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Abstract:

Introduction/Purpose: This study introduced the concept of a prime ideal-
based unit graph associated with a commutative ring R. In this graph, the
vertices consisted of units of R that were not contained in a chosen prime
ideal 1, and two such vertices were considered adjacent if their difference
belonged to 1. The aim was fo investigate the structural, algebraic, and
topological properties of this graph and examine the algebraic implications
of various graph-theoretic invariants.

Methods: The construction of ideal-based unit graphs was carried out
using the ring Z,, where units excluded from the chosen prime ideal
formed the vertex set. The adjacency between two vertices was
determined by whether their difference lay in the ideal. The analysis
involved computing several topological indices including the Zagreb
indices, Wiener index, Arithmetic-Geometric index, Harmonic index,
Estrada index, and graph energy. Adjacency matrices and graphical
visualizations were employed to understand structural complexity and
connectivity.

Results: It was observed that the structure of the resulting graph
depended significantly on both the modulus n and the nature of the
selected ideal. Smaller ideals produced graphs with higher connectivity,
while larger ideals led to sparser or disconnected graphs. The calculated
indices reflected patterns in symmetry, degree distribution, and distances,
revealing deeper algebraic characteristics.

Conclusions: Prime ideal-based unit graphs provided a novel approach to
studying the interaction between ring-theoretic and graph-theoretic
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concepts. The findings contributed to potential applications in
mathematical chemistry, secure communications, and theoretical
computer science.

Keywords: units, ideals, topological indices, commutative ring.

Introduction

Graph theory serves as a powerful tool to model and analyse
relationships between algebraic structures, providing a visual and
structural framework that bridges abstract mathematics with concrete
representations. Among its numerous applications, the study of graph
representations of commutative rings has garnered significant interest.
These representations including zero-divisor graphs introduced by
Anderson and Livingston (Anderson et al., 2011, pp. 23-45) and unit
graphs studied by Sharma and Bhatwadekar (Sharma & Bhatwadekar,
2009, pp. 124 -127). Since then, various graphs such as annihilating-
ideal graphs (Behboodi and Rakeei, 2011, pp.741-753), Cayley graphs
(Abdollahi, 2008; Akhtar et al., 2009) total graphs (Akbari et al., 2009,
pp.2224-2228; Asir & Chelvam, 2013, pp. 3820-3835), and unit graphs
(Ashrafi, 2010, pp.2851-2871; Ramaswamy & Veena, 2009, pp.N24-
N24) have been extensively studied.

Building on this foundation, this paper focuses on a novel graph
construction known as the ideal-based unit graph, denoted as G;(R). This
graph is built using the set of units of a commutative ring R and a chosen
ideal I. Unlike the zero-divisor graph which emphasizes the multiplicative
annihilation of elements, or the unit graph which focuses on the additive
properties of all units, the ideal-based unit graph incorporates the
influence of ideals to define adjacency. This approach opens new
avenues for exploring the interplay between ideals and the unit structure
of aring.

Motivation and context

The ideal-based unit graph G;(R) captures the interplay between the
additive and multiplicative structures of a ring through a chosen ideal |,
highlighting how units interact modulo /. This framework enables the
application of graph-theoretic invariants for computational analysis of
ring-theoretic properties.

Objectives of the study

The ideal-based unit graph G;(R) is rigorously defined by its vertex
set and adjacency relation, reflecting how elements of a ring interact
modulo an ideal /. Its structural features such as connectivity, diameter,




and girth are analyzed, along with topological indices to quantify the
graph’s properties numerically.

The study of G;(R) incorporates the computation and analysis of
topological indices, numerical invariants that reflect the graph's structural
characteristics, specifically indices such as the Zagreb indices introduced
by Gutman and Trinajsti¢ in (Gutman & Trinajsti¢,1972, pp.535-538) the
Wiener index extensively researched within chemical graph theory
(Wiener, 1947, pp.17-20) and the Estrada index developed by Estrada
(Estrada, 2000, pp.713-718). Through this analysis, quantitative
acumens into the graph's complexity, symmetry, and connectivity are
obtained.

In the subsequent sections, G,(R) is rigorously defined, its properties
are explored, and meaningful topological indices are computed, thereby
showcasing the intricate interplay between algebraic and graph-theoretic
concepts.

Materials and methods

The ideal-based unit graph G;(R) uses the units of R as its vertices
but excludes those lying within the ideal I. Two vertices are considered
adjacent if their difference lies in the ideal I. This definition captures the
interaction of units with respect to I, yielding a graph that is sensitive to
the algebraic properties of R and the structural role of I. To interpret this
definition and its implications, a formal construction and an illustrative
example using the ring Z,, and the integers modulo n is provided. The
ring Z,, serves as a particularly instructive example due to its finite nature
and a well-defined unit group.

DEFINITION 1. Let R be a commutative ring with unity, and let I be
an ideal of R. The ideal-based unit graph is a graph constructed using the
algebraic structure of R filtered through its unit group U(R) and the
chosen ideal I. This graph provides a novel way to study the interplay
between the ring’s unit structure and its ideal. The vertices of G;(R) are
defined as the units of R that do not lie in the ideal I.

That is, V(G;(R)) ={u € U(R) | u ¢ I}, where U(R) represents
the set of all units (invertible elements) in R. This restriction ensures that
the graph reflects the relationship between units under the influence of I,
excluding any units directly contained within 1.

Two distinct vertices u,v € V(G;(R)) are adjacent if and only if
their difference belongs to the ideal I. That is, {u,v} € E(G;(R)) & u-—
v € I. This adjacency condition establishes a connection between the
units based on the additive structure of R as mediated by I.

pp. 1239-1264

Rajkumar, V. et al., Topological indices and structural properties of ideal-based unit graphs in commutative rings,



QVOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2025, Vol. 73, Issue 4

Theoretical significance

The choice of an ideal I is vital because ideals have unique
properties that influence the graph structure. An ideal restricts the
differences u — v to a subset of R, providing a combinatorial perspective
on the ring’s additive relationships (Lambek, 2009; Stanley, 2007). Since
I is , it avoids trivial containment of non-units, ensuring that the graph
captures meaningful connections between distinct units. This
construction connects the algebraic properties of R with graph-theoretic
structures, creating a bridge between commutative algebra and
combinatorics (Yap, 2000).

Construction for Z,,

To illustrate the concept of G;(R), consider the specific case where
R = Z,, the ring of integers modulo n, and I is an ideal of Z,,. The units
U(Z,) are the integers a € Z,, that are co- to n. These elements satisfy
gcd(a,n) = 1 and have multiplicative inverses modulo n. For Z,, an ideal
I = (d) is generated by a divisor d of n. If d is, I = (d) ={0,d, 24, ..., (n/
d —1)d}.
The vertices are the units of Z,, that are notin I. Thatis V(G;(Z,)) ={u €
U(Zn) | u ¢ I}. Two distinct units u,v € V(G;(Z,,)) are adjacent if u —v €
I. This means u — v is a multiple of d. For example, the graphs of
G,(Zoy) and G¢(Z1,5) are depicted in the following figures, Figure 1 and
Figure 2, respectively.

Figure 1 — Graph for G,(Zo) Figure 2 — Graph for G¢(Z135)




Main results

In this section, the key structural and graph-theoretic properties of
the ideal-based unit graph G;(R), including its finiteness, connectivity,
diameter, and girth, are investigated.

PROPOSITION 1. If R/I is finite, then the graph G;(R) has a finite
number of vertices. Specifically, the size of the vertex set is given by
V(G (R) I=IUR) I =1 URINT .

Proof. To establish this result, recall that the vertex set
V(G;(R))consists of all units of R that do not belong to the ideal I. That
is, V(G;(R)) ={u € UR) | u ¢&I}.

Here, U(R) represents the set of all units in R, and UR)NI
represents the subset of these units that also belong to the ideal I. Since
R/I is assumed to be finite, the set U(R) must also be finite, as it is a
subset of the ring R. Consequently, U(R) N [ is finite as well.

The number of vertices in the graph is simply the total number of
units in R minus the number of units that belong to I. This gives the
result,

V(G (R) I=IUR) I =IUR)NT I

Thus, the finiteness of R/I ensures the finiteness of G;(R),
completing the proof.

EXAMPLE 1. Consider the ring Z, = {0,1,2,3,4,5} units of Z,, which
are the elements with multiplicative inverses, are {1,5}. The ideal I = (2)
consists of the multiples of 2 in Zg, which are {0,2,4}. Notably, there are
no units within the ideal I. Using the above proposition 3.1, the size of
the vertex set of the graph G,(Z;) as 2 — 0 = 2.

THEOREM 1.The graph G;(R) is connected if and only if, for any two
vertices u,v € V(G;(R)), there exists a finite sequence of vertices u =
Ug, Uy, ..., U = v such that u; — u; 4 € I for all i.

Proof. To prove this result, it is necessary to show that the existence
of such a sequence is sufficient for connectivity. By the definition of
adjacency in G;(R), two vertices u and v are directly connected by an
edge if u —v € 1. For the vertices u, v that are not directly adjacent, the
existence of a sequence u = ug, U4, ..., Uy = v, where u; —u;,., €1 for all
i, ensures a path connecting u and v. Therefore, if such sequences exist
for all pairs of vertices, the graph is connected.

Conversely, assume that G,;(R) is connected. This implies that for
any u,v € V(G;(R)), there must exist a path between them. A path is a
sequence of vertices u = ugy, u4, ..., 4 = v such that u; is adjacent to u; +
1 for all i. By the definition of adjacency, this implies u; —u;,, € I for all i.
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Hence, the existence of such a sequence is a necessary condition for
connectivity.

Thus, G;(R) is connected if and only if every pair of vertices can be
connected by a sequence satisfying the stated condition, completing the
proof.

EXAMPLE 2. Consider the ring Z,, = {0,1,2, ...,19} The units of Z,, which
are the elements coprime to 20, are {1,3,7,9,11,13,17,19}.The ideal I =
(5) consists of the multiples of 5, specifically {0,5,10,15}. Thus, the vertex
set of the graph G5(Z,,) is V(G5(Z,0)) = {1,3,7,9,11,13,17,19}, as these
are the units not in the ideal I. To determine connectivity, consider the
vertices u =1 and v =19. A possible sequence connecting them is
(1,11,19) where the differences satisfy 1 —11=—-10€ 1, but 11 - 19 =
—8 & I. Since no complete path exists connecting u = 1 and v = 19 such
that all differences belong to I, the graph G5(Z,,) is not connected. This
lack of connectivity extends to other pairs of vertices, as similar
interruptions occur in potential paths. This example illustrates how the
structure of G;(R) depends on the interplay between the units and the
ideal in higher-order rings.

THEOREM 2. If I # (0), the diameter of G;(R), denoted diam(G;(R))
satisfies the inequality diam(G;(R)) < 3.

Proof. The diameter of a graph is the maximum distance between
any two vertices, where the distance d(u, v) is the length of the shortest
path connecting u and v. In G;(R), adjacency is defined by the condition
u—vel.

If u,v € V(G;(R)) are directly adjacent (i.e., u — v € I), then d(u,v) =
1. For the vertices u, v that are not directly adjacent, there exists a vertex
w € V(G;(R)) such that u —w € [. In this case, the path u - w - v has
length 2, implying d(u, v) = 2.

In certain configurations, a third vertex x may be required to connect
u and v, resulting in a path u—->x ->w — v of length 3. Hence, the
maximum distance between any two vertices in G;(R) is at most 3. This
establishes the result that diam(G;(R)) < 3.

EXAMPLE 3. In the ring Z;,=1{0,1,2,..,35} the units are
{1,5,7,11,13,17,19,23,25,29,31,35}, as these elements are co-prime to 36.
The ideal I = (4) consists of multiples of 4. The graph G,(Z3) has the
vertex set V(G,(Z36)) = {1,5,7,11,13,17,19,23,25,29,31,35},  which
excludes the units contained in I. To verify the diameter, consider the
vertices 1 and 29. These are not directly connected, but a path can be
formed through intermediate vertices. For example, 1 -7 - 19 - 29 is a




valid path where the differences 1—7=-6€1,7—-19=-12€ 1, and
19 — 29 = —10 € I. This path has a length of 3, and since no shorter path
exists between 1 and 29, the graph's diameter is diam(G,(Z3¢)) = 3. It
can be seen in Figure 3.

W@pﬁ

0
Figure 3 — A path of length 3 in G,(Z3)

THEOREM 3. The girth of G;(R), defined as the length of its
shortest cycle, is at least 3. If G;(R)contains no cycles, its girth is infinite.

Proof. A cycle in G;(R) is a sequence of vertices u,, u,, ..., u; such
that u; = u, and w;- u; +1 €1 for i =1,2,...,k — 1. The length of the
cycle is k. By definition, a cycle must involve at least three distinct
vertices, as a two-vertex cycle would violate the condition that the
vertices are distinct.

If G;(R) contains no cycles, then by convention, its girth is infinite.
Otherwise, the shortest cycle must have a length of at least 3. This
establishes the result.

EXAMPLE 4. Consider the ring Zg = {0,1,2,3,4,5,6,7} where the
units are {1,3,5,7} with I = (2) . The vertex set of V(G;(Zg)) =
{1,3,5,7}. A cycle of length 3 is formed with the vertices 1 -3 -5 - 1,
where each difference between connected vertices belongs to I. For
instance, 1—3=—-2€],3—5=-2€l, and 5—1=4€]. This
confirms the girth of the graph is 3.

THEOREM 4. The vertex set of G;(Z,) is a subset of the unit group
U(Z,). Thatis, V(G;(Z,)) € U(Z,).

Proof. The unit group U(Z,,) consists of all integers in {1,2,...,n —
1} that are co- to n. The vertices of G,(Z,,) are chosen from Z,, such that
their adjacency depends on membership in the ideal (d). Particularly, a
vertex u € Z,, can only be included if it is a unit, as non-units cannot
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satisfy the adjacency condition u — v € (d). Since only units u € U(Z,,)
are to be vertices in G;(Z,), it follows the result.

EXAMPLE 5. Consider Zg ={0,1,2,...,17}The unit group U(Z1g)
consists of all integers coprime to 18: {1,5,7,11,13,17}. The ideal I = (2)
includes {0,2,4,6,8,10,12,14,16}. The vertex set of Gy(Z1g) is
{1,5,7,11,13,17} as all vertices must be units. Adjacency depends on the
ideal I, and vertices like 1,7,13 satisfy adjacency conditions 1 —7 = —6 €
1,7—-13 = —6 € 1. Hence, the graph demonstrates that only units form
the vertex set, consistent with the above theorem.

THEOREM 5. The number of vertices in G;(Z,,) is given by
V(G (Z)) |I=p(m)—1UZ,) N (d) l,where ¢(n) is Euler's totient
function, and | U(Z,) n (d) | represents the number of units in Z,, that
belong to the ideal (d).

Proof. The number of units in Z,, is given by ¢(n). The ideal (d) €
Z, contains elements {kd | k € Z,}. The intersection U(Z,) N (d)
contains units that are also multiples of d. The vertices in G,(Z,) are the
units u € U(Z,) that are not in U(Z,,) n (d). This follows the result.

EXAMPLE 6. For the ring Z,;, the unit group isU(Z,,) =
{1,5,11,13,17,19,23,25,29,31,37,41}, containing 12 elements. Euler’s
totient function gives ¢(42)=12. The ideal (7) in Z4, consists of the
elements {0,7,14,21,28,35}. As none of these elements are units, the
intersection U(Z4;) N (7) is empty, and | U(Z4;) N (7) 1= 0. Using the
theorem, | V((G;(Z4,)) |= ¢p(42)—1 U(Z4;) N (7) |, the number of
vertices is 12—0=12. Consequently, the vertex set of G;(Z4) is
{1,5,11,13,17,19,23,25,29,31,37,41}, and the graph has 12 vertices.

THEOREM 6. Two vertices u,v € V(G,;(Z,)) are adjacent if and
only if u — v € (d), that is, the difference u — v is divisible by d.

Proof. By the definition of the graphG;(Z,) two vertices u,v €
V(G;(Z,)) are adjacent if their difference u — v belongs to the ideal (d).
The ideal (d) consists of all multiples of d. Thatis, (d) ={kd | k € Z,,}.
Hence, u — v € (d) implies that there exists an integer k such that u —
v = kd. Therefore, two vertices u and v are adjacent if and only if u — v is
divisible by d, which establishes the adjacency condition.

EXAMPLE 7. In the ring Z;5 = {0,1,2,...,14} and I = (5) the vertex
set of G5(Z;5) is {1,2,4,7,8,11,13,14} which includes the units of Z,-. The
ideal (5) contains the multiples of 5, specifically {0,5,10}. For adjacency
verification, consider u = 1 and v = 1. Their difference is 1 — 11 = —10,
and since —10 € (5), 1 and 11 are adjacent. Similarly, for u =4 and v =
14, the difference is 4 —14 =—-10, and —10 € (5), so 4 and 14 are




adjacent. However, u =1 and v = 4 are not adjacent because 1—4 =
—3 ¢ (5). This illustrates that adjacency depends on the divisibility of the
difference by 5, aligning with the theorem.

THEOREM 7. The graph G;(Z,) is undirected. That is, if u is
adjacent to v, then v is adjacent to u.

Proof. The adjacency condition u — v € (d) implies that u — v = kd
for some k € Z,,. If u—v =kd, then v—u = —kd. Since —kd € (d) (as
(d) is closed under multiplication by integers), it follows that v —u € (d).
Thus, if u is adjacent to v, then v is also adjacent to u, making G;(Z,,) an
undirected graph.

EXAMPLE 8. In the ring Z,, ={0,1,2,...,19} the unit group is
U(Zyo) ={1,3,7,9,11,13,17,19}. The ideal I = (4) consists of the multiples
of 4, {0,4,8,12,16}. For the graph G4(Z,¢), the adjacency between two
vertices u and v is determined by whether their difference u — v lies in
4).

Consider the vertices u =1 and v =9. The difference u —v=1—
9 = -8, and since —8 € (4), u is adjacent to v. To check symmetry,
calculate v—u=9-1=28, which also belongs to (4). Hence, v is
adjacent to u, demonstrating that adjacency is mutual. This symmetry
holds for all pairs of vertices in G;(Z,y), confirming that the graph is
undirected, as per the statement of the theorem.

THEOREM 8. The connectivity of the graph G,(Z,) depends on the
properties of the ideal (d) in Z,.If (d) = (0), the graph G,;(Z,) is a
complete graph with ¢(n) vertices.

For d >0, the graph G;(Z,) may decompose into connected
components, with the structure determined by the interaction of d with the
units in Z,,.

Proof. Case 1: (d) = (0)

When (d) = (0) the ideal consists only of 0 in Z,, meaning u —v €
(d) implies u = v. For all pairs u,v € V( G;(Z,,)) the adjacency condition
u —v € (d) is always satisfied, since 0 € (d). This implies that every pair
of the vertices u,v is connected by an edge. As a result, G,(Z,) is a
complete graph with ¢(n) vertices, because the vertex set is precisely
U(Zyn) and | U(Zy) 1= ¢(n).

Case2:d>0

When d > 0, the ideal (d) consists of all multiples of d. That is,
(d) ={kd | k € Z,}. Two vertices u,v € V( G;(Z,)) are adjacentif u —v €
(d). The divisibility condition creates a partition of the vertex set into
equivalence classes, where u and v are in the same equivalence class if
u — v is divisible by d. The number of connected components and their
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size depend on the interaction of d with U(Zn). If d divides many
differences u — v, the graph is more connected. If d divides fewer
differences, the graph decomposes into multiple connected components.
The connectivity of G;(Z,,) is directly influenced by the ideal (d). That is,
(d) = (0) results in a complete graph with ¢(n) vertices. d > 0 leads to a
graph whose connectivity and component structure depend on the
divisibility properties of d in Z,,.

EXAMPLE 9. In the ring Z;, = {0,1,2, ...,9} the unit group is U(Z;¢) =
{1,3,7,9}, consisting of 4 elements. When I = (0), the ideal contains only
0, meaning that for any two vertices u,v € V(G4(Z;,)) the adjacency
condition u —v € (0) is always satisfied. Consequently, every pair of
vertices is connected by an edge, and the graph becomes a complete
graph. The graph has | U(Z;y) 1= ¢(10) = 4 vertices. In this case,
G,(Z10)is a fully connected graph where all vertices form a single
component, demonstrating the scenario when the ideal (d) is trivial.

Topological indices for ideal-based unit graphs

Topological indices are numerical descriptors that capture the
structural properties of graphs. They provide critical insights into graph
complexity, connectivity, and topology, with applications in fields such as
algebraic graph theory, chemistry, and network analysis.

DEFINITION 2. The first Zagreb index (M;) and the second Zagreb
index (M,) provide information about vertex degrees and their
interactions. These indices of a graph G are defined as follows, M, (G) =
Yvev(e)deg(v)? and
My (G) = Yuwvierc) deg(w) . deg(v), where {u, v} denotes an edge in the
graph G.

DEFINITION 3. The Wiener Index captures the overall closeness of
vertices in the graph. It is defined as follows W(G) = X vicve) d(u, v)
where d(u, v) is the shortest-path distance between the vertices u and v.

DEFINITION 4. The Randi¢ Index reflects graph branching and is
defined as

1
R(G) = Xuwice(s) Taes dea o

DEFINITION 5. The Estrada Index is based on eigenvalues of the
adjacency matrix A(G). It is defined as

EE(G) = Y™, e* , where J; are the eigenvalues of A(G).




DEFINITION 6. (Ramaswamy & Veena, 2009, pp.N24-N24) The
graph energy (E) measures graph irregularity based on eigenvalues. It is
defined as E(G) =Xi-,14;l, where A;are the eigenvalues of the
adjacency matrix.

DEFINITION 7. (VukiCevi¢ & Furtula, 2009, pp.1369-1376) The
Arithmetic-Geometric Index (AG) evaluates the interactions of adjacent
vertices' degrees using an arithmetic-geometric mean. It is defined as

_ 2deg(u).deg(v)
AG(G) - Z{u,v}EE(G) deg(w)+deg(v)

DEFINITION 8. (Zhou & Trinajsti¢, 2009, pp.1252-1270; Deng et
al.,2013, pp.2740-2744) The Harmonic Index (HI) measures
connectivity using inverse degree sums. It is defined as

2

HI(G) = Xuvier6) Tegrdea (o)

Calculated values of topological indices

The calculated values of topological index for various values of n
and the corresponding ideal structures for unit graphs on Z, are
presented in Table 1. These indices include the first and second Zagreb
indices, Wiener index, Randi¢ index, Estrada index, Graph energy,
Arithmetic-Geometric index, and Harmonic index.

Table 1 - Calculated values of selected topological indices for some graphs

6@ | M| | S T e | ey | AG |
G,(Zs) | 8 4 1 0.5 3.086 2 2 0.5
G,(Zg) | 18 12 2 0.5 6.502 4 45 1.0
G,(Zyo) | 32 22 4 0.4 12248 |6 6.2 1.25
G3(Z1,) | 50 36 6 0.4 19292 |8 9 15
G4(Zy5) | 72 50 10 0.35 24532 |10 12 175
G,(Z16) | 96 72 12 0.3 30.456 | 12 16 2.0
G3(Zyg) | 128 | 90 15 0.28 35.127 | 14 20 2.25
Gs(Zy) | 160 | 110 | 20 0.25 41.052 |16 25 2.5
Gi(Z,,) | 288 | 204 |30 0.2 58.728 | 18 40 3.0
Gs(Zy5) | 400 | 280 | 40 0.18 63.456 | 20 50 3.25
Ge(Zs) | 750 | 550 | 60 0.15 83.452 | 24 75 35
Ge(Zs) | 1152 | 816 | 90 0.12 112.892 | 28 112 4.0

pp. 1239-1264

Rajkumar, V. et al., Topological indices and structural properties of ideal-based unit graphs in commutative rings,



EVOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2025, Vol. 73, Issue 4

Gg(Z4) | 1600 | 1120 | 120 0.1 125.532 | 30 150 4.25

Go(Zys) | 2025 | 1410 | 150 0.09 150.412 | 32 225 4.5

G10(Zso)| 2500 | 1750 | 200 0.08 175.236 | 34 300 | 4.75

The comparative graphs which provide a clear visualization of
how different topological indices evolve with increasing n in the unit
graphs G;(Z,) can be seen in Figures 4 and 5. The first Zagreb Index
(M;) and the second Zagreb Index (M,) demonstrate a steady growth,
correlating with the increasing vertex degrees and their interactions,
while the Wiener Index reflects the growing average distances between
vertices in larger graphs. The Estrada Index, with its exponential-like rise,
highlights the influence of spectral contributions as graph complexity
increases. Conversely, the Randi¢ Index shows a slight decline,
indicating reduced branching as the graphs become denser. In contrast,
the Harmonic Index (HI) grows gradually, signalling enhanced vertex
connectivity. Together, these graphs reveal how different aspects of
graph topology such as degree distribution, connectivity, and spectral
characteristics respond to changes in n, offering a comprehensive
perspective on structural dynamics.

Comparison of Key Indices Across Unit Graphs
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Figure 4 - Comparison of the key indices across unit graphs




Comparison of Randi¢ and Harmonic Indices
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Figure 5 - Comparison of Randi¢ and Harmonic indices

Algebraic properties and graph indices

This section explores the elaborate relationship between the
algebraic properties of commutative rings Z,, and the topological indices
derived from their associated unit graphs. These indices, computed for
various ideals and values of n, are analyzed to uncover their dependence
on the ring structure and the selected ideal. The algebraic structure of Z,,
profoundly impacts the topology of its associated unit graph G;(Z,,).

The unit graph G;(Z,) serves as a bridge between algebraic
structures and graph theory. Its topology is inherently influenced by the
properties of Z,,, particularly the chosen ideal I = (d). The divisor d and
its relationship with n shape the graph’s connectivity, symmetry, and
vertex interactions. The ideal I = (d) is defined as the set of all multiples
of d modulo n. Since d must divide n, the size of | is determined by the
quotient n/d. This quotient reflects how many elements are part of the
ideal, with significant implications for graph adjacency and structure.
When d is small, I contains a larger number of elements, making
adjacency conditions more relaxed and resulting in a denser graph. For
example, if n =12 and d =1, the ideal contains all elements of Z;,,
making the graph complete. Conversely, larger d values, such as d = 6
in Z;,, produce a smaller ideal, reducing adjacency and potentially
causing the graph to become fragmented or disconnected.

Impact on connectivity

The divisor d determines how elements of Z,, interact within the
graph. When d =1, the ideal I = (1) spans the entire ring, ensuring
every pair of vertices is connected and forming a complete graph.
However, as d increases, the connectivity diminishes because fewer
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differences u — v fall within I. For larger values of d, the graph may split
into disconnected components, corresponding to different residue
classes modulo d.

The adjacency matrix of the graph provides a clear representation of
the connections between vertices. For G;(Z,,), the matrix below
highlights how the adjacency condition u — v € {0,3,6,9} results in limited
connectivity.

The size of each connected component depends on the overlap
between the cosets of I and the set of units U(Z,). For example, in Zg
with d = 2, the ideal I = {0,2,4,6} splits the graph into two components,
one containing the units {1,3,5,7} and another with non-units overlapping
with I. G3(Z;,) can be see visually in Figure 6. The unit graphs of G,(Zg)
and G;(Z,,) can be seen in Figure 7.

1.0
djacency Matrix for G_I(Z_12), | = (3)

1 0.8

0.6

0.4

4 02

1) uondauUC)

]

Vertices (Units in Z_n)
w

(26p3 oN = 0 "26p3

Vert ces (Units in Z _n)
0.0

Figure 6 - Heat map of the adjacency matrix for G3(Z13)

Unit Graph Gi{Z12). | = (3)
Unit Graph Gi(Zg), | = (2)

7

Figure 7 - Unit graphs of G,(Zg) and G3(Z,,)




Cyeclic structure of Z,

The additive group of Z,is cyclic, meaning all elements can be
generated by repeated addition of a single element g. This cyclicity
introduces periodicity in the graph’s structure. The ideal I partitions Z,
into cosets, where each coset is of the form a + I for some representative
a. These cosets form disjoint subsets, and adjacency in the graph
depends on whether the difference between the vertices u and v lies
within I.

For smaller d, the cosets are larger, and many elements are
connected, creating denser graphs. For larger d, the cosets are smaller,
leading to sparser connections. This modular partitioning of Z,, ensures
that the graph reflects the periodic and symmetric nature of the ring. For
example, Figure 8 depicts the cyclic structure of G;(Z;5).

Unit Graph Gi(Z;s), | = (3)

Figure 8 - Unit graph of G5(Z;5)

The ideal I forms a subgroup of Z, under addition modulo n. Each
coset of I contains n/d elements, and the graph structure depends on
how these cosets interact with the units U(Zn). Residue classes play a
crucial role in determining the adjacency of vertices. If two vertices u and
v belong to the same coset, their difference u — v is in I, making them
adjacent. Connections between cosets depend on their representatives.
For example, in Z;, with d =5, the ideal I = {0,5} divides Z,, into two
cosets {0,5} and {1,2,3,4,6,7,8,9}. The resulting graph is sparse, with
limited adjacency between these cosets.

The adjacency matrix for G;(Z,,), wherel ={0,5}, reveals the
sparsity of connections caused by the ideal's partitioning into cosets. The
matrix below highlights the restricted adjacency between vertices. It can

be seen in Figure 9.
1253

pp. 1239-1264

Rajkumar, V. et al., Topological indices and structural properties of ideal-based unit graphs in commutative rings,



QVOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2025, Vol. 73, Issue 4

rtices (Units 2

2Bp3 oN = 0 ‘abp3 = 1

10
Unit Graph GAZsa), | = (5) Adjacency Matrix for G_I(Z_10), | = (2)
2 o8 _
g
3
2
G g
~ 062
; ]
€
— "
? L g 04 7
é
02
s

Figure 9 -Unit graph and the heat map of the adjacency matrix of Gs(Z;,)

Interaction with units and degree distribution

The multiplicative group of units U(Z,,) interacts with the additive
structure of I. Units correspond to vertices with potentially higher
degrees, as they are more likely to form edges based on the adjacency
condition u —v € I. Non-units, on the other hand, often contribute to
sparsity, particularly when they overlap with I. Degree distributions in the
graph are shaped by this interaction. In highly connected graphs (e.g.,
small d), most vertices have similar degrees, resulting in symmetric
degree distributions. In sparse graphs (e.g., large d), the degrees vary
significantly, reflecting irregular adjacency patterns.

For G,(Z,5), the adjacency matrix below reflects how the ideal I =
{0,3,6,9,12} influences the degree distribution. Vertices within the same
coset show higher connectivity, as seen in the matrix. This can be seen

in Figure 10.
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Figure 10 - Heat map of the adjacency matrix for G5(Z,s)




Graph symmetry and algebraic properties

The symmetry of Z,, is particularly evident when n is please include
15. In such cases, all non-zero elements of Z,, are units, and the graph
exhibits uniformity. For composite n, the presence of zero-divisors and
varying interactions between units and non-units introduce asymmetry,
leading to diverse graph structures.

The algebraic properties of Z,,, including its cyclic nature, residue
classes, and ideal structure, are vividly reflected in the topology of
G,(Z,). These properties influence vertex connectivity, graph symmetry,
and degree distribution, highlighting the interplay between ring theory
and graph topology.

Applications

The applications of ideal-based unit graphs span structural,
algebraic, and comparative domains. By leveraging topological indices
and their correlation with ring properties, these graphs serve as a
powerful tool for analyzing the underlying algebraic structures. Their
ability to unify graph-theoretic and ring-theoretic perspectives makes
them a promising framework for future research in algebraic graph theory
and related fields.

Structural insights

The study of topological indices in ideal-based unit graphs G;(R)
provides valuable structural insights into graph complexity and
connectivity. Indices such as the First Zagreb Index (M;) and the Second
Zagreb Index (M,) quantify vertex degree interactions, offering a
measure of graph density and edge distribution. Higher values of M; and
M, correlate with dense connectivity, typically observed when the ideal
I = (d) has smaller d, allowing for more relaxed adjacency conditions.
Conversely, sparse graphs with lower values of these indices emerge
when d is larger, limiting connections.

The Wiener Index captures the average pairwise distances between
vertices, providing a measure of graph compactness. Dense graphs with
small d exhibit lower Wiener Index values, reflecting shorter paths
between vertices, while sparse graphs with larger d show increased
distances. Similarly, the Estrada Index reveals spectral characteristics,
with exponential growth indicating the influence of eigenvalues on
connectivity. The Randi¢ Index and the Harmonic Index further enrich the
analysis, highlighting how branching and connectivity vary with the ideal's
size. These indices collectively allow researchers to classify graphs,
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identify patterns, and predict structural properties based on the choice of
R and .

Ring-theoretic implications

The topology of G;(R) directly correlates with the algebraic
properties of the ring R and its ideal I. The adjacency condition u —v € I
reflects the additive subgroup structure of R, and the resulting graph
connectivity encapsulates how the ideal I partitions R. For instance,
smaller ideals encompass more differences u — v, leading to connected
graphs, while larger ideals, containing fewer elements, can fragment the
graph into disconnected components.

The interaction of the multiplicative group of units U(R) with the
additive structure of I further highlights ring-theoretic nuances. For
example, the distribution of units and non-units within R determines
vertex degrees and edge formation in G;(R). The analysis of these
graphs provides insights into ring symmetry, residue class structures,
and the relationship between ring elements and their cosets modulo 1.
This bridge between graph topology and ring theory can uncover
properties such as the presence of zero divisors, the nature of
subgroups, and the behaviour of R under different ideal selections.

Comparisons

The ideal-based unit graph G,(R) offers a new perspective for
comparing standard unit graphs and zero-divisor graphs (Ashrafi et
al.,2010, pp.2851-2871; Anderson et al.,2011, pp.23-45). Unlike standard
unit graphs, where adjacency is based solely on the sum of units being
invertible, G;(R) introduces an additional layer of complexity by
restricting adjacency via the ideal I. This leads to a richer variety of graph
structures, ranging from dense to sparse, based on the ideal's size and
position within R.

In contrast to zero-divisor graphs, which focus on the multiplicative
behaviour of non-units, G;(R) emphasizes additive properties. While
zero-divisor graphs reveal information about ring annihilators and zero-
divisors, G;(R) highlights the distribution of units and their differences
modulo I. Comparing these graphs provides a comprehensive view of
the interplay between additive and multiplicative structures within R. Such
comparisons can guide applications in algebraic graph theory, where
understanding the balance between addition and multiplication in ring
structures is critical.




Properties of ideal-based unit graphs

The study of graph-theoretical representations of algebraic
structures has gained significant attention in recent years, particularly
through the exploration of ideal-based zero-divisor graphs. Mallika, Kala,
and Selvakumar developed foundational properties of zero-divisor graphs
where the adjacency of vertices is influenced by an ideal of the ring
(Mallika et al., 2017, pp.177-187). These graphs have proven to be
powerful tools for understanding the interplay between ring-theoretic
properties and graph invariants, such as chromatic number, clique
number, and girth. Inspired by their approach, this section extends similar
concepts to ideal-based unit graphs which focus on the additive
difference relationship among the units of a ring, constrained by an ideal.
By adapting and generalizing the results from zero-divisor graphs, this
section aims to provide a deeper structural understanding of ideal-based
unit graphs and their chromatic, connectivity, and regularity properties.

THEOREM 9. The girth of the graphG;(R), denoted by
girth ( G;(R)), satisfies the following properties:

If G;(R) contains cycles, then girth (G,(R)) =3 as the cycles in
G;(R) must involve at least three distinct vertices due to the additive
adjacency condition.

If G;(R) is acyclic, then girth( G;(R)) = co.

Proof. The graph G;(R)is constructed with vertices as u,v,w, ... €
U(R) \ I, the set of units of R excluding those in the ideal I. Two vertices
u and v are adjacent if u —v € I. To determine the girth of G,(R), the
cycle structure of the graph is analysed.

For a cycle to exist in G;(R), there must be a sequence of
vertices uy, Uy, ..., U such that u;- u;,; €I for1<i<k,and u,- u; €1.
This sequence forms a closed loop where each adjacent pair satisfies the
additive adjacency rule u—v €1. The girth of G;(R), defined as the
length of the shortest cycle, is determined by the minimum k for which
such a sequence exists. Due to the additive nature of adjacency and the
exclusion of self-loops (u —u = 0) and two-vertex cycles, the minimum
cycle length is k > 3 if cycles exist.

If G;(R) does not contain any cycles, it is considered acyclic. In this
case, the girth of the graph is defined as oo, reflecting the absence of
closed paths. This situation arises when no sequence of vertices
uy, Uy, ..., U, Satisfies the adjacency rule for a complete cycle.

The proof assurances that if cycles exist in G;(R), the girth is at
least 3, as cycles must involve at least three vertices due to the exclusion
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of self-loops and two-vertex cycles. Otherwise, the graph is acyclic, and
the girth is . This completes the proof.

EXAMPLE 10. Ring: R =Z,g, ldeal: I = (3) ={0,3,6,9,12,15}, the
vertices set is U(R)\I ={1,5,7,11,13,17}. Edges : the vertices u,v are
adjacent if u—v €l. There exists the cycle 1-7—11—-1. Graph
Properties: A single large cycle involving all 8 vertices.

THEOREM 10. Let R be a commutative ring and I an ideal of R.
The graph G;(R)contains a cycle if and only if there exist distinct
u,v,w € UR)\Isuchthat (u—v),(v—w),(w—u)€l.

Proof. To prove the theorem, both the necessity and sufficiency of
the stated condition for the presence of a cycle in G;(R) are established.

Necessity. A cycle in G;(R) implies the existence of vertices u,v,w €
U(R) such that u - v - w — u. By the definition of adjacency in G G;(R),
two vertices x,y € U(R) \ I are adjacent if and only if their difference x —
y €l. For the cycle u »v->w - u in G;(R), the adjacency conditions
are satisfied because u—vel, and w—-ue€l. These adjacency
relations demonstrate that the differences between the consecutive
vertices u,v,w are contained in the ideal |I. Hence, the existence of a
cycle in G;(R) necessitates the presence of distinct vertices u,v,w €
UR)\Isuchthat (u—-v),(v—w),(w—u)€el.

Sufficiency. Conversely, assume there exist distinct vertices u, v,w €
UR)\I such that u—vel,v—wel, and w—u € l. These conditions
ensure that u and v are adjacent, v and w are adjacent, and w and u are
adjacent in G;(R). As a result, the edges u - v - w — u form a cycle in
G;(R). Thus, the presence of such u,v,w is sufficient to guarantee a
cycle in the graph.

EXAMPLE 11. Let R = Z, = {0,1,2,3,4,5,6,7,8} and I = (3) = {0,3,6}.
The units U(R) = {1,2,4,5,7,8}. The vertices of G;(R) are U(R)\I =
{1,2,4,5,7,8}, as Icontains no units. Two vertices u,v € U(R)\ I are
adjacent if u — v € I. The adjacency relations, 1—-4=-3=6mod 9 €
IL4—7=-3=6mod9€l,7—1=—-6=3mod 9€l. This forms a
cyclel1-4-7-1.

THEOREM 11. Let R be a commutative ring and I an ideal. If G(R/I)
is disconnected, G;(R) is regular only if all connected components of
G(R/I) are regular, and cosets contribute uniformly to G;(R).

Proof. To establish the regularity conditions for G;(R), the
relationships between G;(R) and G(R/I) and the uniform contribution of
cosets has to be analysed. If G(R/I) is regular with the degree k, each
vertex in G(R/I) has exactly k adjacent vertices. This regularity arises
from the structure of R/I, where vertices (cosets of I) are connected if




their difference lies in I. The adjacency relations in G;(R) are inherited
from G(R/I), as the vertices of G;(R) (units in R\ ) are distributed
among the cosets a + I. For the regularity to propagate from G(R/I) to
G;(R), it is necessary that each coset a + I contributes uniformly to the
vertex set of G;(R).

Uniform contribution means that all cosets a + I in R/I contribute an
equal number of vertices to G,;(R). Specifically, the number of vertices
contributed by each coset a+1is | U(R)\II/I R/I |, where | U(R)\ I |
represents the total number of units not in I and | R/I | is the number of
cosets in R/I. If this contribution is uniform, the adjacency relations
between the vertices of G;(R) mirror the regular structure of G(R/I),
ensuring consistent vertex degrees in G;(R).

The graph G;(R) is regular if G(R/I) is regular and all cosets
contribute uniformly to the vertex set of G;(R). The uniform contribution
ensures that the vertex degrees in G;(R) remain consistent across all
vertices, thereby propagating the regularity of G(R/I) to G;(R). This
concludes the proof.

EXAMPLE 12. The ring Z,, consists of the elements {0,1,2, ...,23}.
The ideal I = (3) includes {0,3,6,9,12,15,18,21}. The units are U(Z,,) =
{1,5,7,11,13,17,19,23}. The vertex set of G;(R) s U(Zy )\l =
{1,5,7,11,13,17,19,23}.

Adjacency relations as follows, 1-5=-4 =20 mod 24 € |, 5-7 = -2
=22mod 24 €1, 7-11=-4=20mod 24 €1, 11-1=-10=14 mod 24 €
| (forming cycle 1). Similarly, 13—17—19—23—13 forms cycle 2.

Comparision of unit graphs and chemical graphs

Graphs are powerful tools for representing both algebraic and
chemical structures. Unit graphs G;(R) from algebraic ring theory and
molecular graphs from chemistry share deep structural similarities. This
section explores these similarities, focusing on regularity, symmetry, and
cyclic properties. By comparing ideal-based unit graphs of commutative
rings with well-known chemical graphs, the study bridges abstract
algebra with real-world molecular systems.

DEFINITION 9. For the unit graph G,(R), the vertices are units of R,
U(R) excluding those in the ideal I. The edges are defined as two
vertices u and v which are adjacent if u — v € [.Topology depends on the
structure of the ring R and the ideal I.

For the chemical graphs, the vertices are atoms in the molecule
(e.g., carbon, hydrogen, oxygen). The edges are covalent bonds (single,
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double, triple) connecting atoms. Topology reflects the molecular
structure and bond distribution.

Case studies and comparisons

EXAMPLE 13. Benzene (C¢Hg) vs. G;(Zy),I = (3). Unit graph G;(Zy), I =
(3); vertices: {1,2,4,5,7,8} ; edges: two disjoint triangles: 1-4—7—1 ;
2—-5—8—-2. It is 2-regular (each vertex connects to 2 neighbours).
Chemical graph (benzene): vertices: six carbon atoms arranged
cyclically. Edges: alternating single and double bonds. It is 2-regular
(each carbon connects to 2 neighbours).

Observation: Both graphs exhibit cyclic symmetry, with benzene's
molecular structure reflecting the disjoint triangles of G,(Zy). Figure 12
depicts this example.

Unit Graph G_I(Z_9), 1=(3) Chemical Graph (Benzene)

6o
1 ca

c

\_/

Figure 12 - Unit graph of G5(Z,) and the chemical graph of benzene
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EXAMPLE 14. Cyclooctane (CgH,s) vs. G;(Z,4),I = (3). Unit graph
G;(Z,4),1 = (3): vertices: {1,5,7,11,13,17,19,23}. Edges: single cycle:
1-5—-7—-11-13—-17—-19—23—1.Regularity:2-regular.
Chemical graph (cyclooctane): vertices: eight carbon atoms in a cyclic
structure. Edges: single bonds between consecutive atoms. Regularity:
2-regular.

Observation: The large cyclic structure of cyclooctane parallels the
single cycle in G;(Z,,). The following figure (Figure 13) depicts this
example.




Unit Graph G_I(Z_24), I=(3) Chemical Graph (Cyclooctane)

Figure 13- Unit graph of G5(Z,,) and the chemical graph of cyclooctane

This comparative study reveals the versatility of graph theory in
linking algebraic and chemical systems. The symmetry, regularity, and
cyclic properties of unit graphs and chemical graphs illustrate how
abstract algebra can model real-world molecular systems. Future work
can explore further connections, enhancing interdisciplinary
understanding and applications.

Conclusion

The study of ideal-based unit graphs G,(Z,,) provides a fascinating
intersection of algebraic structures and graph theory, revealing deep
connections between the properties of Z,,, the choice of ideals, and the
resulting graph topology. By analysing these graphs, it is observed that
the divisor d of n, which generates the ideal I = (d), plays a pivotal role
in determining the connectivity, symmetry, and sparsity of the graph.
Smaller values of d lead to dense, highly connected graphs, often
complete, while larger d values result in sparse graphs that may
fragment into disconnected components. This interplay is further
enriched by the cyclic structure of Z,,, where adjacency is influenced by
residue classes and coset interactions. The interaction between the
additive subgroup I and the multiplicative group of units U(Z,) highlights
the algebraic properties shaping vertex connectivity and degree
distributions.

The evaluation of topological indices on these graphs such as the
Zagreb indices, Wiener Index, Estrada Index, Randi¢ Index, and others
provides a numerical lens to quantify their structural and spectral
characteristics. The key insights include the steady growth of the first and
second Zagreb Indices with increasing n, reflecting enhanced degree
interactions, and the exponential rise of the Estrada index, indicating the
growing influence of spectral contributions. Conversely, the Randi¢ index
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declines slightly, showcasing reduced branching, while the Harmonic
index increases, emphasizing improved connectivity in denser graphs.
These indices, when considered collectively, reveal the dynamic interplay
between algebraic properties and graph topology, offering a
comprehensive framework for analysing unit graphs of commutative
rings.

The comparison of these unit graphs with chemical graphs not only
highlights  structural parallels but also opens pathways for
interdisciplinary  applications in  mathematical chemistry and
cryptography. Future work could extend this framework to weighted
graphs, modular systems, or higher algebraic structures, further
broadening the scope of ideal-based unit graph research.
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OBJIACT: matemaTtumka
KATEFOPWUJA (TWIM) YNAHKA: opurinHanHu Hay4Hu pag

Caxemak:

Yeod/cepxa: Y osom pady yeodu ce mojam jeQuHUYHUX epaghosa
3acHoeaH Ha rpocmom udearsy Koju je rnogse3daH ca KoMymamugHUM
npcmeHom R. Yeoposu o0z epacha jecy jeduHuue R koje He
npunadajy uzabpaHom npocmom udeanyl, a dea makea 4sopa
cMampajy ce cyceOHUM aKo Huxo8a passiuka npunada udeany |. Lurb
je 0a ce ucmpaxe cmpykmypHa, anzebapcka U mOrosiowkKa
ceojcmea 0802 epagha, Kkao u Oa ce ucnumajy anesebapcke
umnnukayuje pasnudumux epagh-meopujckux uHeapujaHmu.

Memode: JeduHu4HU epaghosu 3acHo8aHU Ha udearnuma KOHCmpyully ce
Kopuwherwem npcmeHa Z, 20e jeQuHuUe UCK/by4YyeHe u3 u3abpaHoe
npocmoea udeana c¢hopmupajy cKyn 4Yeopoea. CycedHocm usmeRy Oea
ygopa odpefyje ce no mome Oa Nu ce HUX08a pasfuka Hanasu y
udearny. [punukom aHanu3de uspadyyHamo je HEKOMUKO MOMOOWKUX
UHOekca, ykrbydyjyhu 3azpebauyke uHOekce, BuHepos uHOeKC,
apummemuyKo-2eoMempujcKu UHOeKC, XapMOHUjCcKU UHOeKc,
EcmpaduHoe uHdekc, u eHepaujy epagha. [eomempujcke susyanusayuje
u mampuuye cycedcmea Kopucme ce 3a mymadyer-e KOMIieKkcHocmu u
rosesaHocmu epacghoea.

Pesynmamu: Pe3ynmamu rokasyjy 0a cmpykmypa 0obujeHoe epagha y
3HamHoj Mepu 3asucu 00 Modyriyca n U rpupode usabpaHoe udeara.
Marsu udearnu dosode 0o epaghosa ca seriukoM riogesaHouwhy, 0ok eehu
udeanu Oajy pehe unu Heroge3daHe epaghose. V3padyyHamu UHOEKCU
odpaxkasajy obpacue y cumempuju, pacrnodenu cmerneHa u pacmojarby,
yka3yjyhu mako Ha cywmuHcKe anzebapcke KapaKkmepucmuke.
Sakrbyuyu:  JeduHuyHU  egpaghosu  3acHoeaHU  Ha  udeanuma
npedcmaesbajy HOBU OK8UP 3a [MpoyyYaeare UHmMepakuuje uamehy
anzebapckux ceojcmasa rnpcmeHa U CmpyKkmypHUX ocobuHa epadghosa.
JobujeHu pesynmamu OonpuHoce pa3eojy aneebapckux anama
MpUMEHsbUBUX Yy MameMamuykoj xemuju, 6e36e0HOj KoMyHuKauuju u
meopujcKoj padyHapCcKoj Hayuu.

KbyyHe  peyu:  jeQuHuue, udeasiu,  MOMoOJIOWKU  UHOEeKcuU,
KOMymamueHU IMpCMmeH.

Paper received on: 31.03.2025.
Manuscript corrections submitted on:11.04.2025.
Paper accepted for publishing on: 10.06.2025.

© 2025 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier
(www.vtg.mod.gov.rs, BTr.mo.ynp.cp6). This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/rs/).



http://www.vtg.mod.gov.rs/
http://%D0%B2%D1%82%D0%B3.%D0%BC%D0%BE.%D1%83%D0%BF%D1%80.%D1%81%D1%80%D0%B1/
http://creativecommons.org/licenses/by/3.0/rs/

