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Abstract:

In this paper, the analysis of bending of sigmoid functionally graded
materials (S-FGM) plates is presented using a four-variable high-order
shear deformation theory.This theory reduces the number of unknown
functions simply from five to four compared to other shear deformation
theories; it does not require shear correction factors, and it satisfies the
conditions of zero shear stresses for the top and bottom surface of the plate
since the variation of shear stresses is parabolic through the thickness. The
equilibrium equations of this theory are derived from the principle of virtual
work, and the Navier solution is used to solve these equations. For this S-
FGM plate, according to the power law, the materials are distributed in
terms of volume fractions of the constituents, and their properties are
gradually varied in the thickness direction. This analytical study gave very
satisfactory results, and the comparison between the numerical results
obtained from the presented theory and those obtained from the classical
plate theory (CPT) and high-order shear deformation theories (HSDTs)
demonstrated the simplicity, accuracy, and reliability of this presented
theory in analyzing the static bending behavior of thick S-FGM plates.
Methods:This study presents a four-variable shear deformation theory that
determines the stresses and displacements of a simply supported
functionally graded (S-FGM)plate. The equilibrium equations and
boundary conditions were obtained from the principle of virtual work.
Navier's method was then used to solve the equilibrium equations. The
comparison of the results of this new theory with other solutions using
the CPT and HSDTs was presented in this work.
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Results:The comparison between the presented refined theory and the
HSDT(Reddy's theory) also showed that the deformations and stresses
of these theories are almost identical, while the classical plate theory
underestimates the deflection of these plates.

Conclusion:The calculated different stresses and dimensionless
displacements clearly demonstrated the effectiveness and accuracy of
the presented theory in studying the static behaviors of simply supported
S-FGM plates.

Key words:S-FGM plates, classical plate theory, higher-order theory,
powerlaw, bending.

Introduction

In recent years, Functionally Graded Materials (FGMs) have seen
wide applications in several diverse engineering and industrial fields such
as civil, mechanical, electronic, automotive, aerospace, etc., due to their
attractive and distinctive properties, which are high wear resistance,
significant reduction in residual stresses and high resistance to
temperature gradients (Reddy, 2000; Eltaher et al., 2013; Kar & Panda,
2015; Ahmed et al., 2019; Karami & Karami, 2019; Selmi, 2020;
Abdulrazzaq et al., 2020; Dehshahri et al., 2020).

FGMs are used in these important fields in the form of plates,
characterized by a gradual variation in the volume fraction of their
constituent materials, which leads to a continuous and smooth change in
the properties of these materials from one surface to another (Birman et
al., 2013; Dai et al., 2016). This technology contributes to reducing thermal
stress concentrations and effectively eliminating interface problems for
devices using FGM plates, such as environmental sensors, biomedical
industry, and fast computers (Avcar, 2015; Boukhari et al., 2016).

In order to effectively investigate the behavior of these FGM plates,
many modern scientific studies have been conducted,leading to the
development of different plates theories. Among these theories is the
classical plate theory (CPT) which is considered the simplest theory
because it does not take into account the effects of transverse shear of
these plates. However, it gives very satisfactory analytical results
withregard to isotropic and thin plates (Mechab et al., 2010; Taczata et al.,
2022).

Since these transverse shear effects cause instability and failure of
plates structures, especially composite plates, the First-order Shear
Deformation Theory (FSDT), proposed by Mindlin (1951) and Reissner
(1945), has been relied upon to conduct an effective study of FGM plates
because they take these effects into account. However, it requires a
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correction coefficient often set at 5/6 (Hosseini-Hashemi et al., 2010;
Hosseini-Hashemi et al., 2011). The violation of equilibrium conditions at
both the bottom and top surfaces of the FGM plate is considered the most
significant drawback of the FSDT (Fallah et al., 2013), which necessitated
the development of the Higher-order Shear Deformation Theory (HSDT).
This theory takes into account the transverse shear effect and ensures the
state of zero shear stresses in the top and bottom surfaces of the plate
without the correction factor (Thai & Choi, 2012; Thai & Kim, 2013; Sobhy,
2013; Pandey et al., 2020).

Recently, plates based on Sigmoid Functionally Graded Materials (S-
FGM plates) have been studied in a very precise analytical manner by
(Beldjelili et al., 2016; Duc, 2017; Singh, Harsha, 2019; Singh, Harsha,
2020; Tao & Dai, 2021; Karakoti et al., 2022; Kurpa et al., 2023; Kumar &
Pandey, 2024).

The aim of this work is to study the bending behavior of S-FGM plates
using the present high-order theory with a sinusoidal shear function. The
results obtained have been compared with those calculated using Reddy's
shear function and the classical plate theory (CPT). To carry out an
efficient and precise analytical study, the influence of the powerlaw index
p on the deflection and different non-dimensional stresses of S-FGM
plates made of aluminum/alumina mixture has been investigated for
various values of the dimension ratios (a/h and a/b).

Refined FGM plate theory

Geometric configuration

Figure 1 presents a rectangular S-FGM plate with the dimensions a
and b in the plane, as well as with a uniform thickness h. This S-FGM plate
is made of a material with a property gradient that varies in the thickness
direction, as shown in Figure 1, and is subjected to a transverse load
q(x,y). TheCartesian coordinate system is used such that the x, y plane
coincides with the median plane of the plate.




FGM Plate

hi2

Figure 1 — Geometry of an FGM plate(Chi, Chung, 2006)

The S-FGM plate studied in this work is delimited by the planes at
the coordinates x=0,a and y=0,b. The middle surface, defined by z=0,
serves as the reference surface of this plate, where z represents the
thickness coordinate measured from this undeformed middle surface. For
an S-FGM plate with a ceramic-metal mixture, the functional relationship
between E and z can be given as:

1(h/2-z
:1——
g1(Z) 2( h2

p
gz(z)zl(h/2+zj for—h/2<z<0(1)

V4
j for0<z<h/2

20 h/2
E(z)=g,(z)E, +[1-g,(2)|E, for 0<z<h/2

E(z): gz(z).Ec + [1 -g, (z)}Em for—h/2<z<0

where p is the volume fraction exponent, and the properties of the
ceramic and metal materials are represented by Ec and Em, respectively.

To determine the different effective characteristics of metal-ceramic
plates, the power law hypothesis is used as a simple rule regarding
mixtures. As shown in equation (1), the top surface (z= h/2) of the S-FGM
plate is ceramic, while the bottom surface (z= -h/2) is metal-rich. This
explains that the metal and ceramic volume fractions are high near the
bottom and top surfaces of the plate, respectively.To simplify thestudy of
the S-FGM plate, Poisson's ratio v is assumed to be constant across the
thickness of this plate.
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Figure 2 shows the distribution of the volume fraction across the
thickness of the S-FGM plate for different values of the power law index p.
From this figure, for p=1, the composition of the ceramic and the metal
varies linearly, while the p values of zero and infinity represent an all-
ceramic and all-metal plate, respectively.
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Figure 2— Voolume fraction distribution across the thickness of the S-FGM plate

Refined theory assumptions

The RPT theory is based on the following four important
assumptions:
1. The strains involved are infinitesimal since the displacements are
small compared to the thickness of the plate.
2. The transverse displacement W is decomposed into two
components: bending wy, and shear wg, which depend only on the
x and y coordinates.
W(x,y,z) = wy(x,y) + ws(x, y)(2)
3. The transverse normal stress o, is negligible compared to the other
stresses oy, and oy
4. The U and V displacements in the x and y directions respectively
consist of bending, shear components, and extension.

u=u,+u, +u v=y,+v, +v_(3)
The bending components uy, and vy, are assumed to be similar to the
displacements described by the classical plate theory (CPT). Therefore,

s




the expressions for these components can be formulated as follows:
u, = —z%,vb =—z ow, (4a)
ox

The strain components vy,, and vyy,are derived component
displacement state u(x,y,z) and v(x,y,z) respectively, together with the
transverse displacement w(x,y,z), as shown in equation 5.These strains
vary parabolically across the thickness of the S-FGM plate, while satisfying
the condition of zero shear stress t,, and 1y, at the top and bottom
surfaces of this plate. Therefore, the expressions for ug and vi,can be
formulated as:

U= f(z) %2, v5=(2)

owg
dy

(4.b)

Constitutive equations and kinematics
The displacement field of the S-FGM plate can be found by exploiting
the assumptions of the refined theory and using the following equations:

_ owp (x, ¥) aws(x,y)
u(x,y,z) —auo((x;);) —ZTH_f(Z)T
v0oy ) = w(ny) = 2GR = f T ©

ay
w(x,y,z) = M;{J(x' y) +ws(x,y)
f(z)=z—- (E) * sin(m * z/h)

where f(z) is Touratier’s shear function. The deformations associated
with the displacements in equation 5 are:

gx gx kf k): }/ 7/0
&, = 83 +z kf, + f(2) k; ;{ ’ }:g(z){ yoz};gzZO(G)
0

s 7/ Xz Xz
) 7] ks ky
o*w,
ou, _ o’w, , —
gl Ox k" ox’ k, aﬁzx
where | o | _ v, el o’w, |, sl _9W | and
y [~ o y [~ 0 2 ¥ ayz
0 X kb y kS >
€3 I A U R R O B
o ox OxOy Ox0y
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ow

s

el _ oy L)
7o ow,

ox
92)=1-f(2)
The stress-strain relationships of an S-FGM plate can be expressed

as:
SX

( Ox) [Qn Q2 O 0 0] €

Oy Qiz Q22 O 0 0 Y

Ty p=| 0 0 Qg O 0 < VYxy p(8)

Lrsz lo 0 0 Qu O]

w) Lo o o o0 Qul|"
\YXZJ

where g, , €y, Yxy, Yyz, Yxz @re the strain components, and oy ,0y, Tyy,
Tyz, Txz @re the stress components. In accordance withdifferent properties
of metal and ceramic materials specified in equation (1), the expressions
of the stiffness coefficients Q; can be given as:

E
Qll = sz = 1 (2)2 5 O = VE(Zz) 204, =055 =0 =
-V 1—v

Equilibrium equations

E(2)
2(1+v) )

The principle of virtual displacements can be used to derive the
equilibrium equations, and in the present case, the principle of virtual

hi2

[[lode+08e+5,87,+1.67,+1.07.|d0dz-[ g5 wa=0 (10)
-h/2Q Q

where Q) is the top surface of the S-FGM plate.

By substituting equations (5), (6), and (8) into equation (10) and integrating
it through the plate thickness, equation (11) can be written as:

'[(Nx&sf +N, &, +N, 06, + M5k + M5k + M5k + M5k} + M5k, +M; 5k,

Q

+81.57,.+ 518 7,)dQ = [ g(Jw, + 6w, )dQ =0 (11)
Q

h/2 h/2
(N, NyNyy) = f_ﬁ/z(ax, 0y 7,,)dz; (M2, M), M2)) = f—}(/z(dx' oy 7,,)zdz




h/2
(M3, M5, M5,) = f_h/z(ax, oy 7,,)f(2) dz;

(S5,.85.) = [*u(7,., 7,.)9(2)dz(12)

By substituting equation (8) into equation (12) and then integrating
equation (12) through the thickness of the plate, equation (13) can be
written as follows:

£
BB Bi1 Biz]

11 P12 11 12 83
Bi2By; Bi, Bj, b
DuDy, Dy Df, <kx
Di2Dy; Diz D3| kb
DiiDY, H HE,
D,D3, Hi H3,l

Ny [A11 Arz
Ny A, Ay

A

kez
\ky

N A By B 7/3y

M)I:y =| Bgs  Dgs D(is k:y ; {S;Z} = Ay 0 }{nz} (13)
, . , : s 0 A4
M; Bgé Dg6 H 26 k;y > - s

Xz

h/2
(4,,8,.D;,B;,D;,Hy )= [(.2.22, £(2). 2 (2). ()0, =z (14)

—h/2

h/2

And A} = f_,{/zg(z)2 * Q;;dz
By integrating equation (11) by parts, and setting the coefficients
Suy; 8vy; 6wy, and Swg to zero separately, the resulting equilibrium
equations for this FGM plate are:

ON
ouy: aN"+ = =0
ox oy
ON, ON,
oV, : . —+ 8/ =0
X y
62Mb asz 62Mb (15)
Sw,: = +2 —+——"+¢=0
Ox Ox0Oy oy
ME O*M:, M < oS,
Sw,: 61\{)‘ 24+ 2y+aSXZ+ 2 1g=0
ox Ox0y oy Ox oy
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Analytical solutions for S-FGM plates
Navier presented the external force in the form of a double trigonometric
series in order to solve this problem:

(0, Y) = Ty T Gnsin (= x) sin (52 y) (16)
In the case of application of a distributed sinusoidal load, m and g1 are
the following:

m=n=1 andqy; = qo ;A =" = =(17)

where qO0 is the intensity of the charge in the center of this S-FGM plate.
By satisfying the boundary conditions and from Navier's solution, the

displacements uo, Vo, Wp and ws can be written in the form of double Fourier
series.

u, U,, cos(A x)sin(u y)
Vo | _ ii V., sin(4 x)cos(u y) 18)
Wb m=1 n=l1 Vmen Sin(}‘ x) Sin(fu J/)
W, W, sin(4 x)sin(u y)

where Uy s Vi Wemn » and Wy, ,are considered as arbitrary parameters
to be determined.

After substitution and simplification, the following operator equation is
obtained:

(KA} ={F}(19)

{A}:{U v W, W } ; [K]is the symmetric matrix given by:

mn?" mn®"" bmn®"" smn
dy ap di 4y

[K]= A Ay Ay Ay

T = — —
a13 a23 a33 a34 And {F } - {0707 an' qmn}(zo)

a, a, a, d,
for which

ay = _(A11/12 t Assﬂz)

a,==Au (AIZ t A66)

ay, =+A[B A" + (B, +2B) 1]




a, =A[B A + (B}, +2B}) i’ ]

a,, = —A66ﬂ,2 - Azz,u2

tyy = u|(By, + 2By )4 + By’ ]

a,, = y[(BSlz + 2B )/12 + B‘zzyz] (21)
a,, =—D,A* —=2(D,, +2D )2’ u* + D, u*

a,, =—D;\A* —=2(D;, + 2D )P u* — D3, u’

Ay :_Hlsl/14 —-2(H), +2Hgé)/12:uz _H;2ﬂ4 _A;SJ“Z _Aj4'u2

Numerical results and discussions
The results were obtained for S-FGM plates and compared
withthose determined by the classical plate theory (CPT) and the high-
order shear deformation theory (HSDT) (Reddy, 1984) to validate the
presented theory.

f(2) = z - Zsin (Z)[Touratier 1991](22.a)

f@) =z -z (1-2)[Reddy1984](22.)

To carry out this analytical study on the S-FGM plate by applying the
presented method, aluminum (Al) and alumina (Al2O3) were used as metal
and ceramic, respectively, for this plate. These materials possess the
following properties: aluminum metal (E,, = 70GPa, v = 0.3) and alumina
ceramic (E. = 380GPa,v =0.3). In addition, the following different
dimensionless parameters were used:

— 10A°E, (a b) —  h (a b hj g‘/ ZLU (ﬁ é ﬁj
w= W —,—|> O :_O_X s> < |° - y 4 ’ ’
goa "\ 27272 goa \2 23

- h a h
Ty = h Txy(()’():_ﬁj’ Ty = Tyz anag S Txz = h sz[(),b’()j s
q.a 3 q,a q.a 2
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Table 1 — Dimensionless deflections and stresses for a square S-FGM plate, subjected to
a sinusoidal load (a/h=10), obtained by the presented theory and the HSDT

w G, G, 7,

P

HSDT Present  HSDT Present  HSDT Present  HSDT Present
Ceramic 0.2960 0.2960 1.9943 1.9955 1.3124 1.3121 0.2121 0.2132
1 0.5890 0.5889 3.0850 3.0870 1.4898 1.4894 0.2608 0.2622

2 0.6551 0.6550 3.1915 3.1935 1.5992 1.5988 0.2916  0.2930
3 06912 0.6911 3.2663 3.2682 1.6398 1.6395 0.3117  0.3129
4 0.7120 0.7119 3.3126  3.3145 1.6540 1.6537 0.3249 0.3261
5 0.7248 0.7247 3.3421 3.3440 1.6589 1.6586 0.3336  0.3347
6 0.7332 0.7331 3.3617 3.3636 1.6606 1.6603 0.3394  0.3404
7 0.7390 0.7388 3.3754 3.3773 1.6613 1.6610 0.3432 0.3442
8 0.7431  0.7430 3.3852  3.3871 1.6616  1.6613  0.3457  0.3466
9 0.7462 0.7460 3.3925 3.3944 16618 1.6615 0.3473  0.3483
10 0.7485 0.7483 3.3980 3.3999 1.6619 1.6616 0.3484  0.3493

Metal 1.6071 1.6070 1.9943 1.9955 1.3124 1.3121 0.2121  0.2132

&l

fxz xy
HSDT Present  HSDT Present
Ceramic 0.2386 0.2462 0.7067 0.7065

0.2386 0.2462 0.6111  0.6110

P

-

2 0.2373  0.2447 0.5212  0.5211
3 0.2361 0.2434  0.4902  0.4902
4 0.2354  0.2425 0.4857 0.4856
5 0.2348 0.2418  0.4893  0.4892
6 0.2345 0.2414  0.4943  0.4942
7 0.2342 0.2411  0.4987  0.4986
8 0.2340 0.2408 0.5022  0.5021
9 0.2338  0.2407 0.5050  0.5048
10 0.2337  0.2405 0.5071  0.5070

Metal 0.2386 0.2462 0.7067  0.7065

Table 1 illustrates different dimensionless deflections and stresses
of a square S-FGM plate, subjected to a sinusoidal load with a ratio a’h=10,
for different values of the power law index p, obtained by the present
refined plate theory (RPT) and the HSDT. As shown in this table, and since
both theories take into account the transverse shear effect, the results
obtained by the present theory, both for deflection and stresses, are in
agreement with those obtained by Reddy's high-order shear deformation




theory. In addition, the dimensionless deflection w and the longitudinal
stresses oy,0y, in the plane are directly proportional to the increase in the
power law index p. It should also be noted that the stresses for the ceramic
plate are identical to those for the metal plate, since this S-FGM plate in
both cases is completely homogeneous and these stresses are
independent of the modulus of elasticity.

Table 2 — Dimensionless deflections and transverse shear stresses of the square S-FGM
plate calculated by the present theory, HSDTand CPT

(WE_)/(qoh) 7,(0, b/2)/q,
CPT HSDT Present HSDT Present

0.25 0.3049 0.3715 0.3714 0.1191 0.1228

0.5 03207 0.3874 0.3873 0.1192  0.1230

5 1 0.3514  0.4180 0.4178 0.1190  0.1228
4 0.4288  0.4936 0.4932 0.1175  0.1209

10 0.4518 0.5157 0.5152 0.2387  0.2463

0.25 4.8782 5.1453 5.1450 0.2386  0.2462

0.5 51310 5.3985 5.3981 0.2389  0.2465

10 1 5.6228  5.8895 5.8891 0.2386  0.2462
4 6.8604 7.1200 7.1187 0.2354  0.2425

10 7.2289 7.4849 7.4831 0.2337 0.2405

Table 2 shows a comparative study of the deflections and transverse
shear stresses of a simply supported square S-FGM functionally graded
plate, subjected to a sinusoidal load with two ratios (a’/h=5 and a/h=10) for
five values of the power law exponent p, calculated by the present, HSDT
and CPT theories. According to these results, it can be confirmed that
there is an excellent agreement between the values of deflection and
transverse shear stress obtained by the present theory and HSDTs, for all
values of the power law exponent p and the two ratios a’/h. On the other
hand, the classical platetheory (CPT) underestimates transverse plate
displacement because it does not take into account the impacts of
transverse shear deformation, which is the biggest disadvantage of this
theory.

The analytical values illustrated in Tables 1 and 2 demonstrate the
effectiveness of this present theory in the study of S-FGM plates because
its results are in high agreement with theHSDTand better than the CPT.

a’h p
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Figure 3 —w vs ratios: (a) - a/b, (b) - a/h, of an S-FGM plate

Figures 3-a and 3-b show the evolution of the dimensionless
deflection w as a function of the thickness ratios a/b and a/h of an S-
FGM plate, respectively, for different values of the power law index pusing
the present theory. The present theory shows that the dimensionless
deflection of the S-FGM plate decreases sharply within the ranges of 0 to
1.5 and 2 to 8 for the ratios a/b and a/h, respectively; after that, it becomes
less affected by these ratios.

According to these results, the deflection values of the metal plate
are higher than those of the ceramic plate. They increase with the power
law index p and remain almost constant when going from a moderately
thick to a very thick plate. This indicates that the response of the S-FGM




plate lies between those of isotropic plates, i.e., between the ceramic-rich

plate and the metal-rich plate.

In this section of our analytical study, the distribution of different
shear stresses of the S-FGM plate under a sinusoidal load was

investigated, where the exponent of the volume fraction of this plate is p=2.
05—
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plate

Figures 4-a and 4-b respectively represent the variation of the
transverse tangential stresses T,, and T, across the thickness of an S-
FGM plate for different a/b ratios. These shear stress values are zero at
the two top and bottom edges of the plate and then gradually increase with
decreasing the a/b ratio, reaching the maximum values at Z = 0.154, which
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represents the inhomogeneous case. Moreover, the maximum values of
Ty, stresses are larger compared to those of T, at the ratios a/b=2, 3, and
4.
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Figure 5 — Distribution of normal stresses: (a) - oy, (b) - o,, across the thickness of the S-
FGM plate

Figures 5-a and 5-b show the variation of the normal stresses 6, and
6, according to the thickness of an S-FGM plate for different values of the
ratios a/b and a/h, respectively. As shown in these figures, the normal
stresses are in compressive throughout the S-FGM plate up to Z = 0.154,
then in tensile beyond this value. Furthermore, the maximum compressive
and tensile values of these stresses are produced respectively at points




located on the bottom surface and the top surface of this plate. In addition,
for the normal stresses 6, and when the a/h ratio increases, the tensile
stress at the top surface increases, while the compressive stress at the
bottom surface decreases for this S-FGM plate. On theother hand, and for
normal stresses oy, the tensile and compressive stresses decrease and
increase respectively as a function of the increase in the ratio a/b, as
shown in Figures 5-a and 5-b.

According to the results of the variation of the transverse tangential
stress T,y across the thickness of the S-FGM plate for the three values of
a/b ratio, presented in Figure 6, the tensile and compressive stresses
occur on the bottom and top surfaces of this plate, respectively, and this is
inconsistent with what was found for the normal stresses oy and Gy.
Furthermore, the zero value of this transverse tangential stress
corresponds to z = 0.154.
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Figure 6 — Distribution of the transverse tangential stress 7., across the thickness of the
S-FGM plate

Figure 7 shows the effect of the moduli ratios Em/Ec on the
dimensionless deflection w of S-FGM plates with various ceramic-metal
mixtures p studied at a thickness of a’h = 10. As shown in these results,
the dimensionless deflection is strongly affected by the moduli ratios, as it
decreases significantly with these ratios up to the value Em/Ec = 0.25, after
which this effect diminishes. In addition, the dimensionless deflection
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increases with the increase in the percentage of metal (aluminum) in the
plate made of a mixture of metal and ceramic.

2,1 —=—p=1
‘ o p=

\ —A— p=3

184\ —v—p=5

1\ M —<—p=10

Figure 7 — w vs E,,/E_ ratio of the S-FGM plate
Conclusion

In this work, a refined two-variable theory was presented for the
bending analysis of S-FGMs plates with ceramic-metal mixture and under
sinusoidal load distribution. Although no shear correction factors were
used, this theory satisfied the conditions of zero shear stresses on the
plate surfaces and gave a parabolic distribution of transverse shear
stresses. The calculated different stresses and dimensionless
displacements clearly demonstrated the effectiveness and accuracy of the
present theory to study the static behaviors of simply supported S-FGM
plates.The comparison between the present refined theory and the HSDT
(Reddy's theory) also showed that the deformations and stresses of these
theories are almost identical, while the classical plate theory
underestimates the deflection of these plates. It was observed from the
results obtained that there is an excellent agreement between the
deflections of ceramic plates and those rich in metals, while the deflection
value is directly proportional to the power law index p, which proves the
importance of gradients in material properties in determining the response
of S-FGM plates.
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Teopuja cmuuajHe gedhopmMaumje BuLer pefa ca YeTupm HemnosHaTte 3a
aHanuay caeujaka S-FGM nnoua

®amuma 3oxpa Llnaap, Xabub Xebanu, ayTop 3a npenucky
YHusepauteT ,Myctacga Ctambonun”, Oncek 3a rpafesuHapcTeo, Mackapa,
HapogHa [lemokpaTtcka Penybnvka Amxup

OBNACT:rpaheBnHapcTBO
KATEFOPWUJA (TWIM) YNAHKA:opurHanHm Hay4Hu pag

Caxemak:

Yeod/yurb: [lnodye 00 cuaMOUOHO (OYHKUUOHANHO epadujeHmHo
pacnopeheHux Mmamepujana (S-FGM) ucnumaHe cy Ha casujame
nomohy meopuje cmuuyajHe Oehopmayuje esuwez peda ca dYemupu
MPOMeHsbUEE.

lMpedcmasrbeHa meopuja jeOHOCMasHO cMamyje 6poj HernosHamux
¢yHKUUja ca nem Ha Yyemupu y 0OHOCY Ha Opyae meopuje Koje ce base
cmuyajHom deghopmauujom. Takohe, He 3axmesa hakmope Kopekyuje
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cMmuyara u 3adososbasa ycrioe 0a He rocmoje cMuyajHu HaroHU Ha
20pH0j U O0H-0j noepwuHU rifiode, bydyhu da cmuuyar-e eapupa y
o0bnuky napabosne Kpo3 0ebrbuHy node. JeOHa4uHe pasHoOmexe 0ge
meopuje uzeedeHe cy U3 nNpuHyuna supmyesHoz pada u peuwasajy ce
rnomohy Hasujeoeoe pewera. Ha ocHogy 3akoHa CHaze, Mamepujanu
oge S-FGM nnode pacnopeheHu cy no 3anpeMuHckum yodenuma
KOHCmumyeHama, a Uxoea ceojcmea ce MoCmerneHo Merajy Mo
OybuHu. Osa aHanumu4yka cmyduja dana je eeoma 3adoeosbasajyhe
pesynmame, a nopefjere HEeHUX HYMEPUYKUX pe3dynimama U OHUX
0obujeHux nomohy knacuyHe meopuje nno4a (CPT) u meopuja
cmuyajHe Odeghopmauyuje euwez peda (HSDTs) ykaszano je Ha
jedHocmasHocm, madyHocm U oy30aHocm 0ee meopuje y aHanu3u
noHawarba 0ebenux S-FGM nnoya npu cmamuy4ykoMm casujarby.
Memode: lNpedcmasrbeHa je meopuja cMuyajHe deghopmaliuje ca Hemupu
rpoMeHsbuge Kojom ce o0pelyjy HaroHu u romeparba y jedHOCmaeHo
OC/IOHEHOj lo4u 00 (hYyHKUUOHANHO epadujeHmHO pacriopefjeHux
mamepujana (S-FGM). JeOHa4duHe pasHomexe U epaHu4yHUX ycrioea
dobujeHe cy u3 npuHyuna supmyesnHoa pada. Hasujeoe memod je 3amum
npuMmerbeH y pewasary jeOHayuHa pasHomexe. Pe3ynmamu oge Hose
meopuje nopefjeHu cy ca peweruma dpyeux meopuja (CPT, HSDT).

Pesynmamu: Nopehere ose npepaheHe meopuje u Pedujese meopuje
(HSDT) makohe je nokasarno da cy deghopmauiuje U HaroHU 08ux meopuja
20moeo udeHmu4HU, OOK KJlacu4yHa meopuja rio4a nomuemyje
Oecbriekcujy ogaKkguX rsoya.

Sakrbyyak: W3padyHamu pasznudumu  HaroHu u 6e30uMeH3UOHasHa
rnomMepar-a jacHO roka3syjy egbukacHocm u mayvyHocm rpedcmaesrbeHe
meopuje pu fpoy4asarsy CMamu4YKux rOHawaHa jeGHOCmasHO
ocronseHux S-FGM ninoya.

KmbyyHe peuu: S-FGM nnodve, knacu4yHa meopuja rroda, meopuja
guwez peda, 3aKOH cCHaze, casujar-e
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