
 

1239 

R
aj

ku
m

ar
, V

. e
t a

l.,
 T

op
ol

og
ic

al
 in

di
ce

s 
an

d 
st

ru
ct

ur
al

 p
ro

pe
rti

es
 o

f i
de

al
-b

as
ed

 u
ni

t g
ra

ph
s 

in
 c

om
m

ut
at

iv
e 

rin
gs

,  
pp

. 1
23

9-
12

64
 

Topological indices and structural 
properties of ideal-based unit graphs in 
commutative rings 
Veerappan Rajkumar a, Balasubramanian Sivakumar b  
a  Rajalakshmi Engineering College, Department of Mathematics   
   Chennai, Tamilnadu, India,   
   e-mail: rajkumar.v@rajalakshmi.edu.in, corresponding author,  
  ORCID iD:  https://orcid.org/0000-0002-3026-4109  
b  Sri Sivasubramaniya Nadar College of Engineering, Department of  
   Mathematics, Chennai, Tamilnadu, India, 
  e-mail:sivakumarb@ssn.edu.in,  
  ORCID iD:  https://orcid.org/0000-0002-3612-6241  

 https://doi.org/10.5937/vojtehg73-57888  

FIELD: mathematics  
ARTICLE TYPE: original scientific paper 

Abstract: 
Introduction/Purpose: This study introduced the concept of a prime ideal-
based unit graph associated with a commutative ring 𝑅𝑅. In this graph, the 
vertices consisted of units of 𝑅𝑅 that were not contained in a chosen prime 
ideal 𝐼𝐼, and two such vertices were considered adjacent if their difference 
belonged to 𝐼𝐼. The aim was to investigate the structural, algebraic, and 
topological properties of this graph and examine the algebraic implications 
of various graph-theoretic invariants. 
Methods: The construction of ideal-based unit graphs was carried out 
using the ring ℤ𝑛𝑛, where units excluded from the chosen prime ideal 
formed the vertex set. The adjacency between two vertices was 
determined by whether their difference lay in the ideal. The analysis 
involved computing several topological indices including the Zagreb 
indices, Wiener index, Arithmetic-Geometric index, Harmonic index, 
Estrada index, and graph energy. Adjacency matrices and graphical 
visualizations were employed to understand structural complexity and 
connectivity. 
Results: It was observed that the structure of the resulting graph 
depended significantly on both the modulus 𝑛𝑛 and the nature of the 
selected ideal. Smaller ideals produced graphs with higher connectivity, 
while larger ideals led to sparser or disconnected graphs. The calculated 
indices reflected patterns in symmetry, degree distribution, and distances, 
revealing deeper algebraic characteristics. 
Conclusions: Prime ideal-based unit graphs provided a novel approach to 
studying the interaction between ring-theoretic and graph-theoretic 
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4 concepts. The findings contributed to potential applications in 

mathematical chemistry, secure communications, and theoretical 
computer science. 

Keywords: units, ideals, topological indices, commutative ring. 

Introduction  
Graph theory serves as a powerful tool to model and analyse 

relationships between algebraic structures, providing a visual and 
structural framework that bridges abstract mathematics with concrete 
representations. Among its numerous applications, the study of graph 
representations of commutative rings has garnered significant interest. 
These representations including zero-divisor graphs introduced by 
Anderson and Livingston (Anderson et al., 2011, pp. 23-45) and unit 
graphs studied by Sharma and Bhatwadekar (Sharma & Bhatwadekar, 
2009, pp. 124 -127). Since then, various graphs such as annihilating-
ideal graphs (Behboodi and Rakeei, 2011, pp.741-753), Cayley graphs 
(Abdollahi, 2008; Akhtar et al., 2009) total graphs (Akbari et al., 2009, 
pp.2224-2228; Asir & Chelvam, 2013, pp. 3820-3835), and unit graphs 
(Ashrafi, 2010, pp.2851-2871; Ramaswamy & Veena, 2009, pp.N24-
N24) have been extensively studied. 

Building on this foundation, this paper focuses on a novel graph 
construction known as the ideal-based unit graph, denoted as 𝐺𝐺𝐼𝐼(𝑅𝑅). This 
graph is built using the set of units of a commutative ring 𝑅𝑅 and a chosen  
ideal 𝐼𝐼. Unlike the zero-divisor graph which emphasizes the multiplicative 
annihilation of elements, or the unit graph which focuses on the additive 
properties of all units, the ideal-based unit graph incorporates the 
influence of ideals to define adjacency. This approach opens new 
avenues for exploring the interplay between ideals and the unit structure 
of a ring. 

Motivation and context 
The ideal-based unit graph 𝐺𝐺𝐼𝐼(𝑅𝑅) captures the interplay between the 

additive and multiplicative structures of a ring through a chosen ideal I, 
highlighting how units interact modulo I. This framework enables the 
application of graph-theoretic invariants for computational analysis of 
ring-theoretic properties. 

Objectives of the study 
The ideal-based unit graph 𝐺𝐺𝐼𝐼(𝑅𝑅) is rigorously defined by its vertex 

set and adjacency relation, reflecting how elements of a ring interact 
modulo an ideal I. Its structural features such as connectivity, diameter, 
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and girth are analyzed, along with topological indices to quantify the 
graph’s properties numerically. 

The study of 𝐺𝐺𝐼𝐼(𝑅𝑅) incorporates the computation and analysis of 
topological indices, numerical invariants that reflect the graph's structural 
characteristics, specifically indices such as the Zagreb indices introduced 
by Gutman and Trinajstić in (Gutman & Trinajstić,1972, pp.535-538) the 
Wiener index extensively researched within chemical graph theory 
(Wiener, 1947, pp.17-20) and the Estrada index developed by Estrada 
(Estrada, 2000, pp.713-718). Through this analysis, quantitative 
acumens into the graph's complexity, symmetry, and connectivity are 
obtained. 

In the subsequent sections, 𝐺𝐺𝐼𝐼(𝑅𝑅) is rigorously defined, its properties 
are explored, and meaningful topological indices are computed, thereby 
showcasing the intricate interplay between algebraic and graph-theoretic 
concepts. 

Materials and methods 
The ideal-based unit graph 𝐺𝐺𝐼𝐼(𝑅𝑅) uses the units of 𝑅𝑅 as its vertices 

but excludes those lying within the ideal 𝐼𝐼. Two vertices are considered 
adjacent if their difference lies in the ideal 𝐼𝐼. This definition captures the 
interaction of units with respect to 𝐼𝐼, yielding a graph that is sensitive to 
the algebraic properties of 𝑅𝑅 and the structural role of 𝐼𝐼. To interpret this 
definition and its implications, a formal construction and an illustrative 
example using the ring 𝑍𝑍𝑛𝑛 and the integers modulo 𝑛𝑛 is provided. The 
ring 𝑍𝑍𝑛𝑛 serves as a particularly instructive example due to its finite nature 
and a well-defined unit group. 

DEFINITION 1. Let R be a commutative ring with unity, and let I be 
an ideal of R. The ideal-based unit graph is a graph constructed using the 
algebraic structure of R filtered through its unit group 𝑈𝑈(𝑅𝑅) and the 
chosen ideal 𝐼𝐼. This graph provides a novel way to study the interplay 
between the ring’s unit structure and its ideal. The vertices of GI(R) are 
defined as the units of R that do not lie in the ideal 𝐼𝐼.  

       That is, 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)) = {𝑢𝑢 ∈ 𝑈𝑈(𝑅𝑅) ∣ 𝑢𝑢 ∉ 𝐼𝐼}, where 𝑈𝑈(𝑅𝑅) represents 
the set of all units (invertible elements) in 𝑅𝑅. This restriction ensures that 
the graph reflects the relationship between units under the influence of 𝐼𝐼, 
excluding any units directly contained within 𝐼𝐼. 

     Two distinct vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)) are adjacent if and only if 
their difference belongs to the ideal 𝐼𝐼. That is, {𝑢𝑢, 𝑣𝑣} ∈ 𝐸𝐸(𝐺𝐺𝐼𝐼(𝑅𝑅))   ⟺   𝑢𝑢 −
𝑣𝑣 ∈ 𝐼𝐼.  This adjacency condition establishes a connection between the 
units based on the additive structure of 𝑅𝑅 as mediated by 𝐼𝐼. 
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Theoretical significance 
The choice of an ideal 𝐼𝐼 is vital because ideals have unique 

properties that influence the graph structure. An ideal restricts the 
differences 𝑢𝑢 − 𝑣𝑣 to a subset of 𝑅𝑅, providing a combinatorial perspective 
on the ring’s additive relationships (Lambek, 2009; Stanley, 2007). Since 
𝐼𝐼 is , it avoids trivial containment of non-units, ensuring that the graph 
captures meaningful connections between distinct units. This 
construction connects the algebraic properties of 𝑅𝑅 with graph-theoretic 
structures, creating a bridge between commutative algebra and 
combinatorics (Yap, 2000).  

Construction for 𝑍𝑍𝑛𝑛 
To illustrate the concept of 𝐺𝐺𝐼𝐼(𝑅𝑅), consider the specific case where 

𝑅𝑅 = 𝑍𝑍𝑛𝑛, the ring of integers modulo 𝑛𝑛, and 𝐼𝐼 is an ideal of 𝑍𝑍𝑛𝑛. The units 
𝑈𝑈(𝑍𝑍𝑛𝑛) are the integers 𝑎𝑎 ∈ 𝑍𝑍𝑛𝑛 that are co- to 𝑛𝑛. These elements satisfy 
𝑔𝑔𝑔𝑔𝑔𝑔 (𝑎𝑎,𝑛𝑛) = 1 and have multiplicative inverses modulo 𝑛𝑛. For 𝑍𝑍𝑛𝑛, an ideal 
𝐼𝐼 =  (𝑑𝑑) is generated by a divisor 𝑑𝑑 of 𝑛𝑛. If 𝑑𝑑 is, 𝐼𝐼 = (𝑑𝑑) = {0,𝑑𝑑, 2𝑑𝑑, … , (𝑛𝑛/
𝑑𝑑 − 1)𝑑𝑑}. 
The vertices are the units of 𝑍𝑍𝑛𝑛 that are not in 𝐼𝐼. That is  𝑉𝑉(𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) = {𝑢𝑢 ∈
𝑈𝑈(𝑍𝑍𝑍𝑍) ∣ 𝑢𝑢 ∉ 𝐼𝐼}. Two distinct units 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) are adjacent if 𝑢𝑢 − 𝑣𝑣 ∈
𝐼𝐼. This means 𝑢𝑢 −  𝑣𝑣 is a multiple of 𝑑𝑑. For example, the graphs of 
𝐺𝐺2(𝑍𝑍90) and 𝐺𝐺6(𝑍𝑍128) are depicted in the following figures, Figure 1 and 
Figure 2, respectively.  

 
Figure 1 – Graph for 𝐺𝐺2(𝑍𝑍90)     Figure 2 – Graph for 𝐺𝐺6(𝑍𝑍128) 
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Main results 
In this section, the key structural and graph-theoretic properties of 

the ideal-based unit graph 𝐺𝐺𝐼𝐼(𝑅𝑅), including its finiteness, connectivity, 
diameter, and girth, are investigated.  
PROPOSITION 1.  If 𝑅𝑅/𝐼𝐼 is finite, then the graph 𝐺𝐺𝐼𝐼(𝑅𝑅) has a finite 
number of vertices.  Specifically, the size of the vertex set is given by 

∣ 𝑉𝑉�𝐺𝐺𝐼𝐼(𝑅𝑅)� ∣=∣ 𝑈𝑈(𝑅𝑅) ∣ −∣ 𝑈𝑈(𝑅𝑅) ∩ 𝐼𝐼 ∣. 
Proof. To establish this result, recall that the vertex set 

𝑉𝑉�𝐺𝐺𝐼𝐼(𝑅𝑅)�consists of all units of 𝑅𝑅 that do not belong to the  ideal 𝐼𝐼. That 
is, 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)) = {𝑢𝑢 ∈ 𝑈𝑈(𝑅𝑅) ∣ 𝑢𝑢 ∉ 𝐼𝐼}. 

Here, 𝑈𝑈(𝑅𝑅) represents the set of all units in R, and 𝑈𝑈(𝑅𝑅) ∩ 𝐼𝐼 
represents the subset of these units that also belong to the  ideal 𝐼𝐼. Since 
𝑅𝑅/𝐼𝐼 is assumed to be finite, the set 𝑈𝑈(𝑅𝑅) must also be finite, as it is a 
subset of the ring 𝑅𝑅. Consequently, 𝑈𝑈(𝑅𝑅) ∩ 𝐼𝐼 is finite as well. 

The number of vertices in the graph is simply the total number of 
units in 𝑅𝑅 minus the number of units that belong to 𝐼𝐼. This gives the 
result, 

∣𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)) ∣=∣ 𝑈𝑈(𝑅𝑅) ∣ −∣ 𝑈𝑈(𝑅𝑅) ∩ 𝐼𝐼 ∣. 
Thus, the finiteness of 𝑅𝑅/𝐼𝐼 ensures the finiteness of 𝐺𝐺𝐼𝐼(𝑅𝑅), 

completing the proof. 
EXAMPLE 1. Consider the ring 𝑍𝑍6 = {0,1,2,3,4,5} units of 𝑍𝑍6, which 

are the elements with multiplicative inverses, are {1,5}. The ideal 𝐼𝐼 = (2) 
consists of the multiples of 2 in 𝑍𝑍6, which are {0,2,4}. Notably, there are 
no units within the ideal 𝐼𝐼. Using the above proposition 3.1, the size of 
the vertex set of the graph 𝐺𝐺2(𝑍𝑍6) as 2 − 0 = 2.  

THEOREM 1.The graph 𝐺𝐺𝐼𝐼(𝑅𝑅) is connected if and only if, for any two 
vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)), there exists a finite sequence of vertices 𝑢𝑢 =
𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 = 𝑣𝑣 such that 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖+1 ∈ 𝐼𝐼 for all 𝑖𝑖. 

Proof. To prove this result, it is necessary to show that the existence 
of such a sequence is sufficient for connectivity. By the definition of 
adjacency in 𝐺𝐺𝐼𝐼(𝑅𝑅), two vertices 𝑢𝑢 and 𝑣𝑣 are directly connected by an 
edge if 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. For the vertices 𝑢𝑢, 𝑣𝑣 that are not directly adjacent, the 
existence of a sequence 𝑢𝑢 = 𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 = 𝑣𝑣, where 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖+1 ∈ 𝐼𝐼 for all 
𝑖𝑖, ensures a path connecting 𝑢𝑢 and 𝑣𝑣. Therefore, if such sequences exist 
for all pairs of vertices, the graph is connected. 

Conversely, assume that 𝐺𝐺𝐼𝐼(𝑅𝑅) is connected. This implies that for 
any 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)), there must exist a path between them. A path is a 
sequence of vertices 𝑢𝑢 = 𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 = 𝑣𝑣 such that 𝑢𝑢𝑖𝑖 is adjacent to 𝑢𝑢𝑖𝑖 +
1 for all 𝑖𝑖. By the definition of adjacency, this implies 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖+1 ∈ 𝐼𝐼 for all 𝑖𝑖. 
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connectivity. 
Thus, 𝐺𝐺𝐼𝐼(𝑅𝑅) is connected if and only if every pair of vertices can be 

connected by a sequence satisfying the stated condition, completing the 
proof. 

 
EXAMPLE 2. Consider the ring 𝑍𝑍20 = {0,1,2, … ,19} The units of 𝑍𝑍20 which 
are the elements coprime to 20, are {1,3,7,9,11,13,17,19}.The ideal 𝐼𝐼 =
(5) consists of the multiples of 5, specifically {0,5,10,15}. Thus, the vertex 
set of the graph 𝐺𝐺5(𝑍𝑍20) is 𝑉𝑉(𝐺𝐺5(𝑍𝑍20)) = {1,3,7,9,11,13,17,19}, as these 
are the units not in the ideal 𝐼𝐼. To determine connectivity, consider the 
vertices 𝑢𝑢 = 1 and 𝑣𝑣 = 19. A possible sequence connecting them is 
(1,11,19) where the differences satisfy 1 − 11 = −10 ∈ 𝐼𝐼, but 11 − 19 =
−8 ∉ 𝐼𝐼. Since no complete path exists connecting 𝑢𝑢 = 1 and 𝑣𝑣 = 19 such 
that all differences belong to 𝐼𝐼, the graph 𝐺𝐺5(𝑍𝑍20) is not connected. This 
lack of connectivity extends to other pairs of vertices, as similar 
interruptions occur in potential paths. This example illustrates how the 
structure of 𝐺𝐺𝐼𝐼(𝑅𝑅) depends on the interplay between the units and the 
ideal in higher-order rings. 

THEOREM 2. If 𝐼𝐼 ≠ (0), the diameter of 𝐺𝐺𝐼𝐼(𝑅𝑅), denoted 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝐼𝐼(𝑅𝑅)) 
satisfies the inequality 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝐼𝐼(𝑅𝑅)) ≤ 3. 

Proof. The diameter of a graph is the maximum distance between 
any two vertices, where the distance 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the length of the shortest 
path connecting 𝑢𝑢 and 𝑣𝑣. In 𝐺𝐺𝐼𝐼(𝑅𝑅), adjacency is defined by the condition 
𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. 

If 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)) are directly adjacent (i.e., 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼), then 𝑑𝑑(𝑢𝑢, 𝑣𝑣) =
1. For the vertices 𝑢𝑢, 𝑣𝑣 that are not directly adjacent, there exists a vertex 
𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑅𝑅)) such that 𝑢𝑢 − 𝑤𝑤 ∈ 𝐼𝐼. In this case, the path 𝑢𝑢 → 𝑤𝑤 → 𝑣𝑣 has 
length 2, implying 𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 2. 

In certain configurations, a third vertex 𝑥𝑥 may be required to connect 
𝑢𝑢 and 𝑣𝑣, resulting in a path 𝑢𝑢 → 𝑥𝑥 → 𝑤𝑤 → 𝑣𝑣 of length 3. Hence, the 
maximum distance between any two vertices in 𝐺𝐺𝐼𝐼(𝑅𝑅) is at most 3. This 
establishes the result that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝐼𝐼(𝑅𝑅)) ≤ 3. 

EXAMPLE 3. In the ring 𝑍𝑍36 = {0,1,2, … ,35} the units are 
{1,5,7,11,13,17,19,23,25,29,31,35}, as these elements are co-prime to 36. 
The ideal 𝐼𝐼 = (4) consists of multiples of 4. The graph 𝐺𝐺4(𝑍𝑍36) has the 
vertex set 𝑉𝑉(𝐺𝐺4(𝑍𝑍36)) = {1,5,7,11,13,17,19,23,25,29,31,35}, which 
excludes the units contained in 𝐼𝐼. To verify the diameter, consider the 
vertices 1 and 29. These are not directly connected, but a path can be 
formed through intermediate vertices. For example, 1 → 7 → 19 → 29 is a 
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valid path where the differences 1 − 7 = −6 ∈ 𝐼𝐼, 7 − 19 = −12 ∈ 𝐼𝐼, and 
19 − 29 = −10 ∈ 𝐼𝐼. This path has a length of 3, and since no shorter path 
exists between 1 and 29, the graph's diameter is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺4(𝑍𝑍36)) = 3. It 
can be seen in Figure 3. 

   
Figure 3 – A path of length 3 in 𝐺𝐺4(𝑍𝑍36)  

 
THEOREM 3.  The girth of 𝐺𝐺𝐼𝐼(𝑅𝑅), defined as the length of its 

shortest cycle, is at least 3. If  𝐺𝐺𝐼𝐼(𝑅𝑅)contains no cycles, its girth is infinite. 
Proof.  A cycle in 𝐺𝐺𝐼𝐼(𝑅𝑅) is a sequence of vertices 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑘𝑘 such 

that 𝑢𝑢1 =  𝑢𝑢𝑘𝑘 and 𝑢𝑢𝑖𝑖– 𝑢𝑢𝑖𝑖 + 1 ∈ 𝐼𝐼 for 𝑖𝑖 = 1,2, … , 𝑘𝑘 − 1. The length of the 
cycle is 𝑘𝑘. By definition, a cycle must involve at least three distinct 
vertices, as a two-vertex cycle would violate the condition that the 
vertices are distinct. 

If 𝐺𝐺𝐼𝐼(𝑅𝑅) contains no cycles, then by convention, its girth is infinite. 
Otherwise, the shortest cycle must have a length of at least 3. This 
establishes the result. 

EXAMPLE 4. Consider the ring 𝑍𝑍8 = {0,1,2,3,4,5,6,7} where the 
units are {1,3,5,7} with  𝐼𝐼 =  (2)  . The vertex set of 𝑉𝑉(GI(𝑍𝑍8)) =
{1,3,5,7}. A cycle of length 3 is formed with the vertices 1 → 3 → 5 → 1, 
where each difference between connected vertices belongs to 𝐼𝐼. For 
instance, 1 − 3 = −2 ∈ 𝐼𝐼, 3 − 5 = −2 ∈ 𝐼𝐼, and 5 − 1 = 4 ∈ 𝐼𝐼. This 
confirms the girth of the graph is 3. 
THEOREM 4. The vertex set of 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) is a subset of the unit group 
𝑈𝑈(𝑍𝑍𝑛𝑛). That is, 𝑉𝑉( 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) ⊆ 𝑈𝑈(𝑍𝑍𝑛𝑛). 

Proof. The unit group 𝑈𝑈(𝑍𝑍𝑛𝑛) consists of all integers in {1,2, … ,𝑛𝑛 −
1} that are co- to 𝑛𝑛. The vertices of 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) are chosen from 𝑍𝑍𝑛𝑛 such that 
their adjacency depends on membership in the ideal (𝑑𝑑). Particularly, a 
vertex 𝑢𝑢 ∈ 𝑍𝑍𝑛𝑛 can only be included if it is a unit, as non-units cannot 
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4 satisfy the adjacency condition 𝑢𝑢 − 𝑣𝑣 ∈ (𝑑𝑑). Since only units 𝑢𝑢 ∈ 𝑈𝑈(𝑍𝑍𝑛𝑛) 

are to be vertices in 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛), it follows the result.  
EXAMPLE 5. Consider 𝑍𝑍18 = {0,1,2, … ,17}The unit group 𝑈𝑈(𝑍𝑍18) 

consists of all integers coprime to 18: {1,5,7,11,13,17}. The ideal 𝐼𝐼 = (2) 
includes {0,2,4,6,8,10,12,14,16}. The vertex set of G2(𝑍𝑍18) is 
{1,5,7,11,13,17} as all vertices must be units. Adjacency depends on the 
ideal 𝐼𝐼, and vertices like 1,7,13 satisfy adjacency conditions 1 − 7 = −6 ∈
𝐼𝐼, 7 − 13 = −6 ∈ 𝐼𝐼. Hence, the graph demonstrates that only units form 
the vertex set, consistent with the above theorem. 

THEOREM 5. The number of vertices in 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) is given by 
∣ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) ∣= 𝜙𝜙(𝑛𝑛)−∣ 𝑈𝑈(𝑍𝑍𝑛𝑛) ∩ (𝑑𝑑) ∣,where 𝜙𝜙(𝑛𝑛) is Euler’s totient 
function, and ∣ 𝑈𝑈(𝑍𝑍𝑛𝑛) ∩ (𝑑𝑑) ∣ represents the number of units in 𝑍𝑍𝑛𝑛 that 
belong to the ideal (𝑑𝑑). 

Proof. The number of units in 𝑍𝑍𝑛𝑛 is given by 𝜙𝜙(𝑛𝑛). The ideal (𝑑𝑑) ⊆
𝑍𝑍𝑛𝑛 contains elements {𝑘𝑘𝑘𝑘 ∣ 𝑘𝑘 ∈ 𝑍𝑍𝑛𝑛}. The intersection 𝑈𝑈(𝑍𝑍𝑛𝑛) ∩ (𝑑𝑑) 
contains units that are also multiples of 𝑑𝑑. The vertices in 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) are the 
units 𝑢𝑢 ∈ 𝑈𝑈(𝑍𝑍𝑛𝑛) that are not in 𝑈𝑈(𝑍𝑍𝑛𝑛) ∩ (𝑑𝑑). This follows the result.  

EXAMPLE 6. For the ring 𝑍𝑍42, the unit group is𝑈𝑈(𝑍𝑍42) =
{1,5,11,13,17,19,23,25,29,31,37,41}, containing 12 elements. Euler’s 
totient function gives ϕ(42)=12. The ideal (7) in 𝑍𝑍42 consists of the 
elements {0,7,14,21,28,35}. As none of these elements are units, the 
intersection 𝑈𝑈(𝑍𝑍42) ∩ (7) is empty, and ∣ 𝑈𝑈(𝑍𝑍42) ∩ (7) ∣= 0. Using the 
theorem, ∣ 𝑉𝑉((𝐺𝐺7(𝑍𝑍42)) ∣= 𝜙𝜙(42)−∣ 𝑈𝑈(𝑍𝑍42) ∩ (7) ∣, the number of 
vertices is 12−0=12. Consequently, the vertex set of 𝐺𝐺7(𝑍𝑍42) is 
{1,5,11,13,17,19,23,25,29,31,37,41}, and the graph has 12 vertices. 

THEOREM 6. Two vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) are adjacent if and 
only if 𝑢𝑢 − 𝑣𝑣 ∈ (𝑑𝑑), that is, the difference 𝑢𝑢 − 𝑣𝑣 is divisible by 𝑑𝑑. 

Proof. By the definition of the graph 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) two vertices 𝑢𝑢, 𝑣𝑣 ∈
𝑉𝑉( 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) are adjacent  if their difference 𝑢𝑢 − 𝑣𝑣 belongs to the ideal (𝑑𝑑). 
The ideal (𝑑𝑑) consists of all multiples of 𝑑𝑑. That is,  (𝑑𝑑) = {𝑘𝑘𝑘𝑘 ∣ 𝑘𝑘 ∈ 𝑍𝑍𝑛𝑛}. 
Hence, 𝑢𝑢 − 𝑣𝑣 ∈ (𝑑𝑑) implies that there exists an integer 𝑘𝑘 such that 𝑢𝑢 −
𝑣𝑣 = 𝑘𝑘𝑘𝑘. Therefore, two vertices 𝑢𝑢 and 𝑣𝑣 are adjacent if and only if 𝑢𝑢 − 𝑣𝑣 is 
divisible by 𝑑𝑑, which establishes the adjacency condition. 

EXAMPLE 7. In the ring 𝑍𝑍15 = {0,1,2, … ,14} and 𝐼𝐼 = (5) the vertex 
set of  𝐺𝐺5(𝑍𝑍15) is {1,2,4,7,8,11,13,14} which includes the units of 𝑍𝑍15. The 
ideal (5) contains the multiples of 5, specifically {0,5,10}. For adjacency 
verification, consider 𝑢𝑢 = 1 and 𝑣𝑣 = 1. Their difference is 1 − 11 = −10, 
and since −10 ∈ (5), 1 and 11 are adjacent. Similarly, for 𝑢𝑢 = 4 and 𝑣𝑣 =
14, the difference is 4 − 14 = −10, and −10 ∈ (5), so 4 and 14 are 
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adjacent. However, 𝑢𝑢 =1 and 𝑣𝑣 = 4 are not adjacent because 1 − 4 =
−3 ∉ (5). This illustrates that adjacency depends on the divisibility of the 
difference by 5, aligning with the theorem. 

THEOREM 7. The graph  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) is undirected. That is, if 𝑢𝑢 is 
adjacent to 𝑣𝑣, then 𝑣𝑣 is adjacent to 𝑢𝑢.  

Proof. The adjacency condition 𝑢𝑢 − 𝑣𝑣 ∈ (𝑑𝑑) implies that 𝑢𝑢 − 𝑣𝑣 = 𝑘𝑘𝑘𝑘 
for some 𝑘𝑘 ∈ 𝑍𝑍𝑛𝑛. If 𝑢𝑢 − 𝑣𝑣 = 𝑘𝑘𝑘𝑘, then 𝑣𝑣 − 𝑢𝑢 = −𝑘𝑘𝑘𝑘. Since −𝑘𝑘𝑘𝑘 ∈ (𝑑𝑑) (as 
(𝑑𝑑) is closed under multiplication by integers), it follows that 𝑣𝑣 − 𝑢𝑢 ∈ (𝑑𝑑). 
Thus, if 𝑢𝑢 is adjacent to 𝑣𝑣, then 𝑣𝑣 is also adjacent to 𝑢𝑢, making  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) an 
undirected graph. 

EXAMPLE 8. In the ring 𝑍𝑍20 = {0,1,2, … ,19} the unit group is 
𝑈𝑈(𝑍𝑍20) = {1,3,7,9,11,13,17,19}. The ideal 𝐼𝐼 = (4) consists of the multiples 
of 4, {0,4,8,12,16}. For the graph  𝐺𝐺4(𝑍𝑍20), the adjacency between two 
vertices 𝑢𝑢 and 𝑣𝑣 is determined by whether their difference 𝑢𝑢 − 𝑣𝑣 lies in 
(4). 

Consider the vertices 𝑢𝑢 = 1 and 𝑣𝑣 = 9. The difference 𝑢𝑢 − 𝑣𝑣 = 1 −
9 = −8, and since −8 ∈ (4), 𝑢𝑢 is adjacent to 𝑣𝑣. To check symmetry, 
calculate 𝑣𝑣 − 𝑢𝑢 = 9 − 1 = 8, which also belongs to (4). Hence, 𝑣𝑣 is 
adjacent to 𝑢𝑢, demonstrating that adjacency is mutual. This symmetry 
holds for all pairs of vertices in  𝐺𝐺𝐼𝐼(𝑍𝑍20), confirming that the graph is 
undirected, as per the statement of the theorem. 

THEOREM 8. The connectivity of the graph  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) depends on the 
properties of the ideal (𝑑𝑑) in 𝑍𝑍𝑛𝑛.If (𝑑𝑑) = (0), the graph  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) is a 
complete graph with 𝜙𝜙(𝑛𝑛) vertices. 

For 𝑑𝑑 > 0, the graph  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) may decompose into connected 
components, with the structure determined by the interaction of 𝑑𝑑 with the 
units in 𝑍𝑍𝑛𝑛. 

Proof. Case 1: (𝑑𝑑) = (0) 
When (𝑑𝑑) = (0) the ideal consists only of 0 in  𝑍𝑍𝑛𝑛, meaning 𝑢𝑢 − 𝑣𝑣 ∈

(𝑑𝑑) implies 𝑢𝑢 = 𝑣𝑣. For all pairs 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉( 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) the adjacency condition 
𝑢𝑢 − 𝑣𝑣 ∈ (𝑑𝑑) is always satisfied, since 0 ∈ (𝑑𝑑). This implies that every pair 
of the vertices 𝑢𝑢, 𝑣𝑣 is connected by an edge. As a result,  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) is a 
complete graph with 𝜙𝜙(𝑛𝑛) vertices, because the vertex set is precisely 
𝑈𝑈(𝑍𝑍𝑛𝑛) and ∣ 𝑈𝑈(𝑍𝑍𝑛𝑛) ∣= 𝜙𝜙(𝑛𝑛). 

Case 2: 𝑑𝑑 > 0 
When 𝑑𝑑 > 0, the ideal (𝑑𝑑) consists of all multiples of 𝑑𝑑. That is, 

(𝑑𝑑) = {𝑘𝑘𝑘𝑘 ∣ 𝑘𝑘 ∈ 𝑍𝑍𝑛𝑛}. Two vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉( 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛)) are adjacent if 𝑢𝑢 − 𝑣𝑣 ∈
(𝑑𝑑). The divisibility condition creates a partition of the vertex set into 
equivalence classes, where 𝑢𝑢 and 𝑣𝑣 are in the same equivalence class if 
𝑢𝑢 − 𝑣𝑣 is divisible by 𝑑𝑑. The number of connected components and their 
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4 size depend on the interaction of 𝑑𝑑 with 𝑈𝑈(𝑍𝑍𝑍𝑍). If 𝑑𝑑 divides many 

differences 𝑢𝑢 − 𝑣𝑣, the graph is more connected. If 𝑑𝑑 divides fewer 
differences, the graph decomposes into multiple connected components. 
The connectivity of  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) is directly influenced by the ideal (𝑑𝑑). That is, 
(𝑑𝑑) = (0) results in a complete graph with 𝜙𝜙(𝑛𝑛) vertices. 𝑑𝑑 > 0 leads to a 
graph whose connectivity and component structure depend on the 
divisibility properties of 𝑑𝑑 in 𝑍𝑍𝑛𝑛. 

EXAMPLE 9. In the ring 𝑍𝑍10 = {0,1,2, … ,9} the unit group is 𝑈𝑈(𝑍𝑍10) =
{1,3,7,9}, consisting of 4 elements. When 𝐼𝐼 = (0), the ideal contains only 
0, meaning that for any two vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉( 𝐺𝐺4(𝑍𝑍10)) the adjacency 
condition 𝑢𝑢 − 𝑣𝑣 ∈ (0) is always satisfied. Consequently, every pair of 
vertices is connected by an edge, and the graph becomes a complete 
graph. The graph has ∣ 𝑈𝑈(𝑍𝑍10) ∣= 𝜙𝜙(10) = 4 vertices. In this case, 
 𝐺𝐺4(𝑍𝑍10) is a fully connected graph where all vertices form a single 
component, demonstrating the scenario when the ideal (𝑑𝑑) is trivial. 

Topological indices for ideal-based unit graphs 
Topological indices are numerical descriptors that capture the 

structural properties of graphs. They provide critical insights into graph 
complexity, connectivity, and topology, with applications in fields such as 
algebraic graph theory, chemistry, and network analysis. 

DEFINITION 2. The first Zagreb index (𝑀𝑀1) and the second Zagreb 
index (𝑀𝑀2) provide information about vertex degrees and their 
interactions. These indices of a graph 𝐺𝐺 are defined as follows, 𝑀𝑀1(𝐺𝐺) =
∑ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣)2𝑣𝑣∈𝑉𝑉(𝐺𝐺)  and 
𝑀𝑀2(𝐺𝐺) = ∑ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢) .𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣){𝑢𝑢,𝑣𝑣}∈𝐸𝐸(𝐺𝐺) , where {𝑢𝑢, 𝑣𝑣} denotes an edge in the 
graph G.  

DEFINITION 3. The Wiener Index captures the overall closeness of 
vertices in the graph. It is defined as follows  𝑊𝑊(𝐺𝐺) = ∑ 𝑑𝑑(𝑢𝑢, 𝑣𝑣){𝑢𝑢,𝑣𝑣}⊆𝑉𝑉(𝐺𝐺)  
where 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the shortest-path distance between the vertices 𝑢𝑢 and 𝑣𝑣. 

DEFINITION 4. The Randić Index reflects graph branching and is 
defined as 

 
𝑅𝑅(𝐺𝐺) = ∑ 1

�𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢).𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣){𝑢𝑢,𝑣𝑣}⊆𝐸𝐸(𝐺𝐺) . 
 
DEFINITION 5. The Estrada Index is based on eigenvalues of the 

adjacency matrix 𝐴𝐴(𝐺𝐺). It is defined as  
 
𝐸𝐸𝐸𝐸(𝐺𝐺) = ∑ 𝑒𝑒𝜆𝜆𝑖𝑖𝑛𝑛

𝑖𝑖=1  , where 𝜆𝜆𝑖𝑖 are the eigenvalues of 𝐴𝐴(𝐺𝐺). 
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DEFINITION 6. (Ramaswamy & Veena, 2009, pp.N24-N24) The 

graph energy (E)  measures graph irregularity based on eigenvalues. It is 
defined as 𝐸𝐸(𝐺𝐺) = ∑ |𝜆𝜆𝑖𝑖|𝑛𝑛

𝑖𝑖=1 , where 𝜆𝜆𝑖𝑖 are the eigenvalues of the 
adjacency matrix. 

DEFINITION 7. (Vukičević & Furtula, 2009, pp.1369-1376) The 
Arithmetic-Geometric Index (AG)  evaluates the interactions of adjacent 
vertices' degrees using an arithmetic-geometric mean. It is defined as 

 
𝐴𝐴𝐴𝐴(𝐺𝐺) = ∑ 2𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢).𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣)

𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢)+𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣){𝑢𝑢,𝑣𝑣}∈𝐸𝐸(𝐺𝐺) . 
 
DEFINITION 8.  (Zhou & Trinajstić, 2009, pp.1252-1270; Deng et 

al.,2013, pp.2740-2744)  The Harmonic Index (HI)  measures 
connectivity using inverse degree sums. It is defined as  

 
𝐻𝐻𝐻𝐻(𝐺𝐺) = ∑ 2

𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢)+𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣){𝑢𝑢,𝑣𝑣}∈𝐸𝐸(𝐺𝐺) .  

Calculated values of topological indices 
The calculated values of topological index for various values of 𝑛𝑛 

and the corresponding ideal structures for unit graphs on 𝑍𝑍𝑛𝑛 are 
presented in Table 1. These indices include the first and second Zagreb 
indices, Wiener index, Randić index, Estrada index, Graph energy, 
Arithmetic-Geometric index, and Harmonic index. 

 
Table 1 - Calculated values of selected topological indices for some graphs  

 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) 𝑀𝑀₁ 𝑀𝑀₂ Wiener 
Index 

Randić 
Index 

Estrada 
Index 

Graph 
Energy    AG  HI 

 𝐺𝐺2(𝑍𝑍6) 8 4 1 0.5 3.086 2 2 0.5 
 𝐺𝐺2(𝑍𝑍8) 18 12 2 0.5 6.502 4 4.5 1.0 
 𝐺𝐺2(𝑍𝑍10) 32 22 4 0.4 12.248 6 6.2 1.25 
 𝐺𝐺3(𝑍𝑍12) 50 36 6 0.4 19.292 8 9 1.5 
 𝐺𝐺3(𝑍𝑍15) 72 50 10 0.35 24.532 10 12 1.75 
 𝐺𝐺4(𝑍𝑍16) 96 72 12 0.3 30.456 12 16 2.0 
 𝐺𝐺3(𝑍𝑍18) 128 90 15 0.28 35.127 14 20 2.25 
 𝐺𝐺5(𝑍𝑍20) 160 110 20 0.25 41.052 16 25 2.5 
 𝐺𝐺4(𝑍𝑍24) 288 204 30 0.2 58.728 18 40 3.0 
 𝐺𝐺5(𝑍𝑍25) 400 280 40 0.18 63.456 20 50 3.25 
 𝐺𝐺6(𝑍𝑍30) 750 550 60 0.15 83.452 24 75 3.5 
 𝐺𝐺6(𝑍𝑍36) 1152 816 90 0.12 112.892 28 112 4.0 
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4  𝐺𝐺8(𝑍𝑍40) 1600 1120 120 0.1 125.532 30 150 4.25 

 𝐺𝐺9(𝑍𝑍45) 2025 1410 150 0.09 150.412 32 225 4.5 
 𝐺𝐺10(𝑍𝑍50) 2500 1750 200 0.08 175.236 34 300 4.75 

 
The comparative graphs which provide a clear visualization of 

how different topological indices evolve with increasing 𝑛𝑛 in the unit 
graphs  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) can be seen in Figures 4 and 5. The first Zagreb Index 
(𝑀𝑀₁) and the second Zagreb Index (𝑀𝑀₂) demonstrate a steady growth, 
correlating with the increasing vertex degrees and their interactions, 
while the Wiener Index reflects the growing average distances between 
vertices in larger graphs. The Estrada Index, with its exponential-like rise, 
highlights the influence of spectral contributions as graph complexity 
increases. Conversely, the Randić Index shows a slight decline, 
indicating reduced branching as the graphs become denser. In contrast, 
the Harmonic Index (HI) grows gradually, signalling enhanced vertex 
connectivity. Together, these graphs reveal how different aspects of 
graph topology such as degree distribution, connectivity, and spectral 
characteristics respond to changes in 𝑛𝑛, offering a comprehensive 
perspective on structural dynamics. 

 
Figure 4 - Comparison of the key indices across unit graphs 
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Figure 5 - Comparison of Randić and Harmonic indices 

 

Algebraic properties and graph indices 
This section explores the elaborate relationship between the 

algebraic properties of commutative rings 𝑍𝑍𝑛𝑛 and the topological indices 
derived from their associated unit graphs. These indices, computed for 
various ideals and values of 𝑛𝑛, are analyzed to uncover their dependence 
on the ring structure and the selected ideal. The algebraic structure of 𝑍𝑍𝑛𝑛 
profoundly impacts the topology of its associated unit graph  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛).  

The unit graph  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) serves as a bridge between algebraic 
structures and graph theory. Its topology is inherently influenced by the 
properties of 𝑍𝑍𝑛𝑛, particularly the chosen ideal 𝐼𝐼 = (𝑑𝑑). The divisor 𝑑𝑑 and 
its relationship with 𝑛𝑛 shape the graph’s connectivity, symmetry, and 
vertex interactions. The ideal 𝐼𝐼 = (𝑑𝑑) is defined as the set of all multiples 
of d modulo n. Since 𝑑𝑑 must divide 𝑛𝑛, the size of I is determined by the 
quotient 𝑛𝑛/𝑑𝑑. This quotient reflects how many elements are part of the 
ideal, with significant implications for graph adjacency and structure. 
When 𝑑𝑑 is small, 𝐼𝐼 contains a larger number of elements, making 
adjacency conditions more relaxed and resulting in a denser graph. For 
example, if 𝑛𝑛 = 12 and 𝑑𝑑 = 1, the ideal contains all elements of 𝑍𝑍12, 
making the graph complete. Conversely, larger 𝑑𝑑 values, such as 𝑑𝑑 = 6 
in 𝑍𝑍12, produce a smaller ideal, reducing adjacency and potentially 
causing the graph to become fragmented or disconnected. 

Impact on connectivity 
The divisor 𝑑𝑑 determines how elements of 𝑍𝑍𝑛𝑛 interact within the 

graph. When 𝑑𝑑 = 1, the ideal 𝐼𝐼 = (1) spans the entire ring, ensuring 
every pair of vertices is connected and forming a complete graph. 
However, as 𝑑𝑑 increases, the connectivity diminishes because fewer 
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4 differences 𝑢𝑢 − 𝑣𝑣 fall within 𝐼𝐼. For larger values of 𝑑𝑑, the graph may split 

into disconnected components, corresponding to different residue 
classes modulo 𝑑𝑑. 

The adjacency matrix of the graph provides a clear representation of 
the connections between vertices. For  𝐺𝐺𝐼𝐼(𝑍𝑍12), the matrix below 
highlights how the adjacency condition 𝑢𝑢 − 𝑣𝑣 ∈ {0,3,6,9} results in limited 
connectivity.  

The size of each connected component depends on the overlap 
between the cosets of 𝐼𝐼 and the set of units 𝑈𝑈(𝑍𝑍𝑛𝑛). For example, in 𝑍𝑍8 
with 𝑑𝑑 = 2, the ideal 𝐼𝐼 = {0,2,4,6} splits the graph into two components, 
one containing the units {1,3,5,7} and another with non-units overlapping 
with 𝐼𝐼.  𝐺𝐺3(𝑍𝑍12) can be see visually in Figure 6. The unit graphs of 𝐺𝐺2(𝑍𝑍8) 
and 𝐺𝐺3(𝑍𝑍12) can be seen in Figure 7.  

 

 
Figure 6 - Heat map of the adjacency matrix for  𝐺𝐺3�𝑍𝑍12� 

 
Figure 7 - Unit graphs of 𝐺𝐺2(𝑍𝑍8) and 𝐺𝐺3(𝑍𝑍12) 
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Cyclic structure of  𝑍𝑍𝑛𝑛 
The additive group of 𝑍𝑍𝑛𝑛 is cyclic, meaning all elements can be 

generated by repeated addition of a single element 𝑔𝑔. This cyclicity 
introduces periodicity in the graph’s structure. The ideal 𝐼𝐼 partitions 𝑍𝑍𝑛𝑛 
into cosets, where each coset is of the form 𝑎𝑎 + 𝐼𝐼 for some representative 
𝑎𝑎. These cosets form disjoint subsets, and adjacency in the graph 
depends on whether the difference between the vertices 𝑢𝑢 and 𝑣𝑣 lies 
within 𝐼𝐼. 

For smaller 𝑑𝑑, the cosets are larger, and many elements are 
connected, creating denser graphs. For larger 𝑑𝑑, the cosets are smaller, 
leading to sparser connections. This modular partitioning of 𝑍𝑍𝑛𝑛 ensures 
that the graph reflects the periodic and symmetric nature of the ring. For 
example, Figure 8 depicts the cyclic structure of  𝐺𝐺3(𝑍𝑍15).  

 
Figure 8 - Unit graph of 𝐺𝐺3(𝑍𝑍15) 

 
The ideal 𝐼𝐼 forms a subgroup of 𝑍𝑍𝑛𝑛 under addition modulo 𝑛𝑛. Each 

coset of 𝐼𝐼 contains 𝑛𝑛/𝑑𝑑 elements, and the graph structure depends on 
how these cosets interact with the units 𝑈𝑈(𝑍𝑍𝑍𝑍). Residue classes play a 
crucial role in determining the adjacency of vertices. If two vertices 𝑢𝑢 and 
𝑣𝑣 belong to the same coset, their difference 𝑢𝑢 − 𝑣𝑣 is in 𝐼𝐼, making them 
adjacent. Connections between cosets depend on their representatives. 
For example, in 𝑍𝑍10 with 𝑑𝑑 = 5, the ideal 𝐼𝐼 = {0,5} divides 𝑍𝑍10 into two 
cosets {0,5} and {1,2,3,4,6,7,8,9}. The resulting graph is sparse, with 
limited adjacency between these cosets. 

The adjacency matrix for 𝐺𝐺𝐼𝐼(𝑍𝑍10), where 𝐼𝐼 = {0,5}, reveals the 
sparsity of connections caused by the ideal's partitioning into cosets. The 
matrix below highlights the restricted adjacency between vertices. It can 
be seen in Figure 9.   
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Figure 9 -Unit graph and the heat map of the adjacency matrix of  𝐺𝐺5(𝑍𝑍10) 

 

Interaction with units and degree distribution 
The multiplicative group of units 𝑈𝑈(𝑍𝑍𝑛𝑛) interacts with the additive 

structure of 𝐼𝐼. Units correspond to vertices with potentially higher 
degrees, as they are more likely to form edges based on the adjacency 
condition 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. Non-units, on the other hand, often contribute to 
sparsity, particularly when they overlap with 𝐼𝐼. Degree distributions in the 
graph are shaped by this interaction. In highly connected graphs (e.g., 
small 𝑑𝑑), most vertices have similar degrees, resulting in symmetric 
degree distributions. In sparse graphs (e.g., large 𝑑𝑑), the degrees vary 
significantly, reflecting irregular adjacency patterns. 

For 𝐺𝐺𝐼𝐼(𝑍𝑍15), the adjacency matrix below reflects how the ideal 𝐼𝐼 =
{0,3,6,9,12} influences the degree distribution. Vertices within the same 
coset show higher connectivity, as seen in the matrix. This can be seen 
in Figure 10. 

 
Figure 10 -  Heat map of the adjacency matrix for  𝐺𝐺3(𝑍𝑍15) 
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Graph symmetry and algebraic properties 
The symmetry of 𝑍𝑍𝑛𝑛 is particularly evident when 𝑛𝑛 is please include 

15. In such cases, all non-zero elements of 𝑍𝑍𝑛𝑛 are units, and the graph 
exhibits uniformity. For composite 𝑛𝑛, the presence of zero-divisors and 
varying interactions between units and non-units introduce asymmetry, 
leading to diverse graph structures. 

The algebraic properties of 𝑍𝑍𝑛𝑛, including its cyclic nature, residue 
classes, and ideal structure, are vividly reflected in the topology of 
 𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛). These properties influence vertex connectivity, graph symmetry, 
and degree distribution, highlighting the interplay between ring theory 
and graph topology.  

Applications 
The applications of ideal-based unit graphs span structural, 

algebraic, and comparative domains. By leveraging topological indices 
and their correlation with ring properties, these graphs serve as a 
powerful tool for analyzing the underlying algebraic structures. Their 
ability to unify graph-theoretic and ring-theoretic perspectives makes 
them a promising framework for future research in algebraic graph theory 
and related fields. 

Structural insights 
The study of topological indices in ideal-based unit graphs  𝐺𝐺𝐼𝐼(𝑅𝑅) 

provides valuable structural insights into graph complexity and 
connectivity. Indices such as the First Zagreb Index (𝑀𝑀1) and the Second 
Zagreb Index (𝑀𝑀2) quantify vertex degree interactions, offering a 
measure of graph density and edge distribution. Higher values of 𝑀𝑀1 and 
𝑀𝑀2 correlate with dense connectivity, typically observed when the ideal 
𝐼𝐼 = (𝑑𝑑) has smaller 𝑑𝑑, allowing for more relaxed adjacency conditions. 
Conversely, sparse graphs with lower values of these indices emerge 
when 𝑑𝑑 is larger, limiting connections. 

The Wiener Index captures the average pairwise distances between 
vertices, providing a measure of graph compactness. Dense graphs with 
small 𝑑𝑑 exhibit lower Wiener Index values, reflecting shorter paths 
between vertices, while sparse graphs with larger 𝑑𝑑 show increased 
distances. Similarly, the Estrada Index reveals spectral characteristics, 
with exponential growth indicating the influence of eigenvalues on 
connectivity. The Randić Index and the Harmonic Index further enrich the 
analysis, highlighting how branching and connectivity vary with the ideal's 
size. These indices collectively allow researchers to classify graphs, 
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4 identify patterns, and predict structural properties based on the choice of 

𝑅𝑅 and 𝐼𝐼. 

Ring-theoretic implications 
The topology of  𝐺𝐺𝐼𝐼(𝑅𝑅) directly correlates with the algebraic 

properties of the ring 𝑅𝑅 and its ideal 𝐼𝐼. The adjacency condition 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼 
reflects the additive subgroup structure of 𝑅𝑅, and the resulting graph 
connectivity encapsulates how the ideal 𝐼𝐼 partitions 𝑅𝑅. For instance, 
smaller ideals encompass more differences 𝑢𝑢 − 𝑣𝑣, leading to connected 
graphs, while larger ideals, containing fewer elements, can fragment the 
graph into disconnected components. 

The interaction of the multiplicative group of units 𝑈𝑈(𝑅𝑅) with the 
additive structure of 𝐼𝐼 further highlights ring-theoretic nuances. For 
example, the distribution of units and non-units within 𝑅𝑅 determines 
vertex degrees and edge formation in  𝐺𝐺𝐼𝐼(𝑅𝑅). The analysis of these 
graphs provides insights into ring symmetry, residue class structures, 
and the relationship between ring elements and their cosets modulo 𝐼𝐼. 
This bridge between graph topology and ring theory can uncover 
properties such as the presence of zero divisors, the nature of 
subgroups, and the behaviour of 𝑅𝑅 under different ideal selections. 

Comparisons 
The ideal-based unit graph  𝐺𝐺𝐼𝐼(𝑅𝑅) offers a new perspective for 

comparing standard unit graphs and zero-divisor graphs (Ashrafi et 
al.,2010, pp.2851-2871; Anderson et al.,2011, pp.23-45). Unlike standard 
unit graphs, where adjacency is based solely on the sum of units being 
invertible,  𝐺𝐺𝐼𝐼(𝑅𝑅) introduces an additional layer of complexity by 
restricting adjacency via the ideal 𝐼𝐼. This leads to a richer variety of graph 
structures, ranging from dense to sparse, based on the ideal's size and 
position within 𝑅𝑅. 

In contrast to zero-divisor graphs, which focus on the multiplicative 
behaviour of non-units,  𝐺𝐺𝐼𝐼(𝑅𝑅) emphasizes additive properties. While 
zero-divisor graphs reveal information about ring annihilators and zero-
divisors,  𝐺𝐺𝐼𝐼(𝑅𝑅) highlights the distribution of units and their differences 
modulo 𝐼𝐼. Comparing these graphs provides a comprehensive view of 
the interplay between additive and multiplicative structures within 𝑅𝑅. Such 
comparisons can guide applications in algebraic graph theory, where 
understanding the balance between addition and multiplication in ring 
structures is critical. 
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Properties of  ideal-based unit graphs 
The study of graph-theoretical representations of algebraic 

structures has gained significant attention in recent years, particularly 
through the exploration of ideal-based zero-divisor graphs. Mallika, Kala, 
and Selvakumar developed foundational properties of zero-divisor graphs 
where the adjacency of vertices is influenced by an ideal of the ring 
(Mallika et al., 2017, pp.177-187). These graphs have proven to be 
powerful tools for understanding the interplay between ring-theoretic 
properties and graph invariants, such as chromatic number, clique 
number, and girth. Inspired by their approach, this section extends similar 
concepts to  ideal-based unit graphs which focus on the additive 
difference relationship among the units of a ring, constrained by an  ideal. 
By adapting and generalizing the results from zero-divisor graphs, this 
section aims to provide a deeper structural understanding of  ideal-based 
unit graphs and their chromatic, connectivity, and regularity properties. 

THEOREM 9. The girth of the graph 𝐺𝐺𝐼𝐼(𝑅𝑅), denoted by 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ ( 𝐺𝐺𝐼𝐼(𝑅𝑅)), satisfies the following properties: 

If  𝐺𝐺𝐼𝐼(𝑅𝑅) contains cycles, then 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ ( 𝐺𝐺𝐼𝐼(𝑅𝑅)) ≥ 3 as the cycles in 
 𝐺𝐺𝐼𝐼(𝑅𝑅) must involve at least three distinct vertices due to the additive 
adjacency condition. 

If  𝐺𝐺𝐼𝐼(𝑅𝑅) is acyclic, then 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ( 𝐺𝐺𝐼𝐼(𝑅𝑅)) = ∞. 
Proof.  The graph 𝐺𝐺𝐼𝐼(𝑅𝑅) is constructed with vertices as 𝑢𝑢, 𝑣𝑣,𝑤𝑤, … ∈

𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼, the set of units of 𝑅𝑅 excluding those in the ideal 𝐼𝐼. Two vertices 
𝑢𝑢 and 𝑣𝑣 are adjacent if 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. To determine the girth of 𝐺𝐺𝐼𝐼(𝑅𝑅),  the 
cycle structure of the graph is analysed.  

For a cycle to exist in  𝐺𝐺𝐼𝐼(𝑅𝑅), there must be a sequence of 
vertices 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑘𝑘 such that 𝑢𝑢𝑖𝑖– 𝑢𝑢𝑖𝑖+1  ∈ 𝐼𝐼 for 1 ≤ 𝑖𝑖 < 𝑘𝑘, and 𝑢𝑢𝑘𝑘– 𝑢𝑢1 ∈ 𝐼𝐼. 
This sequence forms a closed loop where each adjacent pair satisfies the 
additive adjacency rule 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. The girth of  𝐺𝐺𝐼𝐼(𝑅𝑅), defined as the 
length of the shortest cycle, is determined by the minimum 𝑘𝑘 for which 
such a sequence exists. Due to the additive nature of adjacency and the 
exclusion of self-loops (𝑢𝑢 − 𝑢𝑢 = 0) and two-vertex cycles, the minimum 
cycle length is 𝑘𝑘 ≥ 3 if cycles exist. 

If  𝐺𝐺𝐼𝐼(𝑅𝑅) does not contain any cycles, it is considered acyclic. In this 
case, the girth of the graph is defined as ∞, reflecting the absence of 
closed paths. This situation arises when no sequence of vertices 
𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑘𝑘 satisfies the adjacency rule for a complete cycle. 

The proof assurances that if cycles exist in  𝐺𝐺𝐼𝐼(𝑅𝑅), the girth is at 
least 3, as cycles must involve at least three vertices due to the exclusion 
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the girth is ∞. This completes the proof.  
EXAMPLE 10.  Ring: 𝑅𝑅 = 𝑍𝑍18,  Ideal: 𝐼𝐼 = (3) = {0,3,6,9,12,15}, the 

vertices set is 𝑈𝑈(𝑅𝑅)\𝐼𝐼 = {1,5,7,11,13,17}. Edges : the vertices 𝑢𝑢, 𝑣𝑣 are 
adjacent if 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. There exists the cycle 1→7→11→1. Graph 
Properties: A single large cycle involving all 8 vertices.   

THEOREM 10.  Let 𝑅𝑅 be a commutative ring and 𝐼𝐼 an  ideal of 𝑅𝑅. 
The graph 𝐺𝐺𝐼𝐼(𝑅𝑅) contains a cycle if and only if there exist distinct 
𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈ 𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 such that (𝑢𝑢 − 𝑣𝑣), (𝑣𝑣 − 𝑤𝑤), (𝑤𝑤 − 𝑢𝑢) ∈ 𝐼𝐼. 

Proof. To prove the theorem, both the necessity and sufficiency of 
the stated condition for the presence of a cycle in  𝐺𝐺𝐼𝐼(𝑅𝑅) are established.  

Necessity. A cycle in  𝐺𝐺𝐼𝐼(𝑅𝑅) implies the existence of vertices 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈
𝑈𝑈(𝑅𝑅) such that 𝑢𝑢 → 𝑣𝑣 → 𝑤𝑤 → 𝑢𝑢. By the definition of adjacency in G 𝐺𝐺𝐼𝐼(𝑅𝑅), 
two vertices 𝑥𝑥,𝑦𝑦 ∈ 𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 are adjacent if and only if their difference 𝑥𝑥 −
𝑦𝑦 ∈ 𝐼𝐼. For the cycle 𝑢𝑢 → 𝑣𝑣 → 𝑤𝑤 → 𝑢𝑢 in  𝐺𝐺𝐼𝐼(𝑅𝑅), the adjacency conditions 
are satisfied because 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼, and 𝑤𝑤 − 𝑢𝑢 ∈ 𝐼𝐼. These adjacency 
relations demonstrate that the differences between the consecutive 
vertices 𝑢𝑢, 𝑣𝑣,𝑤𝑤 are contained in the ideal I. Hence, the existence of a 
cycle in  𝐺𝐺𝐼𝐼(𝑅𝑅) necessitates the presence of distinct vertices 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈
𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 such that (𝑢𝑢 − 𝑣𝑣), (𝑣𝑣 − 𝑤𝑤), (𝑤𝑤 − 𝑢𝑢) ∈ 𝐼𝐼. 

Sufficiency. Conversely, assume there exist distinct vertices 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈
𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 such that 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼, 𝑣𝑣 − 𝑤𝑤 ∈ 𝐼𝐼, and 𝑤𝑤 − 𝑢𝑢 ∈ 𝐼𝐼. These conditions 
ensure that 𝑢𝑢 and 𝑣𝑣 are adjacent, 𝑣𝑣 and 𝑤𝑤 are adjacent, and 𝑤𝑤 and 𝑢𝑢 are 
adjacent in  𝐺𝐺𝐼𝐼(𝑅𝑅). As a result, the edges 𝑢𝑢 → 𝑣𝑣 → 𝑤𝑤 → 𝑢𝑢 form a cycle in 
 𝐺𝐺𝐼𝐼(𝑅𝑅). Thus, the presence of such 𝑢𝑢, 𝑣𝑣,𝑤𝑤 is sufficient to guarantee a 
cycle in the graph. 

EXAMPLE 11. Let 𝑅𝑅 = 𝑍𝑍9 = {0,1,2,3,4,5,6,7,8} and 𝐼𝐼 = (3) = {0,3,6}. 
The units 𝑈𝑈(𝑅𝑅) = {1,2,4,5,7,8}. The vertices of  𝐺𝐺𝐼𝐼(𝑅𝑅) are 𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 =
{1,2,4,5,7,8}, as 𝐼𝐼 contains no units. Two vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 are 
adjacent if 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼. The adjacency relations,  1 − 4 = −3 ≡ 6 𝑚𝑚𝑚𝑚𝑚𝑚  9 ∈
𝐼𝐼, 4 − 7 = −3 ≡ 6 𝑚𝑚𝑚𝑚𝑚𝑚  9 ∈ 𝐼𝐼, 7 − 1 = −6 ≡ 3 𝑚𝑚𝑚𝑚𝑚𝑚  9 ∈ 𝐼𝐼. This forms a 
cycle 1 → 4 → 7 → 1. 

THEOREM 11. Let 𝑅𝑅 be a commutative ring and 𝐼𝐼 an ideal. If 𝐺𝐺(𝑅𝑅/𝐼𝐼)  
is disconnected, 𝐺𝐺𝐼𝐼(𝑅𝑅) is regular only if all connected components of 
𝐺𝐺(𝑅𝑅/𝐼𝐼) are regular, and cosets contribute uniformly to 𝐺𝐺𝐼𝐼(𝑅𝑅). 

Proof. To establish the regularity conditions for 𝐺𝐺𝐼𝐼(𝑅𝑅), the 
relationships between 𝐺𝐺𝐼𝐼(𝑅𝑅) and 𝐺𝐺(𝑅𝑅/𝐼𝐼) and the uniform contribution of 
cosets has to be analysed. If 𝐺𝐺(𝑅𝑅/𝐼𝐼) is regular with the degree 𝑘𝑘, each 
vertex in 𝐺𝐺(𝑅𝑅/𝐼𝐼) has exactly 𝑘𝑘 adjacent vertices. This regularity arises 
from the structure of 𝑅𝑅/𝐼𝐼, where vertices (cosets of 𝐼𝐼) are connected if 
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their difference lies in 𝐼𝐼. The adjacency relations in 𝐺𝐺𝐼𝐼(𝑅𝑅) are inherited 
from 𝐺𝐺(𝑅𝑅/𝐼𝐼), as the vertices of 𝐺𝐺𝐼𝐼(𝑅𝑅) (units in 𝑅𝑅 ∖ 𝐼𝐼) are distributed 
among the cosets 𝑎𝑎 + 𝐼𝐼. For the regularity to propagate from 𝐺𝐺(𝑅𝑅/𝐼𝐼) to 
𝐺𝐺𝐼𝐼(𝑅𝑅), it is necessary that each coset 𝑎𝑎 + 𝐼𝐼 contributes uniformly to the 
vertex set of 𝐺𝐺𝐼𝐼(𝑅𝑅). 

Uniform contribution means that all cosets 𝑎𝑎 + 𝐼𝐼 in 𝑅𝑅/𝐼𝐼 contribute an 
equal number of vertices to  𝐺𝐺𝐼𝐼(𝑅𝑅). Specifically, the number of vertices 
contributed by each coset 𝑎𝑎 + 𝐼𝐼 is ∣ 𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 ∣/∣ 𝑅𝑅/𝐼𝐼 ∣, where ∣ 𝑈𝑈(𝑅𝑅) ∖ 𝐼𝐼 ∣ 
represents the total number of units not in 𝐼𝐼 and ∣ 𝑅𝑅/𝐼𝐼 ∣ is the number of 
cosets in 𝑅𝑅/𝐼𝐼. If this contribution is uniform, the adjacency relations 
between the vertices of  𝐺𝐺𝐼𝐼(𝑅𝑅) mirror the regular structure of 𝐺𝐺(𝑅𝑅/𝐼𝐼), 
ensuring consistent vertex degrees in  𝐺𝐺𝐼𝐼(𝑅𝑅). 

The graph  𝐺𝐺𝐼𝐼(𝑅𝑅) is regular if 𝐺𝐺(𝑅𝑅/𝐼𝐼) is regular and all cosets 
contribute uniformly to the vertex set of  𝐺𝐺𝐼𝐼(𝑅𝑅). The uniform contribution 
ensures that the vertex degrees in  𝐺𝐺𝐼𝐼(𝑅𝑅) remain consistent across all 
vertices, thereby propagating the regularity of 𝐺𝐺(𝑅𝑅/𝐼𝐼) to  𝐺𝐺𝐼𝐼(𝑅𝑅). This 
concludes the proof. 

EXAMPLE 12.  The ring 𝑍𝑍24 consists of the elements {0,1,2, … ,23}. 
The ideal 𝐼𝐼 = (3) includes {0,3,6,9,12,15,18,21}. The units are 𝑈𝑈(𝑍𝑍24) =
{1,5,7,11,13,17,19,23}. The vertex set of 𝐺𝐺𝐼𝐼(𝑅𝑅) is  𝑈𝑈(𝑍𝑍24)∖𝐼𝐼 =
{1,5,7,11,13,17,19,23}.  

Adjacency relations as follows, 1−5 = −4 ≡ 20 mod  24 ∈ I, 5−7 = −2 
≡22 mod  24 ∈ I, 7−11 = −4 ≡ 20 mod  24 ∈ I, 11−1 = −10 ≡ 14 mod  24 ∈ 
I (forming cycle 1). Similarly, 13→17→19→23→13 forms cycle 2.  

Comparision of unit graphs and chemical graphs 
Graphs are powerful tools for representing both algebraic and 

chemical structures. Unit graphs 𝐺𝐺𝐼𝐼(𝑅𝑅) from algebraic ring theory and 
molecular graphs from chemistry share deep structural similarities. This 
section explores these similarities, focusing on regularity, symmetry, and 
cyclic properties. By comparing ideal-based unit graphs of commutative 
rings with well-known chemical graphs, the study bridges abstract 
algebra with real-world molecular systems. 

DEFINITION 9. For the unit graph  𝐺𝐺𝐼𝐼(𝑅𝑅) , the vertices are units of 𝑅𝑅, 
𝑈𝑈(𝑅𝑅) excluding those in the ideal 𝐼𝐼. The edges are defined as two 
vertices 𝑢𝑢 and 𝑣𝑣 which are adjacent if 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼.Topology depends on the 
structure of the ring 𝑅𝑅 and the ideal 𝐼𝐼. 

For the chemical graphs, the vertices are atoms in the molecule 
(e.g., carbon, hydrogen, oxygen). The edges are covalent bonds (single, 
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4 double, triple) connecting atoms. Topology reflects the molecular 

structure and bond distribution. 

Case studies and comparisons 
EXAMPLE 13. Benzene (𝐶𝐶6𝐻𝐻6) vs. 𝐺𝐺𝐼𝐼(𝑍𝑍9), 𝐼𝐼 = (3). Unit graph  𝐺𝐺𝐼𝐼(𝑍𝑍9), 𝐼𝐼 =
 (3); vertices: {1,2,4,5,7,8} ; edges: two disjoint triangles: 1→4→7→1 ; 
2→5→8→2. It is 2-regular (each vertex connects to 2 neighbours). 
Chemical graph (benzene): vertices: six carbon atoms arranged 
cyclically. Edges: alternating single and double bonds. It is 2-regular 
(each carbon connects to 2 neighbours). 

Observation: Both graphs exhibit cyclic symmetry, with benzene's 
molecular structure reflecting the disjoint triangles of  𝐺𝐺𝐼𝐼(𝑍𝑍𝟗𝟗). Figure 12 
depicts this example. 

 
Figure 12 - Unit graph of  𝐺𝐺3(𝑍𝑍9) and the chemical graph of benzene 

 
EXAMPLE 14. Cyclooctane (𝐶𝐶8𝐻𝐻16) vs. 𝐺𝐺𝐼𝐼(𝑍𝑍24), 𝐼𝐼 = (3). Unit graph 
 𝐺𝐺𝐼𝐼(𝑍𝑍24), 𝐼𝐼 = (3): vertices: {1,5,7,11,13,17,19,23}. Edges: single cycle: 
1→5→7→11→13→17→19→23→1.Regularity:2-regular.  
Chemical graph (cyclooctane): vertices: eight carbon atoms in a cyclic 
structure. Edges: single bonds between consecutive atoms. Regularity: 
2-regular. 

Observation: The large cyclic structure of cyclooctane parallels the 
single cycle in  𝐺𝐺𝐼𝐼(𝑍𝑍24). The following figure (Figure 13) depicts this 
example. 
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Figure 13- Unit graph of  𝐺𝐺3(𝑍𝑍24) and the chemical graph of cyclooctane 

 
This comparative study reveals the versatility of graph theory in 

linking algebraic and chemical systems. The symmetry, regularity, and 
cyclic properties of unit graphs and chemical graphs illustrate how 
abstract algebra can model real-world molecular systems. Future work 
can explore further connections, enhancing interdisciplinary 
understanding and applications. 

Conclusion 
The study of ideal-based unit graphs  𝐺𝐺𝐼𝐼(𝑍𝑍𝑛𝑛) provides a fascinating 

intersection of algebraic structures and graph theory, revealing deep 
connections between the properties of 𝑍𝑍𝑛𝑛, the choice of ideals, and the 
resulting graph topology. By analysing these graphs, it is observed that 
the divisor 𝑑𝑑 of 𝑛𝑛, which generates the ideal 𝐼𝐼 = (𝑑𝑑), plays a pivotal role 
in determining the connectivity, symmetry, and sparsity of the graph. 
Smaller values of 𝑑𝑑 lead to dense, highly connected graphs, often 
complete, while larger 𝑑𝑑 values result in sparse graphs that may 
fragment into disconnected components. This interplay is further 
enriched by the cyclic structure of 𝑍𝑍𝑛𝑛, where adjacency is influenced by 
residue classes and coset interactions. The interaction between the 
additive subgroup 𝐼𝐼 and the multiplicative group of units 𝑈𝑈(𝑍𝑍𝑛𝑛) highlights 
the algebraic properties shaping vertex connectivity and degree 
distributions. 

The evaluation of topological indices on these graphs such as the 
Zagreb indices, Wiener Index, Estrada Index, Randić Index, and others 
provides a numerical lens to quantify their structural and spectral 
characteristics. The key insights include the steady growth of the first and 
second Zagreb Indices with increasing 𝑛𝑛, reflecting enhanced degree 
interactions, and the exponential rise of the Estrada index, indicating the 
growing influence of spectral contributions. Conversely, the Randić index 
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4 declines slightly, showcasing reduced branching, while the Harmonic 

index increases, emphasizing improved connectivity in denser graphs. 
These indices, when considered collectively, reveal the dynamic interplay 
between algebraic properties and graph topology, offering a 
comprehensive framework for analysing unit graphs of commutative 
rings. 

The comparison of these unit graphs with chemical graphs not only 
highlights structural parallels but also opens pathways for 
interdisciplinary applications in mathematical chemistry and 
cryptography. Future work could extend this framework to weighted 
graphs, modular systems, or higher algebraic structures, further 
broadening the scope of ideal-based unit graph research. 
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4 ОБЛАСТ: математика 

КАТЕГОРИЈА (ТИП) ЧЛАНКА: оригинални научни рад 

Сажетак:  
Увод/сврха: У овом раду уводи се појам јединичних графова 
заснован на простом идеалу који је повезан са комутативним 
прстеном R. Чворови овог графа јесу јединице R које не 
припадају изабраном простом идеалу I, а два таква чвора 
сматрају се суседним ако њихова разлика припада идеалу I.  Циљ 
је  да се  истраже структурна, алгебарска и тополошка 
својства овог графа, као и да се испитају алгебарске 
импликације различитих граф-теоријских инваријанти. 
Методе: Јединични графови засновани на идеалима конструишу се 
коришћењем прстена ℤ𝑛𝑛 где јединице искључене из изабраног 
простог идеала формирају скуп чворова. Суседност између два 
чвора одређује се по томе да ли се њихова разлика налази у  
идеалу. Приликом анализе израчунато је неколико тополошких 
индекса, укључујући Загребачке индексе, Винеров индекс, 
аритметичко-геометријски индекс, хармонијски индекс, 
Естрадинов индекс, и енергију графа. Геометријске визуализације 
и матрице суседства користе се за тумачење комплексности и 
повезаности графова. 
Резултати: Резултати показују да структура добијеног графа у 
знатној мери зависи од модулуса 𝑛𝑛 и природе изабраног идеала. 
Мањи идеали доводе до графова са великом повезаношћу, док већи 
идеали дају ређе или неповезане графове. Израчунати индекси 
одражавају обрасце у симетрији, расподели степена и растојању, 
указујући тако на суштинске алгебарске карактеристике. 
Закључци: Јединични графови засновани на идеалима 
представљају нови оквир за проучавање интеракције између 
алгебарских својстава прстена и структурних особина графова. 
Добијени резултати доприносе развоју алгебарских алата 
применљивих у математичкој хемији, безбедној комуникацији и 
теоријској рачунарској науци. 
Кључне речи: јединице, идеали, тополошки индекси, 
комутативни прстен. 
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