. Available at: 
https://doi.org/10.1002/mds3.10012 

Wheeler, H. A. (1928). Simple inductance formulas for radio coils. 
Proceedings of the Institute of Radio Engineers, 16(10), 1398-1400. Available 
at: https://doi.org/10.1109/JRPROC.1928.221309 

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for 
machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press. 

Wu, D., Lin, S., Chen, H., & Wang, X. (2023). Mutual inductance model of 
double printed circuit board‐based coplanar rectangular spiral coils for eddy‐
current testing. International Journal of Numerical Modelling: Electronic 
Networks, Devices and Fields, 36(1), e3038. Available at:  
https://doi.org/10.1002/jnm.3038 

Zhang, J., Hou, X., Qian, S., Bi, X., Hu, D., Liu, J., ... & Chou, X. (2024). 
Flexible multilayer MEMS coils and their application in energy harvesters. 
Science China Technological Sciences, 67(4), 1282-1293. Available at: 
https://doi.org/10.1007/s11431-023-2474-9 

Zhao, J. (2010). A new calculation for designing multilayer planar spiral 
inductors. EDN (Electrical Design News, 55(14), 37. 
 

 
 

https://doi.org/10.1109/BioCAS61083.2024.10798376
https://doi.org/10.1109/BioCAS61083.2024.10798376
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1049/wss2.12019
https://doi.org/10.1109/JSEN.2023.3296471
https://doi.org/10.1109/ISITIA56226.2022.9855321
https://doi.org/10.1109/TASC.2022.3162758
https://doi.org/10.1109/JRPROC.1928.221309
https://doi.org/10.1002/jnm.3038
https://doi.org/10.1002/jnm.3038
https://doi.org/10.1007/s11431-023-2474-9


  
 

1374 
 

 V
O

JN
O

TE
H

N
IČ

KI
 G

LA
SN

IK
 / 

M
IL

IT
AR

Y 
TE

C
H

N
IC

AL
 C

O
U

R
IE

R
, 2

02
5,

 V
ol

. 7
3,

 Is
su

e 
1 Концепт и примена машинског учења у предвиђању индуктивности 

у вишеслојним правоугаоним спиралним микрозавојницама 
Јунес Беназуз, аутор за преписку, Џилалија Гендуз 
Универзитет у Орану 2 Мохамед Бен Ахмед, Институт за индустријско 
одржавање и безбедност (IMSI), Одељење за одржавање инструмената, 
Лабораторија за производно инжењерство и индустријско одржавање 
(LGPMI), Оран, Народна Демократска Република Алжир 
 
ОБЛАСТ: рачунарске науке, електроника 
КАТЕГОРИЈА (ТИП) ЧЛАНКА: оригинални научни рад 

Сажетак:  
Увод/циљ: Овим истраживањем уводи се нов приступ пројектовању 
скупа података правоугаоних планарних завојница помоћу 
комплементарних софтверских алата. МАТЛАБ функционише као 
окружење за пројектовање високог нивоа, а FastHenry делује као 
рачунарски оквир за решавање Максвелових једначина и добијање 
вредности индуктивности. Генеришу се два различита 
синтетичка скупа података помоћу напредних техника узорковања 
за различите конфигурације, укључујући методу узорковања 
латинске хиперкоцке. Ови скупови података се затим обрађују и 
обучавају помоћу алгоритама машинског учења за предвиђање 
вредности индуктивности на основу добијених геометријских 
параметара. 
Методе: За генерисање екстензивних синтетичких скупова 
података који садрже 20 000 редова за двослојне конфигурације 
завојница и 15 000 редова за трослојне конфигурације прво се 
користи МАТЛАБ. Након процеса генерисања, проверава се да ли су 
скупови података спремни за обуку. Шест модела машинског учења: 
Gaussian Process Regressor (GPR), KNeighborsRegressor (KNN), 
BayesianRidge, ElasticNetCV, GammaRegressor, као и Bagging 
Regressor обучено је и процењено помоћу метрика као што су R² и 
RMSE. Модели се затим испитују на непознатим подацима за 
испитивање и оцењују помоћу технике унакрсне валидације како би 
се утврдило колико могу да генерализују. 
Резултати: Скупови података су успешно генерисани, а модели 
KNeighborsRegressor, Gaussian Process Regressor (GPR) и Bagging 
Regressor остварили су најбоље резултате, исказали су велику 
тачност и малу грешку. 
Закључак: Резултати показују да је машинско учење практичан и 
ефикасан метод за предвиђање индуктивности у вишеслојним 
правоугаоним планарним завојницама на основу геометрије. 
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Кључне речи: правоугаона планарна микрозавојница, вишеслојна 
планарна завојница, индуктивност, машинско учење, синтетички 
скуп података 
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