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Abstract: 
In this paper, the analysis of bending of sigmoid functionally graded 
materials (S-FGM) plates is presented using a four-variable high-order 
shear deformation theory.This theory reduces the number of unknown 
functions simply from five to four compared to other shear deformation 
theories; it does not require shear correction factors, and it satisfies the 
conditions of zero shear stresses for the top and bottom surface of the plate 
since the variation of shear stresses is parabolic through the thickness. The 
equilibrium equations of this theory are derived from the principle of virtual 
work, and the Navier solution is used to solve these equations. For this S-
FGM plate, according to the power law, the materials are distributed in 
terms of volume fractions of the constituents, and their properties are 
gradually varied in the thickness direction. This analytical study gave very 
satisfactory results, and the comparison between the numerical results 
obtained from the presented theory and those obtained from the classical 
plate theory (CPT) and high-order shear deformation theories (HSDTs) 
demonstrated the simplicity, accuracy, and reliability of this presented 
theory in analyzing the static bending behavior of thick S-FGM plates. 
Methods:This study presents a four-variable shear deformation theory that 
determines the stresses and displacements of a simply supported 
functionally graded (S-FGM)plate. The equilibrium equations and 
boundary conditions were obtained from the principle of virtual work. 
Navier's method was then used to solve the equilibrium equations. The 
comparison of the results of this new theory with other solutions using 
the CPT and HSDTs was presented in this work.  
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6 Results:The comparison between the presented refined theory and the 
HSDT(Reddy's theory) also showed that the deformations and stresses 
of these theories are almost identical, while the classical plate theory 
underestimates the deflection of these plates. 
Conclusion:The calculated different stresses and dimensionless 
displacements clearly demonstrated the effectiveness and accuracy of 
the presented theory in studying the static behaviors of simply supported 
S-FGM plates. 
Key words:S-FGM plates, classical plate theory, higher-order theory, 
powerlaw, bending. 

Introduction  
In recent years, Functionally Graded Materials (FGMs) have seen 

wide applications in several diverse engineering and industrial fields such 
as civil, mechanical, electronic, automotive, aerospace, etc., due to their 
attractive and distinctive properties, which are high wear resistance, 
significant reduction in residual stresses and high resistance to 
temperature gradients (Reddy, 2000; Eltaher et al., 2013; Kar & Panda, 
2015; Ahmed et al., 2019; Karami & Karami, 2019; Selmi, 2020; 
Abdulrazzaq et al., 2020; Dehshahri et al., 2020). 

FGMs are used in these important fields in the form of plates, 
characterized by a gradual variation in the volume fraction of their 
constituent materials, which leads to a continuous and smooth change in 
the properties of these materials from one surface to another (Birman et 
al., 2013; Dai et al., 2016). This technology contributes to reducing thermal 
stress concentrations and effectively eliminating interface problems for 
devices using FGM plates, such as environmental sensors, biomedical 
industry, and fast computers (Avcar, 2015; Boukhari et al., 2016). 

In order to effectively investigate the behavior of these FGM plates, 
many modern scientific studies have been conducted,leading to the 
development of different plates theories. Among these theories is the 
classical plate theory (CPT) which is considered the simplest theory 
because it does not take into account the effects of transverse shear of 
these plates. However, it gives very satisfactory analytical results 
withregard to isotropic and thin plates (Mechab et al., 2010; Taczała et al., 
2022). 

Since these transverse shear effects cause instability and failure of 
plates structures, especially composite plates, the First-order Shear 
Deformation Theory (FSDT), proposed by Mindlin (1951) and Reissner 
(1945), has been relied upon to conduct an effective study of FGM plates 
because they take these effects into account. However, it requires a 



 

1378 

VO
JN

O
TE

H
N

IČ
KI

 G
LA

SN
IK

 / 
M

IL
IT

AR
Y 

TE
C

H
N

IC
AL

 C
O

U
R

IE
R

, 2
02

5,
 V

ol
. 7

3,
 Is

su
e 

4 correction coefficient often set at 5/6 (Hosseini-Hashemi et al., 2010; 
Hosseini-Hashemi et al., 2011). The violation of equilibrium conditions at 
both the bottom and top surfaces of the FGM plate is considered the most 
significant drawback of the FSDT (Fallah et al., 2013), which necessitated 
the development of the Higher-order Shear Deformation Theory (HSDT). 
This theory takes into account the transverse shear effect and ensures the 
state of zero shear stresses in the top and bottom surfaces of the plate 
without the correction factor (Thai & Choi, 2012; Thai & Kim, 2013; Sobhy, 
2013; Pandey et al., 2020). 

Recently, plates based on Sigmoid Functionally Graded Materials (S-
FGM plates) have been studied in a very precise analytical manner by 
(Beldjelili et al., 2016; Duc, 2017; Singh, Harsha, 2019; Singh, Harsha, 
2020; Tao & Dai, 2021; Karakoti et al., 2022; Kurpa et al., 2023; Kumar & 
Pandey, 2024). 

The aim of this work is to study the bending behavior of S-FGM plates 
using the present high-order theory with a sinusoidal shear function. The 
results obtained have been compared with those calculated using Reddy's 
shear function and the classical plate theory (CPT). To carry out an 
efficient and precise analytical study, the influence of the powerlaw index 
p on the deflection and different non-dimensional stresses of S-FGM 
plates made of aluminum/alumina mixture has been investigated for 
various values of the dimension ratios (a/h and a/b).  

Refined FGM plate theory 

Geometric configuration 
Figure 1 presents a rectangular S-FGM plate with the dimensions a 

and b in the plane, as well as with a uniform thickness h. This S-FGM plate 
is made of a material with a property gradient that varies in the thickness 
direction, as shown in Figure 1, and is subjected to a transverse load 
q(x,y). TheCartesian coordinate system is used such that the x, y plane 
coincides with the median plane of the plate. 



 

1379 

D
jid

ar
, F

 e
t a

l, 
A 

fo
ur

-u
nk

no
w

nh
ig

he
r-o

rd
er

 s
he

ar
 d

ef
or

m
at

io
n 

th
eo

ry
 fo

r t
he

an
al

ys
is

 o
f b

en
di

ng
 in

 s
ig

m
oi

d-
FG

M
 p

la
te

s,
 

  p
p.

13
76

-1
39

6 

 
Figure 1 – Geometry of an FGM plate(Chi, Chung, 2006) 

 
The S-FGM plate studied in this work is delimited by the planes at 

the coordinates x=0,a and y=0,b. The middle surface, defined by z=0, 
serves as the reference surface of this plate, where z represents the 
thickness coordinate measured from this undeformed middle surface. For 
an S-FGM plate with a ceramic-metal mixture, the functional relationship 
between E and z can be given as: 

( )
p

h
zhzg 





 −

−=
2/

2/
2
111 for 2/0 hz ≤≤  

( )
p

h
zhzg 





 +

=
2/

2/
2
1

2 for 02/ ≤≤− zh (1) 

( ) ( ) ( )[ ] mc EzgEzgzE .1. 11 −+= for 2/0 hz ≤≤  
 
( ) ( ) ( )[ ] mc EzgEzgzE .1. 22 −+= for 02/ ≤≤− zh  

where p is the volume fraction exponent, and the properties of the 
ceramic and metal materials are represented by Ec and Em, respectively. 

To determine the different effective characteristics of metal-ceramic 
plates, the power law hypothesis is used as a simple rule regarding 
mixtures. As shown in equation (1), the top surface (z= h/2) of the S-FGM 
plate is ceramic, while the bottom surface (z= -h/2) is metal-rich. This 
explains that the metal and ceramic volume fractions are high near the 
bottom and top surfaces of the plate, respectively.To simplify thestudy of 
the S-FGM plate, Poisson's ratio ν is assumed to be constant across the 
thickness of this plate. 
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4 Figure 2 shows the distribution of the volume fraction across the 
thickness of the S-FGM plate for different values of the power law index p. 
From this figure, for p=1, the composition of the ceramic and the metal 
varies linearly, while the p values of zero and infinity represent an all-
ceramic and all-metal plate, respectively. 
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Figure 2 – Volume fraction distribution across the thickness of the S-FGM plate 

Refined theory assumptions 
The RPT theory is based on the following four important 

assumptions: 
1. The strains involved are infinitesimal since the displacements are 

small compared to the thickness of the plate. 
2. The transverse displacement W is decomposed into two 

components: bending wb and shear  ws, which depend only on the 
x and y coordinates. 

𝑊𝑊(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑤𝑤𝑏𝑏(𝑥𝑥,𝑦𝑦) + 𝑤𝑤𝑠𝑠(𝑥𝑥,𝑦𝑦)(2) 
3. The transverse normal stress σz is negligible compared to the other 

stresses σx and σy.     
4. The U and V displacements in the x and y directions respectively 

consist of bending, shear components, and extension.  

sb uuuu ++= 0 ,       sb vvvv ++= 0 (3) 
The bending components ub and vb are assumed to be similar to the 

displacements described by the classical plate theory (CPT). Therefore, 
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6 the expressions for these components can be formulated as follows:

x
wzu b

b ∂
∂

−= ,       (4a) 

The strain components γxz and γyzare derived component 
displacement state u(x,y,z) and v(x,y,z) respectively, together with the 
transverse displacement w(x,y,z), as shown in equation 5.These strains 
vary parabolically across the thickness of the S-FGM plate, while satisfying 
the condition of zero shear stress τxz and τyz at the top and bottom 
surfaces of this plate. Therefore, the expressions for us and vscan be 
formulated as:    
us=f(z) ∂ws

∂x
,vs=f(z) ∂ws

∂y
(4.b) 

Constitutive equations and kinematics 
The displacement field of the S-FGM plate can be found by exploiting 

the assumptions of the refined theory and using the following equations: 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥,𝑦𝑦) − 𝑧𝑧
𝜕𝜕𝑤𝑤𝑏𝑏(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
− 𝑓𝑓(𝑧𝑧)

𝜕𝜕𝑤𝑤𝑠𝑠(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 

𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝑤𝑤𝑏𝑏(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

− 𝑓𝑓(𝑧𝑧) 𝜕𝜕𝑤𝑤𝑠𝑠(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

                              (5) 
𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑤𝑤𝑏𝑏(𝑥𝑥,𝑦𝑦) + 𝑤𝑤𝑠𝑠(𝑥𝑥,𝑦𝑦) 

𝑓𝑓(𝑧𝑧) = 𝑧𝑧 − �
ℎ
𝜋𝜋
� ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋 ∗ 𝑧𝑧/ℎ) 

where f(z) is Touratier’s shear function. The deformations associated 
with the displacements in equation 5 are: 
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 𝑔𝑔(𝑧𝑧) = 1 − 𝑓𝑓 ′(𝑧𝑧) 
 
The stress-strain relationships of an S-FGM plate can be expressed 

as: 

⎩
⎪
⎨

⎪
⎧
σx
σy
τxy
τyz
τxz⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55⎦

⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧
εx
εy
γxy
γyz
γxz⎭

⎪⎪
⎬

⎪⎪
⎫

(8) 

where εx , εy, γxy, γyz, γxz are the strain components, and σx ,σy, τxy, 
τyz, τxz are the stress components. In accordance withdifferent properties 
of metal and ceramic materials specified in equation (1), the expressions 
of the stiffness coefficients Qij can be given as: 

22211 1
)(
ν−

==
zEQQ ;   

212 1
)( 

ν−
ν

=
zEQ ;

( )ν+===
12

)(
665544

zEQQQ (9) 

Equilibrium equations 

The principle of virtual displacements can be used to derive the 
equilibrium equations, and in the present case, the principle of virtual  

where Ω is the top surface of the S-FGM plate. 
By substituting equations (5), (6), and (8) into equation (10) and integrating 
it through the plate thickness, equation (11) can be written as: 
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6 �𝑀𝑀𝑥𝑥
𝑠𝑠,𝑀𝑀𝑦𝑦

𝑠𝑠  ,𝑀𝑀𝑥𝑥𝑥𝑥
𝑠𝑠 � = ∫ (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 )𝑓𝑓(𝑧𝑧)ℎ/2

−ℎ/2 𝑑𝑑𝑑𝑑; 

�𝑆𝑆𝑥𝑥𝑥𝑥𝑠𝑠 , 𝑆𝑆𝑦𝑦𝑦𝑦𝑠𝑠 � = ∫ ( ,
ℎ
2
−ℎ2

yzτ )𝑔𝑔(𝑧𝑧)𝑑𝑑𝑑𝑑(12) 

By substituting equation (8) into equation (12) and then integrating 
equation (12) through the thickness of the plate, equation (13) can be 
written as follows: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
𝑀𝑀𝑥𝑥
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𝑀𝑀𝑦𝑦
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𝐵𝐵12 𝐵𝐵11𝑠𝑠 𝐵𝐵12𝑠𝑠

𝐵𝐵22 𝐵𝐵12𝑠𝑠 𝐵𝐵22𝑠𝑠

𝐷𝐷12 𝐷𝐷11𝑠𝑠 𝐷𝐷12𝑠𝑠
𝐵𝐵12 𝐵𝐵22 𝐷𝐷12 
𝐵𝐵11𝑠𝑠 𝐵𝐵12𝑠𝑠 𝐷𝐷11𝑠𝑠
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And    𝐴𝐴𝑖𝑖𝑖𝑖𝑠𝑠 = ∫ 𝑔𝑔(𝑧𝑧)2ℎ/2
−ℎ/2 ∗ 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 

By integrating equation (11) by parts, and setting the coefficients 
δu0; δv0; δwb and δws to zero separately, the resulting equilibrium 
equations for this FGM plate are: 
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4 Analytical solutions for S-FGM plates 
Navier presented the external force in the form of a double trigonometric 
series in order to solve this problem:    
𝑞𝑞(𝑥𝑥,𝑦𝑦) = ∑ ∑ 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑚𝑚𝑚𝑚
𝑎𝑎
𝑥𝑥� 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑛𝑛𝑛𝑛

𝑏𝑏
𝑦𝑦�∞

𝑛𝑛=1
∞
𝑚𝑚=1                                         (16) 

In the case of application of a distributed sinusoidal load, m and q11 are 
the following: 
m=n=1  and𝑞𝑞11 = 𝑞𝑞0 ;𝜆𝜆 = 𝑚𝑚𝑚𝑚

𝑎𝑎
 ;𝜇𝜇 = 𝑛𝑛𝑛𝑛

𝑏𝑏
(17) 

where q0 is the intensity of the charge in the center of this S-FGM plate.     
By satisfying the boundary conditions and from Navier's solution, the 
displacements u0, v0, wb and ws can be written in the form of double Fourier 
series. 
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µλ
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µλ

(18) 

where 𝑈𝑈𝑚𝑚𝑚𝑚 , 𝑉𝑉𝑚𝑚𝑚𝑚,𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏 , and 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠are considered as arbitrary parameters 
to be determined. 
After substitution and simplification, the following operator equation is 
obtained: 

[ ]{ } { }FK T =∆ (19) 

{ } { }smnbmnmnmn WWVU ,,,=∆ ; [ ]K is the symmetric matrix given by: 
 
 
 
And     {𝐹𝐹𝑇𝑇} = {0,0,−𝑞𝑞𝑚𝑚𝑚𝑚,−𝑞𝑞𝑚𝑚𝑚𝑚}(20) 
 
 
 

for which 
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(21) 

 
Numerical results and discussions 

The results were obtained for S-FGM plates and compared 
withthose determined by the classical plate theory (CPT) and the high-
order shear deformation theory (HSDT) (Reddy, 1984) to validate the 
presented theory. 
𝑓𝑓(𝑧𝑧) = 𝑧𝑧 − ℎ

𝜋𝜋
sin �𝑧𝑧

ℎ
�[Touratier 1991](22.a) 

𝑓𝑓(𝑧𝑧) = 𝑧𝑧 − 𝑧𝑧 �1 − 4𝑧𝑧2

3ℎ2
�[Reddy1984](22.b) 

To carry out this analytical study on the S-FGM plate by applying the 
presented method, aluminum (Al) and alumina (Al2O3) were used as metal 
and ceramic, respectively, for this plate. These materials possess the 
following properties: aluminum metal (Em = 70GPa, ν = 0.3) and alumina 
ceramic (Ec = 380GPa, ν = 0.3). In addition, the following different 
dimensionless parameters were used: 
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4 Table 1 – Dimensionless deflections and stresses for a square S-FGM plate, subjected to 
a sinusoidal load (a/h=10), obtained by the presented theory and the HSDT  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1 illustrates different dimensionless deflections and stresses 

of a square S-FGM plate, subjected to a sinusoidal load with a ratio a/h=10, 
for different values of the power law index p, obtained by the present 
refined plate theory (RPT) and the HSDT. As shown in this table, and since 
both theories take into account the transverse shear effect, the results 
obtained by the present theory, both for deflection and stresses, are in 
agreement with those obtained by Reddy's high-order shear deformation 

 
P 

𝝉𝝉�𝒙𝒙𝒙𝒙 𝝉𝝉�𝒙𝒙𝒙𝒙 
HSDT Present HSDT Present 

Ceramic 0.2386 0.2462 0.7067 0.7065 
1 0.2386 0.2462 0.6111 0.6110 
2 0.2373 0.2447 0.5212 0.5211 
3 0.2361 0.2434 0.4902 0.4902 
4 0.2354 0.2425 0.4857 0.4856 
5 0.2348 0.2418 0.4893 0.4892 
6 0.2345 0.2414 0.4943 0.4942 
7 0.2342 0.2411 0.4987 0.4986 
8 0.2340 0.2408 0.5022 0.5021 
9 0.2338 0.2407 0.5050 0.5048 

10 0.2337 0.2405 0.5071 0.5070 
Metal 0.2386 0.2462 0.7067 0.7065 

 
P 

𝒘𝒘�  𝝈𝝈�𝒙𝒙 𝝈𝝈�𝒚𝒚 𝝉𝝉�𝒚𝒚𝒚𝒚 

HSDT Present HSDT Present HSDT Present HSDT Present 
Ceramic 0.2960 0.2960 1.9943 1.9955 1.3124 1.3121 0.2121 0.2132 

1 0.5890 0.5889 3.0850 3.0870 1.4898 1.4894 0.2608 0.2622 
2 0.6551 0.6550 3.1915 3.1935 1.5992 1.5988 0.2916 0.2930 
3 0.6912 0.6911 3.2663 3.2682 1.6398 1.6395 0.3117 0.3129 
4 0.7120 0.7119 3.3126 3.3145 1.6540 1.6537 0.3249 0.3261 
5 0.7248 0.7247 3.3421 3.3440 1.6589 1.6586 0.3336 0.3347 
6 0.7332 0.7331 3.3617 3.3636 1.6606 1.6603 0.3394 0.3404 
7 0.7390 0.7388 3.3754 3.3773 1.6613 1.6610 0.3432 0.3442 
8 0.7431 0.7430 3.3852 3.3871 1.6616 1.6613 0.3457 0.3466 
9 0.7462 0.7460 3.3925 3.3944 1.6618 1.6615 0.3473 0.3483 

10 0.7485 0.7483 3.3980 3.3999 1.6619 1.6616 0.3484 0.3493 
Metal 1.6071 1.6070 1.9943 1.9955 1.3124 1.3121 0.2121 0.2132 
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6 theory. In addition, the dimensionless deflection w and the longitudinal 
stresses σx,σy in the plane are directly proportional to the increase in the 
power law index p. It should also be noted that the stresses for the ceramic 
plate are identical to those for the metal plate, since this S-FGM plate in 
both cases is completely homogeneous and these stresses are 
independent of the modulus of elasticity. 

 
Table 2 – Dimensionless deflections and transverse shear stresses of the square S-FGM 

plate calculated by the present theory, HSDTand CPT 
 

Table 2 shows a comparative study of the deflections and transverse 
shear stresses of a simply supported square S-FGM functionally graded 
plate,  subjected to a sinusoidal load with two ratios (a/h=5 and a/h=10) for 
five values of the power law exponent p, calculated by the present, HSDT 
and CPT theories. According to these results, it can be confirmed that 
there is an excellent agreement between the values of deflection and 
transverse shear stress obtained by the present theory and HSDTs, for all 
values of the power law exponent p and the two ratios a/h. On the other 
hand, the classical platetheory (CPT) underestimates transverse plate 
displacement because it does not take into account the impacts of 
transverse shear deformation, which is the biggest disadvantage of this 
theory. 

The analytical values  illustrated in Tables 1 and 2 demonstrate the 
effectiveness of this present theory in the study of S-FGM plates because 
its results are in high agreement with theHSDTand better than the CPT. 

 

a/h p (𝑤𝑤𝐸𝐸𝑐𝑐)/(𝑞𝑞0ℎ)    𝜏𝜏𝑥𝑥𝑥𝑥(0, b/2)/𝑞𝑞0 
CPT HSDT Present HSDT Present 

 0.25 0.3049 0.3715 0.3714  0.1191 0.1228 
 0.5 0.3207 0.3874 0.3873  0.1192 0.1230 

5 1 0.3514 0.4180 0.4178  0.1190 0.1228 
 4 0.4288 0.4936 0.4932  0.1175 0.1209 
 10 0.4518 0.5157 0.5152  0.2387 0.2463 
 0.25 4.8782 5.1453 5.1450  0.2386 0.2462 

 0.5 5.1310 5.3985 5.3981  0.2389 0.2465 
10 1 5.6228 5.8895 5.8891  0.2386 0.2462 

 4 6.8604 7.1200 7.1187  0.2354 0.2425 
  10 7.2289 7.4849 7.4831   0.2337 0.2405 
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Figure 3 – 𝑤𝑤�  vs ratios: (a) - a/b, (b) - a/h, of an S-FGM plate 

 
Figures 3-a and 3-b show the evolution of the dimensionless 

deflection w as a function of the thickness ratios a/b and a/h of an          S-
FGM plate, respectively, for different values of the power law index pusing 
the present theory. The present theory shows that the dimensionless 
deflection of the S-FGM plate decreases sharply within the ranges of 0 to 
1.5 and 2 to 8 for the ratios a/b and a/h, respectively; after that, it becomes 
less affected by these ratios. 

According to these results, the deflection values of the metal plate 
are higher than those of the ceramic plate. They increase with the power 
law index p and remain almost constant when going from a moderately 
thick to a very thick plate. This indicates that the response of the S-FGM 
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6 plate lies between those of isotropic plates, i.e., between the ceramic-rich 
plate and the metal-rich plate. 

In this section of our analytical study, the distribution of different 
shear stresses of the S-FGM plate under a sinusoidal load was 
investigated, where the exponent of the volume fraction of this plate is p=2. 

 

 
Figure 4 – Distribution of stresses: (a) - 𝝉𝝉𝒙𝒙𝒙𝒙, (b) - 𝝉𝝉𝒚𝒚𝒚𝒚, across the thickness of the S-FGM 

plate 
Figures 4-a and 4-b respectively represent the variation of the 

transverse tangential stresses τxz   and τyz across the thickness of an S-
FGM plate for different a/b ratios. These shear stress values are zero at 
the two top and bottom edges of the plate and then gradually increase with 
decreasing the a/b ratio, reaching the maximum values at z� = 0.154, which 
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4 represents the inhomogeneous case. Moreover, the maximum values of 
τyz stresses are larger compared to those of τxz at the ratios a/b=2, 3, and 
4. 
 

 
Figure 5 – Distribution of normal stresses: (a) - 𝜎𝜎𝑥𝑥, (b) - 𝜎𝜎𝑦𝑦, across the thickness of the S-

FGM plate 
Figures 5-a and 5-b show the variation of the normal stresses σx and 

σy according to the thickness of an S-FGM plate for different values of the 
ratios a/b and a/h, respectively. As shown in these figures, the normal 
stresses are in compressive throughout the S-FGM plate up to z� = 0.154, 
then in tensile beyond this value. Furthermore, the maximum compressive 
and tensile values of these stresses are produced respectively at points 
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6 located on the bottom surface and the top surface of this plate. In addition, 
for the normal stresses σx, and when the a/h ratio increases, the tensile 
stress at the top surface increases, while the compressive stress at the 
bottom surface decreases for this S-FGM plate. On theother hand, and for 
normal stresses σy, the tensile and compressive stresses decrease and 
increase respectively as a function of the increase in the ratio a/b, as 
shown in Figures 5-a and 5-b. 

According to the results of the variation of the transverse tangential 
stress τxy across the thickness of the S-FGM plate for the three values of 
a/b ratio, presented in Figure 6, the tensile and compressive stresses 
occur on the bottom and top surfaces of this plate, respectively, and this is 
inconsistent with what was found for the normal stresses σx and σy. 
Furthermore, the zero value of this transverse tangential stress 
corresponds to z� = 0.154. 

 

 
Figure 6 – Distribution of the transverse tangential stress 𝜏𝜏𝑥𝑥𝑥𝑥  across the thickness of the 

S-FGM plate 
 

Figure 7 shows the effect of the moduli ratios Em/Ec on the 
dimensionless deflection w�  of S-FGM plates with various ceramic-metal 
mixtures p studied at a thickness of a/h = 10. As shown in these results, 
the dimensionless deflection is strongly affected by the moduli ratios, as it 
decreases significantly with these ratios up to the value Em/Ec = 0.25, after 
which this effect diminishes. In addition, the dimensionless deflection 
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4 increases with the increase in the percentage of metal (aluminum) in the 
plate made of a mixture of metal and ceramic. 

 

 
Figure 7 – 𝑤𝑤�  vs 𝐸𝐸𝑚𝑚 𝐸𝐸𝑐𝑐⁄  ratio of the S-FGM plate 

Conclusion 
In this work, a refined two-variable theory was presented for the 

bending analysis of S-FGMs plates with ceramic-metal mixture and under 
sinusoidal load distribution. Although no shear correction factors were 
used, this theory satisfied the conditions of zero shear stresses on the 
plate surfaces and gave a parabolic distribution of transverse shear 
stresses. The calculated different stresses and dimensionless 
displacements clearly demonstrated the effectiveness and accuracy of the 
present theory to study the static behaviors of simply supported S-FGM 
plates.The comparison between the present refined theory and the HSDT 
(Reddy's theory) also showed that the deformations and stresses of these 
theories are almost identical, while the classical plate theory 
underestimates the deflection of these plates. It was observed from the 
results obtained that there is an excellent agreement between the 
deflections of ceramic plates and those rich in metals, while the deflection 
value is directly proportional to the power law index p, which proves the 
importance of gradients in material properties in determining the response 
of S-FGM plates. 
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Теорија смицајне деформације вишег реда са четири непознате за 
анализу савијања S-FGM плоча 
Фатима Зохра Џидар, Хабиб Хебали, аутор за преписку 
Универзитет „Мустафа Стамболи”, Одсек за грађевинарство, Маскара, 
Народна Демократска Република Алжир 
 
ОБЛАСТ:грађевинарство 
КАТЕГОРИЈА (ТИП) ЧЛАНКА:оригинални научни рад 

Сажетак: 
Увод/циљ: Плоче од сигмоидно функционално градијентно 
распоређених материјала (S-FGM) испитане су на савијање 
помоћу теорије смицајне деформације вишег реда са четири 
променљиве. 
Представљена теорија једноставно смањује број непознатих 
функција са пет на четири у односу на друге теорије које се баве 
смицајном деформацијом. Такође, не захтева факторе корекције 

https://doi.org/10.1016/j.compstruct.2012.11.018
https://doi.org/10.1016/j.compositesb.2011.11.062
https://doi.org/10.1016/j.compstruct.2012.11.030
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4 смицања и задовољава услов да не постоје смицајни напони на 
горњој и доњој површини плоче, будући да смицање варира у 
облику параболе кроз дебљину плоче. Једначине равнотеже ове 
теорије изведене су из принципа виртуелног рада и решавају се 
помоћу Навијеовог решења. На основу закона снаге, материјали 
ове S-FGM плоче распоређени су по запреминским уделима 
конституената, а њихова својства се постепено мењају по 
дубини. Ова аналитичка студија дала је веома задовољавајуће 
резултате, а поређење њених нумеричких резултата и оних 
добијених помоћу класичне теорије плоча (CPT) и теорија 
смицајне деформације вишег реда (HSDTs) указало је на 
једноставност, тачност и поузданост ове теорије у анализи 
понашања дебелих S-FGM плоча при статичком савијању. 
Методе: Представљена је теорија смицајне деформације са четири 
променљиве којом се одређују напони и померања у једноставно 
ослоњеној плочи од функционално градијентно распоређених 
материјала (S-FGM). Једначине равнотеже и граничних услова 
добијене су из принципа виртуелног рада. Навијеов метод је затим 
примењен у решавању једначина равнотеже. Резултати ове нове 
теорије поређени су са решењима других теорија (CPT, HSDT). 
Резултати: Поређење ове прерађене теорије и Редијеве теорије 
(HSDT) такође је показало да су деформације и напони ових теорија 
готово идентични, док класична теорија плоча потцењује 
дефлексију оваквих плоча. 
Закључак: Израчунати различити напони и бездимензионална 
померања јасно показују ефикасност и тачност представљене 
теорије при проучавању статичких понашања једноставно 
ослоњених S-FGM плоча. 
Кључне речи: S-FGM плоче, класична теорија плоча, теорија 
вишег реда, закон снаге, савијање 
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